Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 588
Filter
1.
New Phytol ; 243(3): 936-950, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38831647

ABSTRACT

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Subject(s)
Bacterial Proteins , Carbon , Glycosyltransferases , Synechocystis , Uridine Diphosphate N-Acetylglucosamine , Synechocystis/metabolism , Synechocystis/genetics , Synechocystis/growth & development , Carbon/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Uridine Diphosphate N-Acetylglucosamine/metabolism , Gene Expression Regulation, Bacterial , Gene Deletion
2.
Biochim Biophys Acta Bioenerg ; 1865(4): 149150, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906313

ABSTRACT

Photosystem II (PS II) assembly is a stepwise process involving preassembly complexes or modules focused around four core PS II proteins. The current model of PS II assembly in cyanobacteria is derived from studies involving the deletion of one or more of these core subunits. Such deletions may destabilize other PS II assembly intermediates, making constructing a clear picture of the intermediate events difficult. Information on plastoquinone exchange pathways operating within PS II is also unclear and relies heavily on computer-aided simulations. Deletion of PsbX in [S. Biswas, J.J. Eaton-Rye, Biochim. Biophys. Acta - Bioenerg. 1863 (2022) 148519] suggested modified QB binding in PS II lacking this subunit. This study has indicated the phenotype of the ∆PsbX mutant arose by disrupting a conserved hydrogen bond between PsbX and the D2 (PsbD) protein. We mutated two conserved arginine residues (D2:Arg24 and D2:Arg26) to further understand the observations made with the ∆PsbX mutant. Mutating Arg24 disrupted the interaction between PsbX and D2, replicating the high-light sensitivity and altered fluorescence decay kinetics observed in the ∆PsbX strain. The Arg26 residue, on the other hand, was more important for either PS II assembly or for stabilizing the fully assembled complex. The effects of mutating both arginine residues to alanine or aspartate were severe enough to render the corresponding double mutants non-photoautotrophic. Our study furthers our knowledge of the amino-acid interactions stabilizing plastoquinone-exchange pathways while providing a platform to study PS II assembly and repair without the actual deletion of any proteins.

3.
Plant Mol Biol ; 114(3): 60, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758412

ABSTRACT

Pyruvate kinase (Pyk, EC 2.7.1.40) is a glycolytic enzyme that generates pyruvate and adenosine triphosphate (ATP) from phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), respectively. Pyk couples pyruvate and tricarboxylic acid metabolisms. Synechocystis sp. PCC 6803 possesses two pyk genes (encoded pyk1, sll0587 and pyk2, sll1275). A previous study suggested that pyk2 and not pyk1 is essential for cell viability; however, its biochemical analysis is yet to be performed. Herein, we biochemically analyzed Synechocystis Pyk2 (hereafter, SyPyk2). The optimum pH and temperature of SyPyk2 were 7.0 and 55 °C, respectively, and the Km values for PEP and ADP under optimal conditions were 1.5 and 0.053 mM, respectively. SyPyk2 is activated in the presence of glucose-6-phosphate (G6P) and ribose-5-phosphate (R5P); however, it remains unaltered in the presence of adenosine monophosphate (AMP) or fructose-1,6-bisphosphate. These results indicate that SyPyk2 is classified as PykA type rather than PykF, stimulated by sugar monophosphates, such as G6P and R5P, but not by AMP. SyPyk2, considering substrate affinity and effectors, can play pivotal roles in sugar catabolism under nonphotosynthetic conditions.


Subject(s)
Glucose-6-Phosphate , Phosphoenolpyruvate , Pyruvate Kinase , Ribosemonophosphates , Synechocystis , Synechocystis/metabolism , Synechocystis/genetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Phosphoenolpyruvate/metabolism , Glucose-6-Phosphate/metabolism , Ribosemonophosphates/metabolism , Substrate Specificity , Hydrogen-Ion Concentration , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Kinetics , Temperature
4.
Front Microbiol ; 15: 1362880, 2024.
Article in English | MEDLINE | ID: mdl-38699476

