Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Theranostics ; 14(13): 5316-5335, 2024.
Article in English | MEDLINE | ID: mdl-39267778

ABSTRACT

Background: Enhancing white adipose tissue (WAT) browning combats obesity. The RIIß subunit of cAMP-dependent protein kinase (PKA) is primarily expressed in the brain and adipose tissue. Deletion of the hypothalamic RIIß gene centrally induces WAT browning, yet the peripheral mechanisms mediating this process remain unexplored. Methods: This study investigates the mechanisms underlying WAT browning in RIIß-KO mice. Genetic approaches such as ß3-adrenergic receptors (ß3ARs) deletion and sympathetic denervation of WAT were utilized. Genome-wide transcriptomic sequencing and bioinformatic analysis were employed to identify potential mediators of WAT browning. siRNA assays were employed to knock down mTOR and lipin1 in vitro, while AAV-shRNAs were used for the same purpose in vivo. Results: We found that WAT browning substantially contributes to the lean and obesity-resistant phenotypes of RIIß-KO mice. The WAT browning can be dampened by ß3ARs deletion or WAT sympathetic denervation. We identified that adipocytic mTOR and lipin1 may act as mediators of the WAT browning. Inhibition of mTOR or lipin1 abrogates WAT browning and hinders the lean phenotype of RIIß-KO mice. In human subcutaneous white adipocytes and mouse white adipocytes, ß3AR stimulation can activate mTOR and causes lipin1 nuclear translocation; knockdown of mTOR and Lipin1 mitigates WAT browning-associated gene expression, impedes mitochondrial activity. Moreover, mTOR knockdown reduces lipin1 level and nuclear translocation, indicating that lipin1 may act downstream of mTOR. Additionally, in vivo knockdown of mTOR and Lipin1 diminished WAT browning and increased adiposity. Conclusions: The ß3AR-activated mTOR-lipin1 axis mediates WAT browning, offering new insights into the molecular basis of PKA-regulated WAT browning. These findings provide potential adipose target candidates for the development of drugs to treat obesity.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Mice, Knockout , Phosphatidate Phosphatase , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Mice , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Obesity/metabolism , Obesity/genetics , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/metabolism , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/genetics , Receptors, Adrenergic, beta-3/metabolism , Receptors, Adrenergic, beta-3/genetics , Signal Transduction , Male , Mice, Inbred C57BL , Humans , Cyclic AMP-Dependent Protein Kinases/metabolism
2.
Article in English | MEDLINE | ID: mdl-38971920

ABSTRACT

This research aimed to explore whether high-intensity focused ultrasound (HIFU) could conduct pulmonary artery denervation (PADN). HIFU was performed in pulmonary arteries of 6 normotensive rabbits at dose of 250W, 6 times for each rabbit, and an additional 6 rabbits served as controls. Then ATEPH was induced in both groups by intravenous infusion of autogeneic thrombus. Hemodynamics and ultrasonography parameters were measured by right heart catheter and echocardiography pre- and post-establishment of ATEPH models in both groups. Histological analysis and immunohistochemistry of tyrosine hydroxylase (TH) were also performed. After PADN procedures, 5 rabbits were successfully conducted PADN, of which ablation zone was also observed in right auricle or right lung in 4 rabbits. Ablation zone was detected only in right lung in 1 rabbit. Compared with control group, milder right heart hemodynamic changes were found in PADN group, accompanied by improved ultrasound parameters in PADN group. HIFU can acutly damage SNs around pulmonary artery successfully, which may be a new choice to conduct PADN. However, the accuracy of HIFU with PADN needs to be improved.

