Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.927
Filter
1.
Nanomicro Lett ; 16(1): 241, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980634

ABSTRACT

Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts. Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance, simultaneously provide a radical analysis of the interrelationship between structure and activity. In this review, the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized. Firstly, the synthetic strategies, characterization, dynamics and types of single atoms coupled with clusters/nanoparticles are introduced, and then the key factors controlling the structure of the composite catalysts are discussed. Next, several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated. Eventually, the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.

2.
Heliyon ; 10(11): e31922, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947443

ABSTRACT

Mentha pulegium L., a plant widely embraced for its therapeutic properties by populations worldwide, including Morocco, has long been recognized for its potential in treating various ailments. This study aims to comprehensively evaluate the antioxidant, anti-inflammatory, and dermatoprotective properties of essential oil derived from M. pulegium, and thyme honey as well as their combined effects. To unravel the chemical composition, a rigorous GC-MS analysis was conducted. Subsequently, we examined their antioxidant potential through three distinct assays: DPPH●, hydrogen peroxide assay, and xanthine oxidase assay. The anti-inflammatory properties were scrutinized through both in vitro and in vivo experiments. Simultaneously, the dermatoprotective efficacy was investigated in vitro by evaluating tyrosinase inhibition. Our findings revealed that pulegone constitutes the predominant compound in M. pulegium essential oil (MPEO), constituting a remarkable 74.82 % of the composition. Significantly, when the essential oil was combined with thym honey, it exhibited superior anti-inflammatory and dermatoprotective effects across all in vivo and in vitro tests. Moreover, our in silico molecular docking analysis hinted at the potential role of cyclohexanone, 3-methyl, an element found in the MPEO, in contributing to the observed outcomes. While this study has unveiled promising results regarding the combined in vitro, in vivo and in silico biological activities of the essential oil and honey, it is imperative to delve further into the underlying mechanisms through additional experimentation and alternative experimental methods. Understanding these mechanisms in greater detail will not only enhance our comprehension of the therapeutic potential but also pave the way for the development of innovative treatments and applications rooted in the synergy of these natural compounds. Furthermore, it would be advantageous to test different possible combinations using experimental design model. Moreover, it would be better to test the effect of single compounds of MPEO to clearly elucidate their efficiency. MPEO alone or combined with thyme honey may be a useful for the development of novel biopharmaceuticals.

3.
Front Genet ; 15: 1401544, 2024.
Article in English | MEDLINE | ID: mdl-38948360

ABSTRACT

Introduction: Synergistic medication, a crucial therapeutic strategy in cancer treatment, involves combining multiple drugs to enhance therapeutic effectiveness and mitigate side effects. Current research predominantly employs deep learning models for extracting features from cell line and cancer drug structure data. However, these methods often overlook the intricate nonlinear relationships within the data, neglecting the distribution characteristics and weighted probability densities of gene expression data in multi-dimensional space. It also fails to fully exploit the structural information of cancer drugs and the potential interactions between drug molecules. Methods: To overcome these challenges, we introduce an innovative end-to-end learning model specifically tailored for cancer drugs, named Dual Kernel Density and Positional Encoding (DKPE) for Graph Synergy Representation Network (DKPEGraphSYN). This model is engineered to refine the prediction of drug combination synergy effects in cancer. DKPE-GraphSYN utilizes Dual Kernel Density Estimation and Positional Encoding techniques to effectively capture the weighted probability density and spatial distribution information of gene expression, while exploring the interactions and potential relationships between cancer drug molecules via a graph neural network. Results: Experimental results show that our prediction model achieves significant performance enhancements in forecasting drug synergy effects on a comprehensive cancer drug and cell line synergy dataset, achieving an AUPR of 0.969 and an AUC of 0.976. Discussion: These results confirm our model's superior accuracy in predicting cancer drug combinations, providing a supportive method for clinical medication strategy in cancer.