ABSTRACT

Cyanobacteria, which have a photoautotrophic lifestyle, are threatened by ultraviolet solar rays and the reactive oxygen species generated during photosynthesis. They can adapt to environmental conditions primarily because of their DNA damage response and repair mechanisms, notably an efficient homologous recombination repair system. However, research on double-strand break (DSB) repair pathways, including the Holliday junction (HJ) resolution process, in Synechocystis sp. PCC6803 is limited. Here, we report that SynRuvC from cyanobacteria Synechocystis sp. PCC6803 has classical HJ resolution activity. We investigated the structural specificity, sequence preference, and biochemical properties of SynRuvC. SynRuvC strongly preferred Mn2+ as a cofactor, and its cleavage site predominantly resides within the 5'-TG↓(G/A)-3' sequence. Interestingly, novel flap endonuclease and replication fork intermediate cleavage activities of SynRuvC were also determined, which distinguish it from other reported RuvCs. To explore the effect of SynRuvC on cell viability, we constructed a knockdown mutant and an overexpression strain of Synechocystis sp. PCC6803 (synruvCKD and synruvCOE) and assessed their survival under a variety of conditions. Knockdown of synruvC increased the sensitivity of cells to MMS, HU, and H2O2. The findings suggest that a novel RuvC family HJ resolvase SynRuvC is important in a variety of DNA repair processes and stress resistance in Synechocystis sp. PCC6803.

5.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612633

ABSTRACT

Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002. Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO, PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene production in S.6803, and we compared some of the findings with the data obtained in S.7002. We report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425 increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002, increased farnesene production in S.7002, emphasizing the physiological difference between these two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally, as a containment strategy of genetically modified strains of S.6803, we report that the deletion of the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but decreased the production of farnesene in S.6803.


Subject(s)
Sesquiterpenes , Synechococcus , Synechocystis , Limonene , Synechococcus/genetics , Synechocystis/genetics , Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Terpenes , Carbon Cycle
6.
Proteomics ; : e2300222, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581091

ABSTRACT

The group 2 σ factor for RNA polymerase SigE plays important role in regulating central carbon metabolism in cyanobacteria. However, the regulation of SigE for these pathways at a proteome level remains unknown. Using a sigE-deficient strain (ΔsigE) of Synechocystis sp. PCC 6803 and quantitative proteomics, we found that SigE depletion induces differential protein expression for sugar catabolic pathways including glycolysis, oxidative pentose phosphate (OPP) pathway, and glycogen catabolism. Two glycogen debranching enzyme homologues Slr1857 and Slr0237 are found differentially expressed in ΔsigE. Glycogen determination indicated that Δslr0237 accumulated glycogen under photomixotrophic condition but was unable to utilize these reserves in the dark, whereas Δslr1857 accumulates and utilizes glycogen in a similar way as the WT strain does in the same condition. These results suggest that Slr0237 plays the major role as the glycogen debranching enzyme in Synechocystis.

7.
Bioresour Technol ; 400: 130664, 2024 May.
Article in English | MEDLINE | ID: mdl-38583672

ABSTRACT

Synechocystis sp. PCC 6803 (Synechocystis) is a unicellular photosynthetic microorganism that has been used as a model for photo-biochemical research. It comprises a potential cell factory for the generation of valuable bioactive compounds, therapeutic proteins, and possibly biofuels. Fusion constructs of recombinant proteins with the CpcA α-subunit or CpcB ß-subunit of phycocyanin in Synechocystis have enabled true over-expression of several isoprenoid pathway enzymes and biopharmaceutical proteins to levels of 10-20 % of the total cellular protein. The present work employed the human interferon α-2 protein, as a study case of over-expression and downstream processing. It advanced the state of the art in the fusion constructs for protein overexpression technology by developing the bioresource for target protein separation from the fusion construct and isolation in substantially enriched or pure form. The work brings the cyanobacterial cell factory concept closer to meaningful commercial application for the photosynthetic production of useful recombinant proteins.


Subject(s)
Recombinant Proteins , Synechocystis , Synechocystis/metabolism , Humans , Recombinant Proteins/metabolism , Interferon-alpha/metabolism , Interferon alpha-2 , Protein Biosynthesis
8.
Photosynth Res ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546812

ABSTRACT

Cyanobacteria are among the most suitable organisms for the capture of excessive amounts of CO2 and can be grown in extreme environments. In our research we use the single-celled freshwater cyanobacteria Synechococcus elongatus PCC7942 PAMCOD strain and Synechocystis sp. PCC6714 for the production of carbohydrates and hydrogen. PAMCOD strain and Synechocystis sp. PCC6714 synthesize sucrose when exposed to salinity stress, as their main compatible osmolyte. We examined the cell proliferation rate and the sucrose accumulation in those two different strains of cyanobacteria under salt (0.4 M NaCl) and heat stress (35 0C) conditions. The intracellular sucrose (mol sucrose content per Chl a) was found to increase by 50% and 108% in PAMCOD strain and Synechocystis sp. PCC6714 cells, respectively. As previously reported, PAMCOD strain has the ability to produce hydrogen through the process of dark anaerobic fermentation (Vayenos D, Romanos GE, Papageorgiou GC, Stamatakis K (2020) Photosynth Res 146, 235-245). In the present study, we demonstrate that Synechocystis sp. PCC6714 has also this ability. We further examined the optimal conditions during the dark fermentation of PAMCOD and Synechocystis sp. PCC6714 regarding H2 formation, increasing the PAMCOD H2 productivity from 2 nmol H2 h- 1 mol Chl a- 1 to 23 nmol H2 h- 1 mol Chl a- 1. Moreover, after the dark fermentation, the cells demonstrated proliferation in both double BG-11 and BG-11 medium enriched in NaNO3, thus showing the sustainability of the procedure.

9.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38469716

ABSTRACT

RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.


Subject(s)
Endoribonucleases , Synechocystis , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA , Ribonucleases , Escherichia coli/genetics , Escherichia coli/metabolism , Synechocystis/genetics , RNA, Transfer
10.
Plant Mol Biol ; 114(2): 27, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478146

ABSTRACT

Cyanobacteria are oxygen-evolving photosynthetic prokaryotes that affect the global carbon and nitrogen turnover. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a model cyanobacterium that has been widely studied and can utilize and uptake various nitrogen sources and amino acids from the outer environment and media. l-arginine is a nitrogen-rich amino acid used as a nitrogen reservoir in Synechocystis 6803, and its biosynthesis is strictly regulated by feedback inhibition. Argininosuccinate synthetase (ArgG; EC 6.3.4.5) is the rate-limiting enzyme in arginine biosynthesis and catalyzes the condensation of citrulline and aspartate using ATP to produce argininosuccinate, which is converted to l-arginine and fumarate through argininosuccinate lyase (ArgH). We performed a biochemical analysis of Synechocystis 6803 ArgG (SyArgG) and obtained a Synechocystis 6803 mutant overexpressing SyArgG and ArgH of Synechocystis 6803 (SyArgH). The specific activity of SyArgG was lower than that of other arginine biosynthesis enzymes and SyArgG was inhibited by arginine, especially among amino acids and organic acids. Both arginine biosynthesis enzyme-overexpressing strains grew faster than the wild-type Synechocystis 6803. Based on previous reports and our results, we suggest that SyArgG is the rate-limiting enzyme in the arginine biosynthesis pathway in cyanobacteria and that arginine biosynthesis enzymes are similarly regulated by arginine in this cyanobacterium. Our results contribute to elucidating the regulation of arginine biosynthesis during nitrogen metabolism.


KEY MESSAGE: This study revealed the catalytic efficiency and inhibition of cyanobacterial argininosuccinate synthetase by arginine and demonstrated that a strain overexpressing this enzyme grew faster than the wild-type strain.


Subject(s)
Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Aspartic Acid/metabolism , Arginine/metabolism , Photosynthesis , Nitrogen/metabolism
11.
mSystems ; 9(4): e0022724, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38534128

