Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Publication year range
1.
Foods ; 11(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892803

ABSTRACT

Swell-Drying operation (SD) was applied on mangoes to evaluate its effect on drying kinetics: starting accessibility (δW), apparent drying coefficient (Dapp), and time to obtain a final moisture content of 20% d.b (tf = 20% d.b). Swell-drying consisted of (1) submitting fresh mangoes to a first pre-drying stage under Convective Air Drying (CAD) until a moisture content of 37% d.b; (2) applying Instant Controlled Pressure Drop (DIC) treatments on pre-dried mangoes by following a central composite rotatable design (steam pressure: 0.2-0.6 MPa and treatment time: 5 and 55 s); and (3) apply post-drying of mangoes under CAD. In both cases, CAD was performed at 60 °C and airflow of 1 m/s. Results showed that both the treatment time and the steam pressure impacted the Dapp and the δW. By comparing to the control, SD (0.54 MPa and 48 s) increased the Dapp and δW to 12.2 and 2.7 times, respectively. Moreover, SD triggers a significant reduction in post-drying time (tf = 20% d.b), being this of 2.4 h vs. 30.8 h. These results could be linked to the expansion of the internal pores of mangoes generated by the instant autovaporization of residual water triggered by DIC treatment.

2.
Molecules ; 26(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34770927

ABSTRACT

Food processing systematically aims at meeting the needs of consumers who are looking for total high quality and perfect food safety. As the various thermal and non-thermal food preservation technologies often affect the natural properties in terms of sensation, flavor, texture, etc., instant controlled pressure drop (DIC) has been conceived as a relevant, innovative process in this field. DIC uses high saturated steam pressure and short duration to provide a new way to expand biological matrices, improve drying, decontaminate, and extract biologically active compounds, among other attributes. Therefore, this review focuses on describing the applications of DIC technology on a wide range of products such as foods and by-products that have been processed both in the laboratory and on an industrial scale. The application of DIC has shown the possibility of a significant leap in quality improvement and cost reduction in the food industry. DIC reduces the drying time of fruits and vegetables, and improves the extraction of essential oils, vegetable oils, and antioxidant components. It also provides strong decontamination, eliminates vegetative microorganisms and spores, and reduces non-nutritional and allergenic components. Over the past 33 years, this technology has continued to expand its food applications and improve its characteristics on an industrial scale. But there are still many food unit operations that can be taken to the next level with DIC.


Subject(s)
Food Handling/methods , Food Preservation/methods , Pressure , Technology , Animals , Edible Grain , Food Ingredients , Fruit , Humans , Vegetables
3.
Molecules ; 25(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927600

ABSTRACT

Red beetroot is rich in bioactive compounds such as polyphenols, flavonoids, betaxanthins, betacyanins, among others. According to selected processing methods, the bioaccessibility of these compounds could be either enhanced or decreased. This study evaluated the effect of four different drying conditions: (1) Traditional Drying (TD), (2) Swell Drying (SD), (3) DIC Blanching + Traditional Drying (BTD), and (4) DIC Blanching + Swell Drying (BSD) on the antioxidant content and the antioxidant activity of red beetroots. Obtained results showed that in all the cases, by comparing to Traditional Drying (TD), the coupling of a DIC Blanching pre-treatment to a Swell Drying treatment (BSD) maintained or enhanced the preservation of the Total Phenolic Compounds (TPC), the Total Flavonoids Compounds (TFC), the Betanin Concentration (BC), the Trolox Equivalent Antioxidant Capacity (TEAC), and the Free Radical Scavenging Activity by DPPH (IC50) of red beetroots. Various studies have shown that thanks to the expanded and porous structure triggered by the Swell Drying process, it has been possible to achieve better antioxidants extraction and better whole quality. Hence, by coupling DIC as a blanching-steaming pre-treatment, it was possible to preserve better the antioxidant content and the antioxidant activity of red dried beetroots.


Subject(s)
Antioxidants/pharmacology , Beta vulgaris/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Betacyanins , Chemical Fractionation , Flavonoids , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Phenols , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Preservation, Biological , Pressure
4.
Rev. biol. trop ; Rev. biol. trop;68(supl 2)set. 2020.
Article in Spanish | LILACS, SaludCR | ID: biblio-1507626

ABSTRACT

Introducción: La Isla del Coco por su ubicación en el océano Pacífico y en aguas profundas, periódicamente arriban olas energéticas que se originan en el Océano del Sur. La isla actúa como un abrigo disipando parte de la energía de las olas que llegan a la costa pacífica de Costa Rica. Objetivo: El objetivo del trabajo es caracterizar las condiciones generales del oleaje a través de la simulación numérica del oleaje en el Pacífico Tropical del Este (PTE), con especial interés en la Isla del Coco. Métodos: Las olas se propagan con el modelo espectral de oleaje WAVEWATCH III. Se usa en el modelo una malla no estructurada. Se utilizan dos años (2007-2008) de datos históricos de oleaje como condiciones de frontera obtenidos de reanálisis con el modelo WAVEWATCH generado por el Instituto Francés para la Investigación del Mar (IFREMER por sus siglas en francés). Se obtienen mapas anuales y estacionales y series temporales de la altura significante de la ola, periodo y dirección asociado al pico del espectro de energía. Resultados: Los resultados mostrados son similares a otros estudios previos de simulación y observación. El campo de oleaje es caracterizado por periodos largos y dirección desde suroeste en promedio. Las condiciones de oleaje sobre la isla obedecen a los sistemas extratropicales de ambos hemisferios y a procesos locales en el PTE. Conclusiones: El modelo de olas WAVEWATCH III mostró que representa las condiciones típicas de oleaje en los alrededores de la Isla del Coco. Es el primer trabajo de simulación de oleaje aplicando una malla no convencional en la zona económica exclusiva de Costa Rica. El estudio sirve como base para extenderse a otras áreas específicas de la costa.