4.
Chin Med ; 19(1): 94, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956673

ABSTRACT

BACKGROUND: Irinotecan (CPT-11) is a first-line treatment for advanced colorectal cancer (CRC). Four components (baicalin, baicalein, wogonin, and glycyrrhizic acid) derived from Huangqin Decoction (HQD) have been proven to enhance the anticancer activity of CPT-11 in our previous study. OBJECTIVE: This study aimed to determine the optimal combination of the four components for sensitizing CPT-11 as well as to explore the underlying mechanism. METHODS: The orthogonal design method was applied to obtain candidate combinations (Cmb1-9) of the four components. The influence of different combinations on the anticancer effect of CPT-11 was first evaluated in vitro by cell viability, wound healing ability, cloning formation, apoptosis, and cell cycle arrest. Then, a CRC xenograft mice model was constructed to evaluate the anticancer effect of the optimal combination in vivo. Potential mechanisms of the optimal combination exerting a sensitization effect combined with CPT-11 against CRC were analyzed by targeted metabolomics. RESULTS: In vitro experiments determined that Cmb8 comprised of baicalin, baicalein, wogonin, and glycyrrhizic acid at the concentrations of 17 µM, 47 µM, 46.5 µM and 9.8 µM respectively was the most effective combination. Importantly, the cell viability assay showed that Cmb8 exhibited synergistic anticancer activity in combination with CPT-11. In in vivo experiments, this combination (15 mg/kg of baicalin, 24 mg/kg of baicalein, 24 mg/kg of wogonin, and 15 mg/kg of glycyrrhizic acid) also showed a synergistic anticancer effect. Meanwhile, inflammatory factors and pathological examination of the colon showed that Cmb8 could alleviate the gastrointestinal damage induced by CPT-11. Metabolic profiling of the tumors suggested that the synergistic anticancer effect of Cmb8 might be related to the regulation of fatty acid metabolism. CONCLUSION: The optimal combination of four components derived from HQD for the synergistic sensitization of CPT-11 against CRC was identified.

5.
Bioorg Med Chem ; 110: 117827, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964169

ABSTRACT

Histone deacetylase inhibitors (HDACis) show beneficial effects on different hematological malignancy subtypes. However, their impacts on treating solid tumors are still limited due to diverse resistance mechanisms. Recent studies have found that the feedback activation of BRD4-LIFR-JAK1-STAT3 pathway after HDACi incubation is a vital mechanism inducing resistance of specific solid tumor cells to HDACis. This review summarizes the recent development of multi-target HDACis that can concurrently block BRD4-LIFR-JAK1-STAT3 pathway. Moreover, our findings hope to shed novel lights on developing novel multi-target HDACis with reduced BRD4-LIFR-JAK1-STAT3-mediated drug resistance in some tumors.

6.
Adv Sci (Weinh) ; : e2403771, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961647

ABSTRACT

The rational design of visible-light-responsive catalysts is crucial for converting solar energy into hydrogen energy to promote sustainable energy development. In this work, a C─S─C bond is introduced into g-C3N4 (CN) through S doping. With the help of the flexible C─S─C bond under specific stimuli, a hollow coral-like porous structure of S-doped g-C3N4 (S-CN) is synthesized for the first time. And an S-doped g-C3N4/ZnIn2S4 (S-CN/ZIS) heterojunction catalyst is in situ synthesized based on S-CN. S0.5-CN/ZIS exhibits excellent photocatalytic hydrogen evolution (PHE) efficiency (19.25 mmol g-1 h-1), which is 2.7 times higher than that of the g-C3N4/ZnIn2S4 (CN/ZIS) catalyst (8.46 mmol g-1 h-1), with a high surface quantum efficiency (AQE) of 34.43% at 420 nm. Experiments and theoretical calculations demonstrate that the excellent photocatalytic performance is attributed to the larger specific surface area and porosity, enhanced interfacial electric field (IEF) effect, and appropriate hydrogen adsorption Gibbs free energy (ΔGH*). The synergistic effect of S doping and S-scheme heterojunction contributes to the above advancement. This study provides new insights and theoretical basis for the design of CN-based photocatalysts.

7.
Angew Chem Int Ed Engl ; : e202410722, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965047

ABSTRACT

In this work, a noncoplanar terphenyl served as building block to synthesize a novel 3,3'-substituted bipyridyl ligand (L1) which further reacted with binuclear half-sandwich units A/B, giving rise to two aesthetical 41 metalla-knots in high yields via coordination-driven self-assembly strategy. Furthermore, given the inherent compactness of the 41 metalla-knots, it creates favorable conditions for the emergence of steric repulsion. We focused on progressively introducing nitrogen atoms featuring lone pair electrons (LPEs) into ligand L1 to manipulate the balance of H···H/LPEs···LPEs steric repulsion during the assembly process, ultimately achieving controlled assembly from 41 metalla-knots to the pseudo-Solomon link and then to molecular tweezer-like assembly facilitated by stacking interactions. All the assemblies were well characterized by solution-state NMR techniques, ESI-TOF/MS, and single-crystal X-ray diffraction. The evolutionary process of topological architectures is equivalent to visualizing the synergistic effect of steric hindrance and stacking interactions on structural assembly, providing a new avenue for achieving the controlled synthesis of different topologies.

8.
Mar Pollut Bull ; 205: 116643, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950513

ABSTRACT

Growing economic and industrial activities have put a large strain on the marine environment and ecosystem, presenting the marine economy with a tradeoff between economic expansion and environmental conservation. Though the Porter hypothesis depicts a win-win situation, it is crucial to consider the conditions under which environmental regulations generate positive effects. This paper is to study how the synergy between market-based and government-based environmental regulations affects marine economic resilience, whereas maintaining economic resilience is a prerequisite for promoting innovation and productivity. The findings indicate that each 1 % increase in the synergistic level of environmental regulations resulted in a 0.234 % improvement in marine economic resilience. The heterogeneity tests indicate that the relationship is still significant if the marine economy characterizes high industrial diversity, high industrial upgrading, and large scale, while environmental regulation in coastal provinces that marine industrial structure is not advanced negatively affects marine economic resilience.

9.
Theory Biosci ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888845

ABSTRACT

Herbal medicines are frequently blended in the form of multi-drug combinations primarily based on the precept of medicinal compatibility, to achieve the purpose of treating diseases. However, due to the lack of appropriate techniques and the multi-component and multi-target nature of Chinese medicine compounding, it is tough to explain how the drugs interact with each other. As a rising discipline, cyber pharmacology has formed a new approach characterized by using holistic and systematic "network targets" via the cross-fertilization of computer technology, bioinformatics, and different multidisciplinary disciplines. It can broadly screen the active ingredients of traditional Chinese medicine, enhance the effective utilization of drugs, and elucidate the mechanism of drug action. We will overview the principles of Chinese medicine compounding and dispensing, the research methods of network pharmacology, and the software of network pharmacology in the lookup of compounded Chinese medicines, aiming to supply thoughts for the better application of network pharmacology in the research of Chinese medicines.

10.
Water Res ; 260: 121907, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38878318

ABSTRACT

The combination of ozone (O3) and ferrate (Fe(VI)) oxidation technology demonstrates substantial potential for practical applications, though it has been underreported, resulting in gaps in comprehensive activity assessments and thorough exploration of its mechanisms. This study reveals that the previous use of a borate buffer solution obscured certain synergistic reactions between O3 and Fe(VI), causing a reduction of activity by ∼40 % when oxidizing the electron-deficient pollutant atrazine. Consequently, we reassessed the activity and mechanisms using a buffer-salt-free O3/Fe(VI) system. Our findings showed that the hydroxyl radical (·OH) served as the predominant active species, responsible for an impressive 95.9 % of the oxidation activity against electron-deficient pollutants. Additional experiments demonstrated that the rapid production of neglected and really important superoxide radicals (·O2-) could facilitate the decomposition of O3 to generate ·OH and accelerate the reduction of Fe(VI) to Fe(V), reactivating O3 to produce ·OH anew. Intriguingly, as the reaction progressed, the initially depleted Fe(VI) was partially regenerated, stabilizing at over 50 %, highlighting the significant potential of this combined system. Moreover, this combined system could achieve a high mineralization efficiency of 80.4 % in treating actual coking wastewater, complemented by extensive toxicity assessments using Escherichia coli, wheat seeds, and zebrafish embryos, showcasing its robust application potential. This study revisits and amends previous research on the O3/Fe(VI) system, providing new insights into its activity and synergistic mechanisms. Such a combined technology has potential for the treatment of difficult-to-degrade industrial wastewater.

11.
Aquat Toxicol ; 273: 107001, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878329

ABSTRACT

Since the run off of microplastic and plastic additives into the aquatic environment through the disposal of plastic products, we investigated the adverse effects of co-exposure to microplastics and plastic additives on zebrafish embryonic development. To elucidate the combined effects between microplastic mixtures composed of microplastics and plastic additives in zebrafish embryonic development, polystyrene (PS), bisphenol S (BPS), and mono-(2-ethylhexyl) phthalate (MEHP) were chosen as a target contaminant. Based on non-toxic concentration of each contaminant in zebrafish embryos, microplastic mixtures which is consisted of binary and ternary mixed forms were prepared. A strong phenotypic toxicity to zebrafish embryos was observed in the mixtures composed with non-toxic concentration of each contaminant. In particular, the mixture combination with ≤ EC10 values for BPS and MEHP showed a with a strong synergistic effect. Based on phenotypic toxicity to zebrafish embryos, change of transcription levels for target genes related to cell damage and thyroid hormone synthesis were analyzed in the ternary mixtures with low concentrations that were observed non-toxicity. Compared with the control group, cell damage genes linked to the oxidative stress response and thyroid hormone transcription factors were remarkably down-regulated in the ternary mixture-exposed groups, whereas the transcriptional levels of cyp1a1 and p53 were significantly up-regulated in the ternary mixture-exposed groups (P < 0.05). These results demonstrate that even at low concentrations, exposure to microplastic mixtures can cause embryonic damage and developmental malformations in zebrafish, depending on the mixed concentration-combination. Consequently, our findings will provide data to examine the action mode of zebrafish developmental toxicity caused by microplastic mixtures exposure composed with microplastics and plastic additives.

12.
Pestic Biochem Physiol ; 202: 105973, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879316

ABSTRACT

Using a high-efficiency insecticide in combination with fungicides that have different mechanisms of action is a conventional method in the current management of brown planthopper (BPH) resistance. In this study, we investigate the separate and combined effects of the low-toxicity fungicide validamycin and the non-cross-resistant insecticide imidacloprid on the fitness and symbiosis of BPH. These research results indicate that when the proportion of active ingredients in validamycin is combined with imidacloprid at a ratio of 1:30, the toxicity ratio and co-toxicity coefficient are 1.34 and 691.73, respectively, suggesting that the combination has a synergistic effect on the control of BPH. The number of yeast-like symbiotic (YLS) and dominant symbiotic (Noda) in the imidacloprid + validamycin groups were significantly lower than the other three treatment groups (validamycin, imidacloprid, and water). The results of the study on population fitness show that the lifespan of the BPH population in validamycin, imidacloprid, and imidacloprid + validamycin was shortened. Notably, the BPH populations in the imidacloprid + validamycin groups were significantly lower than other groups in terms of average generation cycle, intrinsic growth rate, net reproduction rate, finite rate of increase, and fitness. The Real-time quantitative PCR showed that validamycin and imidacloprid + validamycin can significantly inhibit the expression of the farnesyl diphosphate farnesyl transferase gene (EC2.5.1.21) and uricase gene (EC1.7.3.3), with imidacloprid + validamycin demonstrating the most pronounced inhibitory effect. Our research results can provide insights and approaches for delaying resistance and integrated management of BPH.


Subject(s)
Hemiptera , Insecticides , Neonicotinoids , Nitro Compounds , Symbiosis , Animals , Hemiptera/drug effects , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Insecticides/pharmacology , Inositol/analogs & derivatives , Inositol/pharmacology , Imidazoles/pharmacology , Fungicides, Industrial/pharmacology
13.
Chemosphere ; 361: 142554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851502