3.
Biomaterials ; 309: 122603, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38713972

ABSTRACT

Sympathetic nerves play a pivotal role in promoting tumor growth through crosstalk with tumor and stromal cells. Chemotherapy exacerbates the infiltration of sympathetic nerves into tumors, thereby providing a rationale for inhibiting sympathetic innervation to enhance chemotherapy. Here, we discovered that doxorubicin increases the density and activity of sympathetic nerves in breast cancer mainly by upregulating the expression of nerve growth factors (NGFs) in cancer cells. To address this, we developed a combination therapy by co-encapsulating small interfering RNA (siRNA) and doxorubicin within breast cancer-targeted poly (lactic-co-glycolic acid) (PLGA) nanoparticles, aiming to suppress NGF expression post-chemotherapy. Incorporating NGF blockade into the nanoplatform for chemotherapy effectively mitigated the chemotherapy-induced proliferation of sympathetic nerves. This not only bolstered the tumoricidal activity of chemotherapy, but also amplified its stimulatory impact on the antitumor immune response by increasing the infiltration of immunostimulatory cells into tumors while concurrently reducing the frequency of immunosuppressive cells. Consequently, the combined nanodrug approach, when coupled with anti-PD-L1 treatment, exhibited a remarkable suppression of primary and deeply metastatic tumors with minimal systematic toxicity. Importantly, the nanoplatform relieved chemotherapy-induced peripheral neuropathic pain (CIPNP) by diminishing the expression of pain mediator NGFs. In summary, this research underscores the significant potential of NGF knockdown in enhancing immunochemotherapy outcomes and presents a nanoplatform for the highly efficient and low-toxicity treatment of breast cancer.


Subject(s)
Doxorubicin , Immunotherapy , Nanoparticles , Neuralgia , Neuralgia/chemically induced , Animals , Doxorubicin/pharmacology , Female , Nanoparticles/chemistry , Cell Line, Tumor , Humans , Immunotherapy/methods , Mice , RNA, Small Interfering , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nerve Growth Factor/metabolism , Mice, Inbred BALB C , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Antineoplastic Agents/pharmacology
5.
Front Vet Sci ; 11: 1386425, 2024.
Article in English | MEDLINE | ID: mdl-38665772

ABSTRACT

Background: Heart rate variability (HRV) is believed to possess the potential for disease detection. However, early identification of heart disease remains challenging, as HRV analysis in dogs primarily reflects the advanced stages of the disease. Hypothesis/objective: The aim of this study is to compare 24-h HRV with sleep HRV to assess the potential utility of sleep HRV analysis. Animals: Thirty healthy dogs with no echocardiographic abnormalities were included in the study, comprising 23 females and 7 males ranging in age from 2 months to 8 years (mean [standard deviation], 1.4 [1.6]). Methods: This study employed a cross-sectional study. 24-h HRV and sleep HRV were measured from 48-h Holter recordings. Both linear analysis, a traditional method of heart rate variability analysis, and nonlinear analysis, a novel approach, were conducted. Additionally, circadian rhythm parameters were assessed. Results: In frequency analysis of linear analysis, the parasympathetic index nHF was significantly higher during sleep compared to the mean 24-h period (mean sleep HRV [standard deviation] vs. mean 24 h [standard deviation], 95% confidence interval, p value, r-family: 0.24 [0.057] vs. 0.23 [0.045], 0.006-0.031, p = 0.005, r = 0.49). Regarding time domain analysis, the parasympathetic indices SDNN and RMSSD were also significantly higher during sleep (SDNN: 179.7 [66.9] vs. 156.6 [53.2], 14.5-31.7, p < 0.001, r = 0.71 RMSSD: 187.0 [74.0] vs. 165.4 [62.2], 13.2-30.0, p < 0.001, r = 0.70). In a geometric method of nonlinear analysis, the parasympathetic indices SD1 and SD2 showed significantly higher values during sleep (SD1: 132.4 [52.4] vs. 117.1 [44.0], 9.3-21.1, p < 0.001, r = 0.70 SD2: 215.0 [80.5] vs. 185.9 [62.0], 17.6-40.6, p < 0.001, r = 0.69). Furthermore, the circadian rhythm items of the parasympathetic indices SDNN, RMSSD, SD1, and SD2 exhibited positive peaks during sleep. Conclusion: The findings suggest that focusing on HRV during sleep can provide a more accurate representation of parasympathetic activity, as it captures the peak circadian rhythm items.

6.
Adv Sci (Weinh) ; 11(23): e2306772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38544478

ABSTRACT

Cutaneous sympathetic nerve is a crucial part of neuropsychiatric factors contributing to skin immune response, but its role in the psoriasis pathogenesis remains unclear. It is found that cutaneous calcium/calmodulin-dependent protein kinase II-γ (CAMK2γ), expressed mainly in sympathetic nerves, is activated by stress and imiquimod in mouse skin. Camk2g-deficient mice exhibits attenuated imiquimod-induced psoriasis-like manifestations and skin inflammation. CaMK2γ regulates dermal γδT-cell interleukin-17 production in imiquimod-treated mice, dependent on norepinephrine production following cutaneous sympathetic nerve activation. Adrenoceptor ß1, the primary skin norepinephrine receptor, colocalises with γδT cells. CaMK2γ aggravates psoriasiform inflammation via sympathetic nerve-norepinephrine-γδT cell-adrenoceptor ß1-nuclear factor-κB and -p38 axis activation. Application of alcaftadine, a small-molecule CaMK2γ inhibitor, relieves imiquimod-induced psoriasis-like manifestations in mice. This study reveals the mechanisms of sympathetic-nervous-system regulation of γδT-cell interleukin-17 secretion, and provides insight into neuropsychiatric factors dictating psoriasis pathogenesis and new potential targets for clinical psoriasis treatment.


Subject(s)
Disease Models, Animal , Norepinephrine , Psoriasis , Sympathetic Nervous System , Animals , Mice , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Imiquimod , Interleukin-17/metabolism , Mice, Inbred C57BL , Norepinephrine/metabolism , Psoriasis/metabolism , Skin/metabolism , Skin/innervation , Sympathetic Nervous System/metabolism
7.
J Biol Chem ; 300(3): 105760, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367663

ABSTRACT

In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.


Subject(s)
Adipose Tissue, Beige , Adipose Tissue, Brown , Sympathetic Nervous System , Thermogenesis , Uncoupling Protein 1 , Animals , Mice , Adipose Tissue, Beige/innervation , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adrenergic Agents/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Norepinephrine/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mice, Knockout , Acclimatization/genetics , Sympathetic Nervous System/physiology , Macrophages/metabolism
8.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G360-G373, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38226653

ABSTRACT

To investigate noxious stimulation-responsive neural circuits that could influence the gut, we recorded from intestinally directed (efferent) nerve filaments dissected from mesenteric nerves close to the small intestine in anesthetized rats. These exhibited baseline multiunit activity that was almost unaffected by vagotomy (VagX) and reduced only slightly by cutting the splanchnic nerves. The activity was halved by hexamethonium (Hex) treatment. When an adjacent gut segment received an intraluminal stimulus 2,4,6-trinitrobenzenesulfonate (TNBS) in 30% ethanol, mesenteric efferent nerve activity increased for more than 1 h. The increased activity was almost unaffected by bilateral vagotomy or splanchnic nerve section, indicating a lack of central nervous involvement, but it was 60% reduced by hexamethonium. Spike sorting discriminated efferent single and predominantly single-unit spike trains that responded to TNBS, were unaffected by splachnectomy but were silenced by hexamethonium. After noxious stimulation of one segment, the adjacent segment showed no evidence of suppression of gut motility or vasoconstriction. We conclude that luminal application of a noxious stimulus to the small intestine activates an entirely peripheral, intestinointestinal reflex pathway. This pathway involves enteric intestinofugal neurons that excite postganglionic sympathetic neurons via a nicotinic synapse. We suggest that the final sympathetic efferent neurons that respond to a tissue damaging stimulus are distinct from vasoconstrictor, secretomotor, and motility inhibiting neurons.NEW & NOTEWORTHY An intraluminal noxious chemical stimulus applied to one segment of small intestine increased mesenteric efferent nerve activity to an adjacent segment. This was identified as a peripheral ganglionic reflex that did not require vagal or spinal connections. Hexamethonium blocked most, but not all, ongoing and reflex mesenteric efferent activity. The prevertebral sympathetic efferent neurons that are activated likely affect inflammatory and immune functions of other gut segments.