Introduction: Periodically energetic waves, originated in the Southern Ocean, arrive to Cocos Island, because of its location in the Pacific Ocean and in deep waters. The island acts as a shelter dissipating part of the energy of the waves that reach the Pacific coast of Costa Rica. Objetive: The objective of the work is to characterize the general conditions of the swell through the numerical simulation of the swell in the Eastern Tropical Pacific (ETP), with special interest in Cocos Island. Methods: The waves are propagated with the WAVEWATCH III wave spectral model. An unstructured mesh is used in the model. Two years (2007-2008) of hindcast data are used as boundary conditions obtained from reanalysis with the WAVEWATCH model, generated by the French Institute for Marine Research (IFREMER for its acronym in French). Annual and seasonal maps and time series of significant wave height, peak period and peak wave direction are obtained. Results: The results shown are similar to other previous simulation and observation studies. The mean wave field is characterized by long periods from southwest direction. The wave conditions on the island obey the extratropical systems of both hemispheres and local processes in the PTE. Conclusions: The WAVEWATCH III wave model showed that it represents the typical wave conditions in the surroundings of Cocos Island. It is the first wave simulation work applying an unconventional mesh in the exclusive economic zone of Costa Rica. The study serves as a basis for extending to other specific areas of the coast.


Subject(s)
Climate Models , Oceanography , Costa Rica , Islands
5.
Environ Monit Assess ; 192(8): 522, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32671479

ABSTRACT

This study aims to report the short-term coastline dynamics and inundation limits of coastal cities along the Eastern Pacific due to the sea swell events that occurred during April to May 2015. The multi-temporal satellite datasets from Landsat such as Enhanced Thematic Mapper (L7 ETM+) and Operational Land Imager/Thermal Infrared Sensor (L8 OLI/TIRS) of different periods before and after the swell events were used to identify the shoreline changes. The satellite images were pre-processed using ERDAS imagine 9.2, and the coastline was digitized in ArcGIS 10.4.1 for ten cities spread across from Mexico to Chile (in Pacific coast) using the spectral water indices, and the shoreline change rate and erosion/accretion pattern at each transect were estimated using the statistical parameters embedded in Digital Shoreline Analysis System (DSAS). The maximum erosion and accretion were observed in El Salvador (268 m) and Huatulco (Mexico) (115 m), respectively. Likewise, the maximum inundation was observed in El Salvador with 268 m and Acapulco (Mexico) with 254 m, and the tide gauge data suggest a possible relation to the bathymetry and the geomorphological conditions of the coast. Overall, the results indicate that the Eastern Pacific Ocean side sea swell events has led to extreme coastal flooding in recent years due to the increase in the mean sea level and the unpredictable variation in El Niño/Southern Oscillation events. Graphical abstract.


Subject(s)
Environmental Monitoring , Chile , Cities , Latin America , Mexico , Pacific Ocean
6.
Molecules ; 25(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155801

ABSTRACT

Chokecherry (Prunus virginiana L.) is rich in bioactive molecules as phenolics, which can act as antioxidants, anti-inflammatory, anticancer, among others; however, due to its high perishability, most of this fruit is wasted. Freezing and sun drying have been the most adopted techniques to avoid its postharvest deterioration. Nevertheless, both processes have presented some drawbacks as high storage costs and losses of bioactive molecules. Therefore, to preserve these molecules, this study compared the impact of convective airflow drying (CAD), freezing (FR), freeze drying (FD), and swell drying (SD). Total phenolics content (TPC), total flavonoids content (TFC), kuromanin concentration (KC), and antioxidant activity (antiradical activity (ARA) and Trolox equivalent antioxidant capacity assay (TEAC)) of chokecherries were measured. "Swell drying" is a drying process coupling convective airflow drying to the Instant Controlled Pressure Drop (DIC) expansion. A central composite rotatable design was applied to optimize the DIC variables and responses. Results showed that both freezing and swell drying effectively preserve the TPC, TFC, KC, and ARA. Moreover, SD samples also presented the highest TEAC. Contrary, in the case of CAD, it caused the highest losses of both antioxidant content and activity. Swell drying remedies the shrinkage and collapsing of dried food structure, which results in a better antioxidants extraction.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Prunus/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Free Radicals/antagonists & inhibitors , Phenols/chemistry , Phenols/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL