Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 736
Filter
1.
Mol Metab ; : 101985, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977130

ABSTRACT

OBJECTIVE: Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS: To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS: Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS: Long-term consumption of commonly used NNSs does not induce adverse metabolic effects,with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.

2.
Front Nutr ; 11: 1411560, 2024.
Article in English | MEDLINE | ID: mdl-38988858

ABSTRACT

Diabetes is a significant global health concern, highlighting the critical role of dietary strategies in its management and prevention. Artificial sweeteners (ASs), due to their capacity to provide sweetness without contributing to caloric intake, have emerged as a potential tool in diabetes management. This review thoroughly examines the nuanced relationship between artificial sweeteners and diabetes, addressing their benefits and potential risks. ASs have been shown to aid in weight management, a key factor in reducing diabetes risk, and do not impact immediate blood glucose levels, offering improved glucose control for individuals with diabetes. Beyond these benefits, however, artificial sweeteners may interact complexly with gut microbiota, potentially altering its composition and affecting metabolic health. This interaction introduces concerns regarding insulin sensitivity and the risk of insulin resistance, with studies reporting conflicting findings. This comprehensive review highlights the importance of a nuanced approach to understanding the implications of artificial sweeteners in diabetes management. Given the mixed evidence on their health effects, there is a clear need for further research to fully elucidate the role of artificial sweeteners in metabolic health and their suitability as part of dietary interventions for diabetes.

3.
Comput Biol Med ; 178: 108731, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870727

ABSTRACT

Non-sugar sweeteners (NSSs) or artificial sweeteners have long been used as food chemicals since World War II. NSSs, however, also raise a concern about their mutagenicity. Evaluating the mutagenic ability of NSSs is crucial for food safety; this step is needed for every new chemical registration in the food and pharmaceutical industries. A computational assessment provides less time, money, and involved animals than the in vivo experiments; thus, this study developed a novel computational method from an ensemble convolutional deep neural network and read-across algorithms, called DeepRA, to classify the mutagenicity of chemicals. The mutagenicity data were obtained from the curated Ames test data set. The DeepRA model was developed using both molecular descriptors and molecular fingerprints. The obtained DeepRA model provides accurate and reliable mutagenicity classification through an independent test set. This model was then used to examine the NSSs-related chemicals, enabling the evaluation of mutagenicity from the NSSs-like substances. Finally, this model was publicly available at https://github.com/taraponglab/deepra for further use in chemical regulation and risk assessment.

4.
Front Nutr ; 11: 1387676, 2024.
Article in English | MEDLINE | ID: mdl-38873559

ABSTRACT

Background: The current investigation examines the association between artificial sweetener (AS) consumption and the likelihood of developing chronic kidney disease (CKD), along with its impact on kidney function. Methods: We utilized data from the National Health and Nutrition Examination Survey from 2003-2006 to conduct covariance analysis and weighted adjusted logistic regression, aiming to assess the association between artificial sweetener intake and CKD risk, as well as kidney function indicators. Subsequently, we employed Mendelian randomization methods to validate the causal relationship between the intake of artificial sweeteners, CKD risk, and kidney function indicators. Instrumental variable analysis using inverse-variance weighting and Robust adjusted profile score were the primary analytical methods employed. Results: A total of 20,470 participants were included in the study, with 1,257 participants ultimately included in the analysis. In all adjusted logistic regression models, no significant association was found between the intake of artificial sweeteners and CKD risk. Similarly, the summary odds ratios (OR) for each unit change in genetically predicted CKD risk were 2.14 (95% CI: 0.83, 5.21, p = 0.092), 1.41 (95% CI: 0.54, 3.63, p = 0.482), and 1.50 (95% CI: 0.50, 4.52, p = 0.468) for the impact of artificial sweeteners added to cereals, tea, and coffee, respectively. It was only observed that adding artificial sweeteners to coffee was associated with a modest reduction in urinary albumin-to-creatinine ratio (OR = 0.94, 95% CI: -0.108, -0.022, p = 0.003), the effect appeared to be relatively small and may not directly impact the individual level. Conclusion: Our study does not support a causal relationship between artificial sweetener intake and the risk of CKD. However, due to the limitations and potential confounding factors, these findings need to be further validated through larger sample sizes in observational studies and Mendelian randomization analyses.