Subject(s)
Reflex , Splanchnic Nerves , Rats , Animals , Hexamethonium/pharmacology , Reflex/physiology , Vagotomy , Vagus Nerve/physiology , Sympathetic Nervous System/physiology
9.
Immunity ; 57(1): 141-152.e5, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38091996

ABSTRACT

Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.


Subject(s)
Adipose Tissue, Brown , Leptin , Animals , Humans , Mice , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Body Weight , Energy Metabolism/physiology , Interleukin-33/genetics , Interleukin-33/metabolism , Obesity/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Thermogenesis/physiology
10.
J Pain Res ; 16: 3309-3318, 2023.
Article in English | MEDLINE | ID: mdl-37808462

ABSTRACT

Purpose: Mechanical allodynia is reportedly common during herpetic neuralgia. The purpose of this study was to establish a risk prediction model to predict the individual risk of allodynia in herpetic neuralgia. Methods: Three hundred and eighty-six patients with trunk herpetic neuralgia were divided into two regions, T2-5 and T6-11. The causality between allodynia and other factors was analyzed by a binary logistic regression model. Results: 42.2% of subjects had allodynia, 137 suffered from dynamic allodynia, and 110 with dynamic allodynia experienced local sweating. The following 5 items as predictors determined this model: local sweating (Odd Ratio = 27.57, P<0.001), lesion location (Odd Ratio=2.46, P =0.017), pain intensity (Odd Ratio=1.38, P =0.020), pain duration (Odd Ratio=0.94, P =0.006), and local scars (Odd Ratio=0.07, P<0.001). The presence and development of allodynia are associated with local sweating. The positive proportion of the Iodine-starch test between the T2-5 (50.0%) with the T6-11 (23.7%) had a statistically significant difference (χ2=5.36, P=0.021). 29.5% of patients at the T2-6 had obvious sweating, which was different from only sticky feelings at the T6-11 (70.5%, χ2=10.88, P=0.001). 19.2% of patients with residual scars and allodynia was significantly lower than 48.5% of patients without allodynia (χ2=15.28, P<0.001). Conclusion: This analysis suggests that local sweating is a concomitant symptom in dynamic allodynia, which imply the sympathetic nerves innervating the sweat glands of the skin were also involved during herpetic neuralgia. This may assist in the evaluation of dynamic allodynia and prove the role of sympathetic nerve intervention for herpetic neuralgia.

11.
Bio Protoc ; 13(20): e4852, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37900103

ABSTRACT

During the onset of autoimmune diabetes, nerve-immune cell interactions seem to play an important role; however, there are currently no models to follow and interfere with these interactions over time in vivo or in vitro. Two-dimensional in vitro models provide insufficient information and microfluidics or organs on a chip are usually challenging to work with. We present here what we believe to be the first simple model that provides the opportunity to co-culture pancreatic islets with sympathetic nerves and immune cells. This model is based on our stamping device that can be 3D printed (STL file provided). Due to the imprint in the agarose gel, sympathetic neurons, pancreatic islets, and macrophages can be seeded in specific locations at a level that allows for confocal live-cell imaging. In this protocol, we provide the instructions to construct and perform live cell imaging experiments in our co-culture model, including: 1) design for the stamping device to make the imprint in the gel, 2) isolation of sympathetic neurons, pancreatic islets, and macrophages, 3) co-culture conditions, 4) how this can be used for live cell imaging, and 5) possibilities for wider use of the model. In summary, we developed an easy-to-use co-culture model that allows manipulation and imaging of interactions between sympathetic nerves, pancreatic islets, and macrophages. This new co-culture model is useful to study nerve-immune cell-islet interactions and will help to identify the functional relevance of neuro-immune interactions in the pancreas. Key features • A novel device that allows for 3D co-culture of sympathetic neurons, pancreatic islets, and immune cells • The device allows the capture of live interactions between mouse sympathetic neurons, pancreatic islets, and immune cells in a controlled environment after six days of co-culturing. • This protocol uses cultured sympathetic neurons isolated from the superior cervical ganglia using a previously established method (Jackson and Tourtellotte, 2014) in a 3D co-culture. • This method requires 3D printing of our own designed gel-stamping device (STL print file provided on SciLifeLab FigShare DOI: 10.17044/scilifelab.24073062).

12.
Gene ; 888: 147753, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37659599

ABSTRACT

Sympathetic innervation of white adipose tissue (WAT) plays a key role in the regulation of lipid metabolism. Sympathetic activation promotes release of norepinephrine (NE), which binds to adrenergic receptors on adipocytes, promoting adipocyte lipolysis and enhanced oxidative metabolism. However, the mechanism by which sympathetic nerves regulate lipid metabolism in pig adipose tissue remains unclear. We used NE to simulate the process of sympathetic driving in pig adipocytes. RNA sequencing (RNA-seq) was used to determine the gene expression profile of pig adipocytes responding to NE stimulation. Our data suggests that the lipolytic signaling pathway is activated in pig adipocytes upon acute stimulation of NE, resulting in enhanced lipid metabolism and lipolysis, consistent with the phenomena found in humans and mice. Specifically, differentially expressed protein coding genes (PCGs) (SIRT4, SLC27A1) are mainly associated with functions that inhibit fatty acid oxidation and promote lipid synthesis. Similarly, we investigated the changes in regulatory transcripts such as long non-coding RNAs (lncRNAs) and transcripts of uncertain coding potential (TUCP) in response to NE and found that differentially expressed lncRNAs (lncG47338, lncG30660, lncG29516, lncG3790) and TUCP (TUCP_G38001) were co-expressed with target genes related to the promotion of fatty acid ß-oxidation, lipolysis and oxidative metabolism, thus acting as regulators. These results indicate a broad suite of gene expression alterations in response to NE stimulation and promote the understanding of the molecular mechanisms by which NE regulates lipid metabolism in pigs.


Subject(s)
Lipolysis , RNA, Long Noncoding , Mice , Humans , Animals , Swine , Lipolysis/genetics , Norepinephrine/pharmacology , Norepinephrine/metabolism , RNA, Long Noncoding/metabolism , Adipocytes/metabolism , Gene Expression Profiling , Fatty Acids/metabolism
13.
Int J Mol Sci ; 24(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37628918

ABSTRACT

Previously, we demonstrated in pigs that renal denervation halves glucose release during hypoglycaemia and that a prenatal dexamethasone injection caused increased ACTH and cortisol concentrations as markers of a heightened hypothalamic pituitary adrenal axis (HPAA) during hypoglycaemia. In this study, we investigated the influence of an altered HPAA on renal glucose release during hypoglycaemia. Pigs whose mothers had received two late-gestational dexamethasone injections were subjected to a 75 min hyperinsulinaemic-hypoglycaemic clamp (<3 mmol/L) after unilateral surgical denervation. Para-aminohippurate (PAH) clearance, inulin, sodium excretion and arterio-venous blood glucose difference were measured every fifteen minutes. The statistical analysis was performed with a Wilcoxon signed-rank test. PAH, inulin, the calculated glomerular filtration rate and plasma flow did not change through renal denervation. Urinary sodium excretion increased significantly (p = 0.019). Side-dependent renal net glucose release (SGN) decreased by 25 ± 23% (p = 0.004). At 25 percent, the SGN decrease was only half of that observed in non-HPAA-altered animals in our prior investigation. The current findings may suggest that specimens with an elevated HPAA undergo long-term adaptations to maintain glucose homeostasis. Nonetheless, the decrease in SGN warrants further investigations and potentially caution in performing renal denervation in certain patient groups, such as diabetics at risk of hypoglycaemia.


Subject(s)
Hypoglycemia , Hypoglycemic Agents , Female , Animals , Swine , Pregnancy , Glucose , Hypothalamo-Hypophyseal System , Inulin , Pituitary-Adrenal System , p-Aminohippuric Acid , Dexamethasone/adverse effects , Denervation
14.
Cardiology ; 148(6): 517-527, 2023.
Article in English | MEDLINE | ID: mdl-37544294

ABSTRACT

INTRODUCTION: Sympathetic nervous system disorder promotes atrial fibrillation (AF), and neuropeptide Y (NPY) is an important neurotransmitter. This study aimed to explore the predictive value of plasma NPY in patients with AF. METHODS: Five hundred seventy-six patients were divided into AF (including paroxysmal and long-standing persistent AF; 360) and sinus rhythm (SR) groups (216). NPY level was detected using enzyme-linked immunosorbent assay, and NPY mRNA expression level was detected using quantitative polymerase chain reaction. Logistic regression was used to analyse the risk factors for AF; the correlations between blood NPY level and age, body mass index (BMI), left ventricular ejection fraction, left atrial diameter (LAD), and European Heart rate Association (EHRA) score in patients with AF were determined. The receiver operating characteristic (ROC) curve was utilised to predict AF. RESULTS: Plasma NPY levels were found to be higher in patients with AF than in patients with SR and in patients with long-standing persistent AF than in patients with paroxysmal AF; blood NPY mRNA levels were higher in the paroxysmal and long-standing persistent AF groups compared to the SR group (p < 0.05). Increased age {odds ratio (OR) = 1.201 (95% confidence interval [CI]: 1.01, 1.427)} and high NPY [OR = 1.239 (95% CI: 1.022, 1.501)] were factors found to affect AF detrimentally. NPY was associated with BMI (r = 0.5856, p < 0.05), LAD (r = 0.4023, p < 0.05), and EHRA score (r = 0.898, p < 0.05). The ROC curve for the predictive value of plasma NPY levels for AF showed an area under the curve (AUC) value of 0.919 (p < 0.05), while that for long-standing persistent AF showed an AUC of 0.784 (p < 0.05). CONCLUSION: Circulating NPY may be a promising molecular biomarker of AF.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Neuropeptide Y , Stroke Volume , Ventricular Function, Left , Biomarkers , RNA, Messenger
15.
Article in English | MEDLINE | ID: mdl-37622394

ABSTRACT

BACKGROUND: Although feeding with a liquid diet does not affect the growth of rat submandibular glands, it inhibits the growth of rat parotid glands during growth periods. In these growth-inhibited parotid glands, the growth of parasympathetic nerves is also suppressed. Meanwhile, the mature parotid glands of animals maintained on a liquid diet become morphologically and functionally atrophic, however, there is no effect of a liquid diet on mature submandibular glands. The objective of the present study was to clarify whether the nerve distribution in the mature salivary glands of rats was affected by a liquid diet. MATERIALS AND METHODS: Seven-week-old male Wistar rats were used in this study. Half of the rats were kept on a pellet diet, and half were kept on a liquid diet, for 3, 7, 14, or 21 days. All rats were euthanised by isoflurane at each endpoint. Then, the parotid and submandibular glands were removed, frozen in liquid nitrogen, cryosectioned, and stained with antibodies against protein gene product 9.5 (PGP 9.5; general nerve marker), tyrosine hydroxylase (TH; sympathetic nerve marker), or neuronal nitric oxide synthase (nNOS; parasympathetic nerve marker). RESULTS: In parotid and submandibular glands of the pellet diet group, PGP 9.5- and TH-like immunoreactivity were seen around acini and ducts, and nNOS-like immunoreactivity was lower than PGP 9.5- and TH-like immunoreactivity. In the parotid glands of the liquid diet group, similar immunoreactivities were seen throughout the experimental period. The distribution of antibody labelling in the submandibular glands of the liquid diet group was similar to that of the pellet diet group and remained unchanged during the experimental period. CONCLUSIONS: The present study demonstrated no regressive effects of a liquid diet on the distribution of sympathetic or parasympathetic nerves in mature parotid glands and submandibular glands. This differed from inhibitory effects on the growth of parotid glands seen during growth periods.

16.
Intensive Care Med Exp ; 11(1): 53, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37535121

ABSTRACT

BACKGROUND: The autonomic nervous system can modulate the innate immune responses to bacterial infections via the splanchnic sympathetic nerves. Here, we aimed to determine the effects of bilateral splanchnic sympathetic nerve denervation on blood pressure, plasma cytokines, blood bacterial counts and the clinical state in sheep with established bacteremia. METHODS: Conscious Merino ewes received an intravenous infusion of Escherichia coli for 30 h (1 × 109 colony forming units/mL/h) to induce bacteremia. At 24 h, sheep were randomized to have bilaterally surgically implanted snares pulled to induce splanchnic denervation (N = 10), or not pulled (sham; N = 9). RESULTS: Splanchnic denervation did not affect mean arterial pressure (84 ± 3 vs. 84 ± 4 mmHg, mean ± SEM; PGroup = 0.7) compared with sham treatment at 30-h of bacteremia. Splanchnic denervation increased the plasma levels of the pro-inflammatory cytokine interleukin-6 (9.2 ± 2.5 vs. 3.8 ± 0.3 ng/mL, PGroup = 0.031) at 25-h and reduced blood bacterial counts (2.31 ± 0.45 vs. 3.45 ± 0.11 log10 [CFU/mL + 1], PGroup = 0.027) at 26-h compared with sham treatment. Plasma interleukin-6 and blood bacterial counts returned to sham levels by 30-h. There were no differences in the number of bacteria present within the liver (PGroup = 0.3). However, there was a sustained improvement in clinical status, characterized by reduced respiratory rate (PGroup = 0.024) and increased cumulative water consumption (PGroup = 0.008) in splanchnic denervation compared with sham treatment. CONCLUSION: In experimental Gram-negative bacteremia, interrupting splanchnic sympathetic nerve activity increased plasma interleukin-6, accelerated bacterial clearance, and improved clinical state without inducing hypotension. These findings suggest that splanchnic neural manipulation is a potential target for pharmacological or non-pharmacological interventions.

17.
Cell Rep ; 42(8): 112913, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37531253

ABSTRACT

Pancreatic islets are endocrine organs that depend on their microvasculature to function. Along with endothelial cells, pericytes comprise the islet microvascular network. These mural cells are crucial for microvascular stability and function, but it is not known if/how they are affected during the development of type 1 diabetes (T1D). Here, we investigate islet pericyte density, phenotype, and function using living pancreas slices from donors without diabetes, donors with a single T1D-associated autoantibody (GADA+), and recent onset T1D cases. Our data show that islet pericyte and capillary responses to vasoactive stimuli are impaired early on in T1D. Microvascular dysfunction is associated with a switch in the phenotype of islet pericytes toward myofibroblasts. Using publicly available RNA sequencing (RNA-seq) data, we further found that transcriptional alterations related to endothelin-1 signaling and vascular and extracellular matrix (ECM) remodeling are hallmarks of single autoantibody (Aab)+ donor pancreata. Our data show that microvascular dysfunction is present at early stages of islet autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/pathology , Pericytes/pathology , Endothelial Cells/pathology , Islets of Langerhans/blood supply , Autoantibodies
18.
Adv Sci (Weinh) ; 10(18): e2207602, 2023 06.
Article in English | MEDLINE | ID: mdl-37186379