ABSTRACT

Cyanobacteria fix carbon dioxide and release carbon-containing compounds into the wider ecosystem, yet they are sensitive to small metabolites that may impact their growth and physiology. Several cyanobacteria can grow mixotrophically, but we currently lack a molecular understanding of how specific nutrients may alter the compounds they release, limiting our knowledge of how environmental factors might impact primary producers and the ecosystems they support. In this study, we develop a high-throughput phytoplankton culturing platform and identify how the model cyanobacterium Synechocystis sp. PCC 6803 responds to nutrient supplementation. We assess growth responses to 32 nutrients at two concentrations, identifying 15 that are utilized mixotrophically. Seven nutrient sources significantly enhance growth, while 19 elicit negative growth responses at one or both concentrations. High-throughput exometabolomics indicates that oxidative stress limits Synechocystis' growth but may be alleviated by antioxidant metabolites. Furthermore, glucose and valine induce strong changes in metabolite exudation in a possible effort to correct pathway imbalances or maintain intracellular elemental ratios. This study sheds light on the flexibility and limits of cyanobacterial physiology and metabolism, as well as how primary production and trophic food webs may be modulated by exogenous nutrients.IMPORTANCECyanobacteria capture and release carbon compounds to fuel microbial food webs, yet we lack a comprehensive understanding of how external nutrients modify their behavior and what they produce. We developed a high throughput culturing platform to evaluate how the model cyanobacterium Synechocystis sp. PCC 6803 responds to a broad panel of externally supplied nutrients. We found that growth may be enhanced by metabolites that protect against oxidative stress, and growth and exudate profiles are altered by metabolites that interfere with central carbon metabolism and elemental ratios. This work contributes a holistic perspective of the versatile response of Synechocystis to externally supplied nutrients, which may alter carbon flux into the wider ecosystem.


Subject(s)
Synechocystis , Ecosystem , Organic Chemicals/metabolism , Nutrients
12.
Plant Cell Physiol ; 65(5): 790-797, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38441322

ABSTRACT

Cyanobacteria inhabit areas with a broad range of light, temperature and nutrient conditions. The robustness of cyanobacterial cells, which can survive under different conditions, may depend on the resilience of photosynthetic activity. Cyanothece sp. PCC 8801 (Cyanothece), a freshwater cyanobacterium isolated from a Taiwanese rice field, had a higher repair activity of photodamaged photosystem II (PSII) under intense light than Synechocystis sp. PCC 6803 (Synechocystis), another freshwater cyanobacterium. Cyanothece contains myristic acid (14:0) as the major fatty acid at the sn-2 position of the glycerolipids. To investigate the role of 14:0 in the repair of photodamaged PSII, we used a Synechocystis transformant expressing a T-1274 encoding a lysophosphatidic acid acyltransferase (LPAAT) from Cyanothece. The wild-type and transformant cells contained 0.2 and 20.1 mol% of 14:0 in glycerolipids, respectively. The higher content of 14:0 in the transformants increased the fluidity of the thylakoid membrane. In the transformants, PSII repair was accelerated due to an enhancement in the de novo synthesis of D1 protein, and the production of singlet oxygen (1O2), which inhibited protein synthesis, was suppressed. The high content of 14:0 increased transfer of light energy received by phycobilisomes to PSI and CP47 in PSII and the content of carotenoids. These results indicated that an increase in 14:0 reduced 1O2 formation and enhanced PSII repair. The higher content of 14:0 in the glycerolipids may be required as a survival strategy for Cyanothece inhabiting a rice field under direct sunlight.


Subject(s)
Light , Myristic Acid , Photosystem II Protein Complex , Synechocystis , Thylakoids , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Synechocystis/genetics , Myristic Acid/metabolism , Thylakoids/metabolism , Photosynthesis , Acyltransferases/metabolism , Acyltransferases/genetics , Singlet Oxygen/metabolism
13.
Front Plant Sci ; 15: 1335085, 2024.
Article in English | MEDLINE | ID: mdl-38348270

ABSTRACT

Photosynthetic organisms often encounter phosphorus (P) limitation in natural habitats. When faced with P limitation, seed plants degrade nucleic acids and extra-plastid phospholipids to remobilize P, thereby enhancing their internal-P utilization efficiency. Although prokaryotic and eukaryotic photosynthetic organisms decrease the content of phosphatidylglycerol (PG) under P-limited conditions, it remains unclear whether PG is degraded for P remobilization. Moreover, information is limited on internal-P remobilization in photosynthetic microbes. This study investigates internal-P remobilization under P-starvation (-P) conditions in a cyanobacterium, Synechocystis sp. PCC 6803, focusing on PG and nucleic acids. Our results reveal that the PG content increases by more than double in the -P culture, indicating preferential PG synthesis among cellular P compounds. Simultaneously, the faster increases of glycolipids counteract this PG increase, which decreases the PG proportion in total lipids. Two genes, glpD and plsX, contribute to the synthesis of diacylglycerol moieties in glycerolipids, with glpD also responsible for the polar head group synthesis in PG. The mRNA levels of both glpD and plsX are upregulated during -P, which would cause the preferential metabolic flow of their P-containing substrates toward glycerolipid synthesis, particularly PG synthesis. Meanwhile, we find that RNA accounts for 62% of cellular P, and that rRNA species, which makes up the majority of RNA, are degraded under -P conditions to less than 30% of their initial levels. These findings emphasize the importance of PG in -P-acclimating cell growth and the role of rRNA as a significant internal-P source for P remobilization, including preferential PG synthesis.

14.
Biochem Biophys Res Commun ; 702: 149595, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38340653

ABSTRACT

The Photosystem II water-plastoquinone oxidoreductase is a multi-subunit complex which catalyses the light-driven oxidation of water to molecular oxygen in oxygenic photosynthesis. The D1 reaction centre protein exists in multiple forms in cyanobacteria, including D1FR which is expressed under far-red light. We investigated the role of Phe184 that is found in the lumenal cd-loop of D1FR but is typically an isoleucine in other D1 isoforms. The I184F mutant in Synechocystis sp. PCC 6803 was similar to the control strain but accumulated a spontaneous mutation that introduced a Gln residue in place of His252 located on the opposite side of the thylakoid membrane. His252 participates in the protonation of the secondary plastoquinone electron acceptor QB. The I184F:H252Q double mutant exhibited reduced high-light-induced photodamage and an altered QB-binding site that impaired herbicide binding. Additionally, the H252Q mutant had a large increase in the variable fluorescence yield although the number of photochemically active PS II centres was unchanged. In the I184F:H252Q mutant the extent of the increased fluorescence yield decreased. Our data indicates substitution of Ile184 to Phe modulates PS II-specific variable fluorescence in cells with the His252 to Gln substitution by modifying the QB-binding site.


Subject(s)
Photosystem II Protein Complex , Synechocystis , Photosystem II Protein Complex/chemistry , Synechocystis/genetics , Synechocystis/metabolism , Plastoquinone/chemistry , Plastoquinone/metabolism , Mutagenesis , Oxygen/metabolism , Mutation , Water/metabolism
15.
Microb Cell Fact ; 23(1): 57, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369470

ABSTRACT

BACKGROUND: Phenylpropanoids are a large group of plant secondary metabolites with various biological functions, derived from aromatic amino acids. Cyanobacteria are promising host organisms for sustainable production of plant phenylpropanoids. We have previously engineered Synechocystis sp. PCC 6803 to produce trans-cinnamic acid (tCA) and p-coumaric acid (pCou), the first intermediates of phenylpropanoid pathway, by overexpression of phenylalanine- and tyrosine ammonia lyases. In this study, we aimed to enhance the production of the target compounds tCA and pCou in Synechocystis. RESULTS: We eliminated the 4-hydroxyphenylpyruvate dioxygenase (HPPD) activity, which is a competing pathway consuming tyrosine and, possibly, phenylalanine for tocopherol synthesis. Moreover, several genes of the terminal steps of the shikimate pathway were overexpressed alone or in operons, such as aromatic transaminases, feedback insensitive cyclohexadienyl dehydrogenase (TyrC) from Zymomonas mobilis and the chorismate mutase (CM) domain of the fused chorismate mutase/prephenate dehydratase enzyme from Escherichia coli. The obtained engineered strains demonstrated nearly 1.5 times enhanced tCA and pCou production when HPPD was knocked out compared to the parental production strains, accumulating 138 ± 3.5 mg L-1 of tCA and 72.3 ± 10.3 mg L-1 of pCou after seven days of photoautotrophic growth. However, there was no further improvement when any of the pathway genes were overexpressed. Finally, we used previously obtained AtPRM8 and TsPRM8 Synechocystis strains with deregulated shikimate pathway as a background for the overexpression of synthetic constructs with ppd knockout. CONCLUSIONS: HPPD elimination enhances the tCA and pCou productivity to a similar extent. The use of PRM8 based strains as a background for overexpression of synthetic constructs, however, did not promote tCA and pCou titers, which indicates a tight regulation of the terminal steps of phenylalanine and tyrosine synthesis. This work contributes to establishing cyanobacteria as hosts for phenylpropanoid production.


Subject(s)
Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Metabolic Engineering , Shikimic Acid/metabolism , Tyrosine/metabolism , Phenylalanine/metabolism , Chorismate Mutase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
16.
Plant J ; 118(4): 1207-1217, 2024 May.
Article in English | MEDLINE | ID: mdl-38319793

ABSTRACT

CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three ß82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and ß153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.


Subject(s)
Bacterial Proteins , Phycobilins , Phycobilisomes , Phycocyanin , Synechocystis , Phycobilisomes/metabolism , Phycocyanin/metabolism , Phycocyanin/chemistry , Synechocystis/metabolism , Bacterial Proteins/metabolism , Phycobilins/metabolism , Phycobilins/chemistry , Cyanobacteria/metabolism
17.
Biotechnol Biofuels Bioprod ; 17(1): 6, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218963

ABSTRACT

BACKGROUND: Lack of nutrients, in particular nitrogen and phosphorus, has been known in the field to sense glutamate production via 2-oxoglutarate and subsequently accelerate carbon storage, including glycogen and polyhydroxybutyrate (PHB), in cyanobacteria, but a few studies have focused on arginine catabolism. In this study, we first time demonstrated that gene manipulation on proC and adc1, related to proline and polyamine syntheses in arginine catabolism, had a significant impact on enhanced PHB production during late growth phase and nutrient-modified conditions. We constructed Synechocystis sp. PCC 6803 with an overexpressing proC gene, encoding Δ1pyrroline-5-carboxylate reductase in proline production, and adc1 disruption resulted in lower polyamine synthesis. RESULTS: Three engineered Synechocystis sp. PCC 6803 strains, including a ProC-overexpressing strain (OXP), adc1 mutant, and an OXP strain lacking the adc1 gene (OXP/Δadc1), certainly increased the PHB accumulation under nitrogen and phosphorus deficiency. The possible advantages of single proC overexpression include improved PHB and glycogen storage in late phase of growth and long-term stress situations. However, on day 7 of treatment, the synergistic impact created by OXP/Δadc1 increased PHB synthesis by approximately 48.9% of dry cell weight, resulting in a shorter response to nutrient stress than the OXP strain. Notably, changes in proline and glutamate contents in engineered strains, in particular OXP and OXP/Δadc1, not only partially balanced the intracellular C/N metabolism but also helped cells acclimate under nitrogen (N) and phosphorus (P) stress with higher chlorophyll a content in comparison with wild-type control. CONCLUSIONS: In Synechocystis sp. PCC 6803, overexpression of proC resulted in a striking signal to PHB and glycogen accumulation after prolonged nutrient deprivation. When combined with the adc1 disruption, there was a notable increase in PHB production, particularly in situations where there was a strong C supply and a lack of N and P.

18.
J Gen Appl Microbiol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38267064

ABSTRACT

Most cyanobacterial genomes possess more than two copies of genes encoding cyAbrBs (cyanobacterial AbrB-like proteins) having an AbrB-like DNA-binding domain at their C-terminal region. Accumulating data suggest that a wide variety of metabolic and physiologic processes are regulated by cyAbrBs. In this study, we investigated the function of the essential gene cyabrB1 (sll0359) in Synechocystis sp. PCC 6803 by using CRISPR interference technology. The conditional knockdown of cyabrB1 caused increases of cyAbrB2 transcript and protein levels. However, the effect of cyabrB1 knockdown on global gene expression profile was quite limited compared to the previously reported profound effect of knockout of cyabrB2. Among 24 up-regulated genes, 16 genes were members of the divergently transcribed icfG and sll1783 operons related to carbon metabolism. The results of this and previous studies indicate the different contributions of two cyAbrBs to transcriptional regulation of genes related to carbon, hydrogen and nitrogen metabolism. Possession of a pair of cyAbrBs has been highly conserved during the course of evolution of the cyanobacterial phylum, suggesting physiological significance of transcriptional regulation attained by their interaction.

19.
J Microbiol Biotechnol ; 34(2): 407-414, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38247220

ABSTRACT

Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (ΔphoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.


Subject(s)
Synechocystis , Wastewater , Synechocystis/genetics , Synechocystis/metabolism , Polyphosphates/metabolism , Phosphorus/metabolism , Bioreactors , Culture Media/metabolism
20.
Appl Microbiol Biotechnol ; 108(1): 44, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38180554

ABSTRACT

Poly-ß-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.


Subject(s)
Biodegradable Plastics , Synechocystis , Carbon Dioxide , Hydroxybutyrates , Polyesters , Ponds , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...