5.
Article in English | MEDLINE | ID: mdl-38940750

ABSTRACT

Bakery products, including biscuits, cakes and breads, generally present a high content of simple sugars of rapid absorption, high fat content and low amount of dietary fiber, which make them highly caloric foods. Although sucrose is a very important ingredient in bakery products for its preservation characteristics and a significant source of energy, there is a growing interest in replacing this sugar with alternative substances, such as high-intensity sweeteners (HIS) that provide sweetness with no or low calories. In Brazil, there is no data on the use of HIS in this class of food. Therefore, the objective of this study was to evaluate the presence of HIS in baked food commercially available in the country and estimate the dietary exposure to these food additives. For that, an analytical method was established for the simultaneous determination of nine HIS in bakery products using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Sample preparation steps were required based on mechanical kneading for homogenization, hexane extraction of fats, dilution in mobile phase and vortex homogenization, prior to injection into the system. The results obtained during validation showed that coefficients of variation (CV%) for precision were lower than 13.8% and the accuracy was between 91.6% and 109.1%. Aspartame, acesulfame potassium, sodium cyclamate, saccharin, sucralose and steviol glycosides were found in the samples, used alone or in combinations of up five substances. Steviol glycosides were the most found HIS in biscuit samples, while sucralose was the most common sweetener in cake and bread samples. Analysis of product labels revealed only three different claims, .i.e. 'no sugar', 'no added sugar' and 'zero sugar', with the latter being found in 70% of the samples. Exposure to HIS through the consumption of bakery products estimated per eating occasion showed no concerns regarding toxicological risk.

6.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931195

ABSTRACT

Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling.


Subject(s)
Epithelial-Mesenchymal Transition , Matrix Metalloproteinase 9 , Neoplasm Metastasis , Receptors, G-Protein-Coupled , Sweetening Agents , Humans , Epithelial-Mesenchymal Transition/drug effects , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/pharmacology , Cell Line, Tumor , Matrix Metalloproteinase 9/metabolism , Glycosylation/drug effects , Signal Transduction/drug effects , Phenotype , Animals , Taste/drug effects , Cell Movement/drug effects , Neuraminidase
7.
Med Sci (Basel) ; 12(2)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921683

ABSTRACT

BACKGROUND: Insulin exerts a crucial impact on glucose control, cellular growing, function, and metabolism. It is partially modulated by nutrients, especially as a response to the intake of foods, including carbohydrates. Moreover, insulin can exert an anorexigenic effect when inserted into the hypothalamus of the brain, in which a complex network of an appetite/hunger control system occurs. The current literature review aims at thoroughly summarizing and scrutinizing whether insulin release in response to glucose exposure may be a better choice to control body weight gain and related diseases compared to the use of sucrose substitutes (SSs) in combination with a long-term, well-balanced diet. METHODS: This is a comprehensive literature review, which was performed through searching in-depth for the most accurate scientific databases and applying effective and relevant keywords. RESULTS: The insulin action can be inserted into the hypothalamic orexigenic/anorexigenic complex system, activating several anorexigenic peptides, increasing the hedonic aspect of food intake, and effectively controlling the human body weight. In contrast, SSs appear not to affect the orexigenic/anorexigenic complex system, resulting in more cases of uncontrolled body weight maintenance while also increasing the risk of developing related diseases. CONCLUSIONS: Most evidence, mainly derived from in vitro and in vivo animal studies, has reinforced the insulin anorexigenic action in the hypothalamus of the brain. Simultaneously, most available clinical studies showed that SSs during a well-balanced diet either maintain or even increase body weight, which may indirectly be ascribed to the fact that they cannot cover the hedonic aspect of food intake. However, there is a strong demand for long-term longitudinal surveys to effectively specify the impact of SSs on human metabolic health.


Subject(s)
Appetite , Glucose , Insulin , Humans , Glucose/metabolism , Appetite/drug effects , Animals , Body Weight Maintenance , Sucrose , Satiation
8.
Nutrients ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38892483

ABSTRACT

Understanding the relationship between the intake of sugars and diet quality can inform public health recommendations. This systematic review synthesized recent literature on associations between sugar intake and diet quality in generally healthy populations aged 2 years or older. We searched databases from 2010 to 2022 for studies of any design examining associations between quantified sugar intake in the daily diet and dietary indexes (DIs) or micronutrient intakes. Different sugar types and diet quality measures were analyzed separately. We converted DI results to Pearson's r correlations and grouped indexes with or without a free or added sugar component to facilitate cross-study comparisons. Meta-analysis was deemed inappropriate. From 13,869 screened records, we included 27 cross-sectional studies. NUQUEST risk of bias ratings were neutral (n = 18 studies) or poor (n = 9), and strength of evidence by the GRADE approach was very low due to study design. Most studies reported negative associations for added and free sugars with diet quality indexes (r ranging from -0.13 to -0.42) and nutrients of public health concern (fiber, vitamin D, calcium, potassium), while associations with total sugars were mixed. Due to cross-sectional study designs, the clinical relevance of these findings is unclear. Prospective studies are needed to minimize confounding and inform causal relationships.


Subject(s)
Dietary Sugars , Humans , Dietary Sugars/administration & dosage , Diet , Cross-Sectional Studies , Female , Adult , Male , Diet, Healthy/statistics & numerical data , Child , Middle Aged , Adolescent , Micronutrients/administration & dosage , Child, Preschool , Young Adult , Aged
9.
Sci Rep ; 14(1): 14534, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914694

ABSTRACT

High sugar consumption is associated with cardiovascular diseases and diabetes. Current sugar substitutes may cause taste sensations and gastrointestinal symptoms. ENSO 16 is a combination of 16 different sugar substitutes and plant fibers and has been designed as a sugar alternative. The impact on plasma glucose metabolism as well as on gastrointestinal tolerance has not been investigated yet. 17 healthy participants were enrolled in this randomized, double-blind trial. Participants received a single oral dose of 30 g glucose or 30 g ENSO 16 and crossed over to the alternate treatment after a 7 day wash out period. The study endpoint was the effect on plasma glucose, insulin, C-peptide concentrations and gastrointestinal disorders. A questionnaire regarding gastrointestinal symptoms was used for individual subjective scoring. The mean baseline adjusted plasma glucose AUC0-180 min was significantly greater after glucose administration compared to ENSO 16 (n = 15, p = 0.0128, paired t-test). Maximum plasma glucose elevation over baseline was 117 mg*dl-1 and 20 mg*dl-1 after oral glucose or ENSO 16, respectively. Insulin and C-peptide AUC0-180 min were significantly greater after glucose compared to ENSO 16 intake (p < 0.01, Wilcoxon rank sum test). The mean maximal concentrations of plasma glucose, insulin and C-peptide after glucose intake were 1.5, 4.6 and 2.7-fold greater after glucose intake compared to ENSO 16 intake, respectively. Adverse reactions were mostly mild and not different between treatments. Conclusion. ENSO 16 has only a small impact on plasma glucose metabolism. This may be of interest in a dietary context and may help to reduce calory intake.Trail registration NCT05457400. First registration: 14/07/2022. https://clinicaltrials.gov/study/NCT05457400 .


Subject(s)
Blood Glucose , C-Peptide , Cross-Over Studies , Insulin , Humans , Male , Female , Adult , Blood Glucose/metabolism , Double-Blind Method , C-Peptide/blood , Insulin/blood , Insulin/metabolism , Glucose/metabolism , Healthy Volunteers , Young Adult , Middle Aged
10.
Food Chem ; 457: 140103, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38905824

ABSTRACT

Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.

11.
Nutrition ; 125: 112465, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38823252

ABSTRACT

OBJECTIVES: It is unclear whether parental consumption of non-nutritive sweetener (NNS) can affect subsequent generations. The aim of this study was to determine whether chronic parental consumption of sucralose and stevia in mice affects body weight gain and liver and intestinal expression of histone deacetylase 3 (Hdac3) in these animals and in the subsequent first filial (F1) and second filial (F2) generations. METHODS: Male and female mice (n = 47) were divided into three groups to receive water alone or supplemented with sucralose (0.1 mg/mL) or stevia (0.1 mg/mL) for 16 wk (parental [F0] generation). F0 mice were bred to produce the F1 generation; then, F1 mice were bred to produce the F2 generation. F1 and F2 animals did not receive NNSs. After euthanasia, hepatic and intestinal expression of Hdac3 was determined by quantitative reverse transcription polymerase chain reaction. RESULTS: Body weight gain did not differ between the three groups in the F0 generation, but it was greater in the F1 sucralose and stevia groups than in the control group. Consumption of both NNSs in the F0 generation was associated with lower Hdac3 expression in the liver and higher in the intestine. Hepatic Hdac3 expression was normalized to the control values in the F1 and F2 animals of the sucralose and stevia groups. Intestinal expression was still higher in the F1 generations of the sucralose and stevia groups but was partially normalized in the F2 generation of these groups, compared with control. CONCLUSIONS: NNS consumption differentially affects hepatic and intestinal Hdac3 expression. Changes in hepatic expression are not transmitted to the F1 and F2 generations whereas those in intestinal expression are enhanced in the F1 and attenuated in the F2 generations.

12.
Pharmacol Res ; 204: 107211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744400

ABSTRACT

Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.


Subject(s)
Sweetening Agents , Taste Perception , Animals , Humans , Kinetics , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/metabolism , Sweetening Agents/pharmacology , Taste
13.
Appetite ; 200: 107422, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38788930

ABSTRACT

INTRODUCTION: High sugar intake is associated with many chronic diseases. However, non-caloric sweeteners (NCSs) might fail to successfully replace sucrose due to the mismatch between their rewarding sweet taste and lack of caloric content. The natural NCS erythritol has been proposed as a sugar substitute due to its satiating properties despite being non-caloric. We aimed to compare brain responses to erythritol vs. sucrose and the artificial NCS sucralose in a priori taste, homeostatic, and reward brain regions of interest (ROIs). METHODS: We performed a within-subject, single-blind, counterbalanced fMRI study in 30 healthy men (mean ± SEM age:24.3 ± 0.8 years, BMI:22.3 ± 0.3 kg/m2). Before scanning, we individually matched the concentrations of both NCSs to the perceived sweetness intensity of a 10% sucrose solution. During scanning, participants received 1 mL sips of the individually titrated equisweet solutions of sucrose, erythritol, and sucralose, as well as water. After each sip, they rated subjective sweetness liking. RESULTS: Liking ratings were significantly higher for sucrose and sucralose vs. erythritol (both pHolm = 0.0037); water ratings were neutral. General Linear Model (GLM) analyses of brain blood oxygen level-depended (BOLD) responses at qFDR<0.05 showed no differences between any of the sweeteners in a priori ROIs, but distinct differences were found between the individual sweeteners and water. These results were confirmed by Bayesian GLM and machine learning-based models. However, several brain response patterns mediating the differences in liking ratings between the sweeteners were found in whole-brain multivariate mediation analyses. Both subjective and neural responses showed large inter-subject variability. CONCLUSION: We found lower liking ratings in response to oral administration of erythritol vs. sucrose and sucralose, but no differences in neural responses between any of the sweeteners in a priori ROIs. However, differences in liking ratings between erythritol vs. sucrose or sucralose are mediated by multiple whole-brain response patterns.


Subject(s)
Brain , Erythritol , Food Preferences , Magnetic Resonance Imaging , Sucrose , Sweetening Agents , Humans , Erythritol/pharmacology , Erythritol/analogs & derivatives , Erythritol/administration & dosage , Male , Young Adult , Adult , Sucrose/analogs & derivatives , Sucrose/administration & dosage , Sucrose/pharmacology , Food Preferences/drug effects , Brain/drug effects , Brain/physiology , Single-Blind Method , Sweetening Agents/administration & dosage , Sweetening Agents/pharmacology , Taste/drug effects , Administration, Oral , Taste Perception/drug effects , Reward
14.
Eur J Nutr ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743096

ABSTRACT

PURPOSE: Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS: Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS: All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION: Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.

15.
Food Res Int ; 183: 114185, 2024 May.
Article in English | MEDLINE | ID: mdl-38760122

ABSTRACT

Low- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth. This study investigated the impact of diffusion coefficients of common high-intensity sweeteners on taste perception focusing on the sweeteners' diffusion through mucin. Transwell Permeable Support well plates were used to measure diffusion coefficients of samples that were collected at specific intervals to estimate the coefficients based on concentration measurements. The diffusion coefficients of acesulfame-K, aspartame, rebaudioside M, sucralose, and sucrose with and without NaCl were compared. We found that different sweeteners show different diffusion behavior through mucin and that the presence of salt enhances the diffusion. These findings contribute insights into the diffusion of high-intensity sweeteners, offer a way to evaluate diffusion coefficients in real-time, and inform the development of products with improved taste profiles.


Subject(s)
Mucins , Sucrose , Sweetening Agents , Diffusion , Mucins/metabolism , Sucrose/analogs & derivatives , Taste Perception , Humans , Thiazines
16.
Pharmaceutics ; 16(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794322

ABSTRACT

The co-administration of curcumin and hesperetin might be beneficial in terms of neuroprotective activity; therefore, in this study, we attempted to develop a fixed-dose formulation comprising these two compounds in an amorphous state. The aim of obtaining an amorphous state was to overcome the limitations of the low solubility of the active compounds. First, we assessed the possibility of using popular sweeteners (erythritol, xylitol, and sorbitol) as plasticizers to reduce the glass transition temperature of PVP K30 to prepare the polymer-excipient blends, which allowed the preparation of amorphous solid dispersions via hot-melt extrusion at a temperature below the original glass transition of PVP K30. Erythritol proved to be the superior plasticizer. Then, we focused on the development of fixed-dose amorphous solid dispersions of curcumin and hesperetin. Powder X-ray diffraction and thermal analysis confirmed the amorphous character of dispersions, whereas infrared spectroscopy helped to assess the presence of intermolecular interactions. The amorphous state of the produced dispersions was maintained for 6 months, as shown in a stability study. Pharmaceutical parameters such as dissolution rate, solubility, and in vitro permeability through artificial membranes were evaluated. The best improvement in these features was noted for the dispersion, which contained 15% of the total content of the active compounds with erythritol used as the plasticizer.

17.
Heliyon ; 10(10): e31243, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803890

ABSTRACT

The consumption of added sugars has been a major concern among consumers and researchers around the world. Some of these added sugars pose health threats such as obesity, and liver diseases to consumers. Therefore, consumers' understanding and knowledge of added sugars is important in regulating the intake of food items that contain different types and levels of added sugar. In this study, the knowledge and understanding of staff (consumers) of the University of Energy and Natural Resources, Ghana, was assessed through survey The results showed that about 38.5 % of consumers always read food labels whereas 3.1 % never read the labels of food they purchased. However, only about 20 % of consumers considered added sugars as most important information on food labels while most (about 38 %) were concerned about the calorie level in food items purchased. Based on the consumer's knowledge of sugars and sweeteners, there was a high level of disparity in classifying sugars in food as sugars and sweeteners. In addition, most consumers reported that they would adversely avoid food items containing lactose, isoglucose, and saccharin. The awareness of the consumers to the WHO recommendation for sugar reduction, the gender (P = 0.278), age (P = 0.959), level of education (P = 0.888), and staff category (P = 0.944) did not influence their decisions on purchasing food items with added sugars Most consumers were interested in issues of food and nutrition. Therefore, it is recommended that staff are taken through aspects of food nutrition as well as the consumption of added sugar towards the recommended levels.

18.
Front Nutr ; 11: 1366409, 2024.
Article in English | MEDLINE | ID: mdl-38721028

ABSTRACT

Introduction: Recent studies have indicated considerable health risks associated with the consumption of artificial sweeteners. Neotame is a relatively new sweetener in the global market however there is still limited data on the impact of neotame on the intestinal epithelium or the commensal microbiota. Methods: In the present study, we use a model of the intestinal epithelium (Caco-2) and microbiota (Escherichia coli and Enterococcus faecalis) to investigate how physiologically-relevant exposure of neotame impacts intestinal epithelial cell function, gut bacterial metabolism and pathogenicity, and gut epithelium-microbiota interactions. Results: Our findings show that neotame causes intestinal epithelial cell apoptosis and death with siRNA knockdown of T1R3 expression significantly attenuating the neotame-induced loss to cell viability. Similarly, neotame exposure results in barrier disruption with enhanced monolayer leak and reduced claudin-3 cell surface expression through a T1R3-dependent pathway. Using the gut bacteria models, E. coli and E. faecalis, neotame significantly increased biofilm formation and metabolites of E. coli, but not E. faecalis, reduced Caco-2 cell viability. In co-culture studies, neotame exposure increased adhesion capacity of E. coli and E. faecalis onto Caco-2 cells and invasion capacity of E. coli. Neotame-induced biofilm formation, E.coli-specific Caco-2 cell death, adhesion and invasion was identified to be meditated through a taste-dependent pathway. Discussion: Our study identifies novel pathogenic effects of neotame on the intestinal epithelium or bacteria alone, and in co-cultures to mimic the gut microbiome. These findings demonstrate the need to better understand food additives common in the global market and the molecular mechanisms underlying potential negative health impacts.

19.
Dig Dis Sci ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662159

ABSTRACT

BACKGROUND: Various dietary strategies for managing irritable bowel syndrome (IBS) target mechanisms such as brain-gut interactions, osmotic actions, microbial gas production, and local immune activity. These pathophysiological mechanisms are diverse, making it unclear which foods trigger IBS symptoms for a substantial proportion of patients. AIM: To identify associations between foods and gastrointestinal symptoms. METHODS: From the mySymptoms smartphone app, we collected anonymized diaries of food intake and symptoms (abdominal pain, diarrhea, bloating, and gas). We selected diaries that were at least 3 weeks long. The diaries were analyzed for food-symptom associations using a proprietary algorithm. As the participants were anonymous, we conducted an app-wide user survey to identify IBS diagnoses according to Rome IV criteria. RESULTS: A total of 9,710 food symptom diaries that met the quality criteria were collected. Of the survey respondents, 70% had IBS according to Rome IV criteria. Generally, strong associations existed for caffeinated coffee (diarrhea, 1-2 h postprandial), alcoholic beverages (multiple symptoms, 4-72 h postprandial), and artificial sweeteners (multiple symptoms, 24-72 h postprandial). Histamine-rich food intake was associated with abdominal pain and diarrhea. Some associations are in line with existing literature, whilst the absence of an enriched FODMAP-symptom association contrasts with current knowledge. CONCLUSIONS: Coffee, alcohol, and artificial sweeteners were associated with GI symptoms in this large IBS-predominant sample. Symptom onset is often within 2 h postprandial, but some foods were associated with a delayed response, possibly an important consideration in implementing dietary recommendations. Clinical trials must test the causality of the demonstrated food-symptom associations.

20.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612868

ABSTRACT

Natural rare sugars are an alternative category of sweeteners with positive physiologic and metabolic effects both in in vitro and animal models. D-allulose is a D-fructose epimer that combines 70% sucrose sweetness with the advantage of an extremely low energy content. However, there are no data about the effect of D-allulose against adipose dysfunction; thus, it remains to be confirmed whether D-allulose is useful in the prevention and in treatment of adipose tissue alterations. With this aim, we evaluated D-allulose's preventive effects on lipid accumulation in 3T3-L1 murine adipocytes exposed to palmitic acid (PA), a trigger for hypertrophic adipocytes. D-allulose in place of glucose prevented adipocyte hypertrophy and the activation of adipogenic markers C/EBP-ß and PPARγ induced by high PA concentrations. Additionally, D-allulose pretreatment inhibited the NF-κB pathway and endoplasmic reticulum stress caused by PA, through activation of the Nrf2 pathway. Interestingly, these effects were also observed as D-allulose post PA treatment. Although our data need to be confirmed through in vivo models, our findings suggest that incorporating D-allulose as a glucose substitute in the diet might have a protective role in adipocyte function and support a unique mechanism of action in this sugar as a preventive or therapeutic compound against PA lipotoxicity through the modulation of pathways connected to lipid transport and metabolism.


Subject(s)
Fructose , Palmitic Acid , Animals , Mice , Palmitic Acid/toxicity , 3T3-L1 Cells , Adipocytes , Hypertrophy , Endoplasmic Reticulum Stress , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...