ABSTRACT

Bone undergoes constant remodeling by osteoclast bone resorption coupled with osteoblast bone formation at the bone surface. A third major cell type in the bone is osteocytes, which are embedded in the matrix, are well-connected to the lacunar network, and are believed to act as mechanical sensors. Here, it is reported that sympathetic innervation directly regulates lacunar osteocyte-mediated bone resorption inside cortical bone. It is found that sympathetic activity is elevated in different mouse models of bone loss, including lactation, ovariectomy, and glucocorticoid treatment. Further, during lactation elevated sympathetic outflow induces netrin-1 expression by osteocytes to further promote sympathetic nerve sprouting in the cortical bone endosteum in a feed-forward loop. Depletion of tyrosine hydroxylase-positive (TH+ ) sympathetic nerves ameliorated osteocyte-mediated perilacunar bone resorption in lactating mice. Moreover, norepinephrine activates ß-adrenergic receptor 2 (Adrb2) signaling to promote secretion of extracellular vesicles (EVs) containing bone-degrading enzymes for perilacunar bone resorption and inhibit osteoblast differentiation. Importantly, osteocyte-specific deletion of Adrb2 or treatment with a ß-blocker results in lower bone resorption in lactating mice. Together, these findings show that the sympathetic nervous system promotes osteocyte-driven bone loss during lactation, likely as an adaptive response to the increased energy and mineral demands of the nursing mother.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Female , Animals , Mice , Osteocytes , Lactation , Bone and Bones , Cortical Bone
19.
J Clin Med ; 12(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36836205

ABSTRACT

The aim of this study was to assess renal functions and endocrine responses to arm exercise in persons with cervical spinal cord injury (CSCI) under euhydrated conditions (free drinking of water), and to determine the physiological effects of exercise on renal function in these subjects. Eleven CSCI individuals (spinal lesions between C6 and C8, American Spinal Injury Association impairment scale A) and nine able-bodied (AB) persons rested for 30 min before performing 30 min arm-crank ergometer exercises at 50% of their maximum oxygen consumption, followed by 60-min of rest/recovery. Urine and blood samples were collected before and immediately after the exercise and recovery period. The CSCI patients showed no increase in plasma adrenaline and plasma renin activity compared with the AB controls, but showed similar changes in plasma aldosterone and the plasma antidiuretic hormone in response to the exercise. Creatinine clearance, osmolal clearance, free water clearance, and the fractional excretion of Na+ did not change during exercise in both groups of subjects, however free water clearance in the CSCI group was higher than in the AB group throughout the study. These findings suggested that activated plasma aldosterone without an increase in adrenaline or renin activity during exercise in CSCI individuals may reflect an adaptation to the disturbance of the sympathetic nervous system to compensate for renal function. As a result, no adverse effects of exercise on renal function in CSCI patients were observed.

20.
Neuromodulation ; 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36522251

ABSTRACT

OBJECTIVES: Autonomic nervous activity imbalance plays an important role in atrial fibrillation (AF). AF can be treated by acupuncture at the Neiguan point (PC6), but the mechanism remains elusive. Here, we investigated autonomic nervous system activity in electroacupuncture (EA) at PC6 in a rat AF model. MATERIAL AND METHODS: In this study, we established a rat AF model via tail vein injection with ACh-CaCl2 for ten consecutive days with or without EA at PC6. AF inducibility and heart rate variability (HRV) were assessed by electrocardiogram. Next, we completed in vivo recording of the activity of cervical sympathetic and vagal nerves, respectively. Finally, the activities of brain regions related to autonomic nerve regulation were assessed by c-Fos immunofluorescence and multichannel recording. RESULTS: EA at PC6 decreased AF inducibility and prevented changes in HRV caused by ACh-CaCl2 injection. Meanwhile, EA at PC6 reversed the increased sympathetic and decreased vagal nerve activity in AF rats. Furthermore, EA treatment downregulated increased c-Fos expression in brain regions, including paraventricular nucleus, rostral ventrolateral medulla, and dorsal motor nucleus of the vagus in AF, while c-Fos expression in nucleus ambiguus was upregulated with EA. CONCLUSION: The protective effect of EA at PC6 on AF is associated with balance between sympathetic and vagal nerve activities.

SELECTION OF CITATIONS
SEARCH DETAIL