ABSTRACT

Increasing multidrug-resistant pathogenic microbial around the world become a global problem, making it imperative to develop effective methods for bacterial inactivation in wastewater. In this study, we propose a multifunctional photoelectrochemical (PEC) system to successfully disinfect microbial cells and degrade orange (II) dyes. CoOx NP were synthesized by spin-coating onto hydrothermally synthesized TiO2 nanorod arrays followed by electrodeposited NiFe-LDH to develop the NiFe-LDH/CoOx NP-TiO2 NRs. Interestingly, spin-coated CoOx NP-TiO2 NRs exhibited a 1.5-fold enhancement in photocurrent (1.384 mA/cm2) than pristine TiO2 NRs (0.92 mA/cm2). A NiFe-layered double hydroxide (LDH) cocatalysts layer further exhibits the maximum photocurrent density of 1.64 mA/cm2 with IPCE of 84.5% at 1.0 VAg/AgCl at 380 nm. Furthermore, NiFe-LDH/CoOx-TiO2 NR photoanodes were effectually employed for photoelectrochemical bacteria disinfection and organic pollutant removals. With NiFe-LDH/CoOx-TiO2 NR, 99% (120 min) bacterial inactivation and 99% (60 min) orange II dye decomposition efficiency was achieved. Superoxide radicals (-O2•), hydroxyl radicals (HO•), and holes (h+) played a critical role in the PEC degradation systems. Due to the synergy between NiFe-LDH cocatalyst and CoOx interlayer, surface water oxidation reactions were accelerated over NiFe-LDH/CoOx NP-TiO2 NRs. The charge transport process in NiFe-LDH/CoOx NP-TiO2 NRs photoanode-based PEC system was proposed in detail.


Subject(s)
Electrodes , Titanium , Wastewater , Titanium/chemistry , Wastewater/chemistry , Catalysis , Electrochemical Techniques/methods , Water Pollutants, Chemical/chemistry , Hydroxides/chemistry , Waste Disposal, Fluid/methods , Photochemical Processes , Nanotubes/chemistry , Coloring Agents/chemistry , Azo Compounds/chemistry , Water Purification/methods , Disinfection/methods
14.
Nat Prod Res ; : 1-5, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885348

ABSTRACT

Cordyceps sinensis (C. sinensis) and Gymnema inodorum (Lour.) Decne. (G. inodorum) have been widely used for treating various illnesses. The study focused on exploring the effects of C. sinensis extract (CSE), G. inodorum extract (GIE), using alone and combined (COM) on ameliorating glucose intolerance, dyslipidemia, and obesity in mice fed with a high-fat diet (HFD). The results revealed that the oral glucose tolerance test (OGTT), total cholesterol (TC), triglycerides (TG), and LDL-cholesterol (LDL) exhibited a significant decrease in all groups treated with CSE, GIE, and COM compared to the control (p < 0.05). Obviously, CSE plus GIE exhibited a synergistic effect on amelioration of OGTT, TC, TG, and LDL, which is also the first report. Furthermore, the extracts showed no toxicity in the mice's vital organs. These results suggest that CSE, GIE, and their combined could have the potential as complementary therapeutic approaches for managing hyperglycaemia and dyslipidemia.

15.
Integr Cancer Ther ; 23: 15347354241259416, 2024.
Article in English | MEDLINE | ID: mdl-38867515

ABSTRACT

BACKGROUND: Natural products are increasingly gaining interest as potential new drug candidates for cancer treatment. Herbal formula, which are combinations of several herbs, are primarily used in East Asia and have a long history of use that continues today. Recently, research exploring the combination of herbal formulas and chemotherapy for cancer treatment has been on the rise. METHODS: This study reviewed research on the co-administration of herbal formulas and chemotherapy for cancer treatment. The databases PubMed, Embase, and Cochrane Library were used for article searches. The following keywords were employed: "Antineoplastic agents," "Chemotherapy," "Phytotherapy," "Herbal medicine," "Drug synergism," and "Synergistic effect." The selection process focused on studies that investigated the synergistic interaction between herbal formulas and chemotherapeutic agents. RESULTS: Among the 30 studies included, 25 herbal formulas and 7 chemotherapies were used. The chemotherapy agents co-administered included cisplatin, 5-fluorouracil, docetaxel, doxorubicin, oxaliplatin, irinotecan, and gemcitabine. The types of cancer most frequently studied were lung, breast, and colon cancers. Most studies evaluating the anticancer efficacy of combined herbal formula and chemotherapy treatment were conducted in vitro or in vivo. DISCUSSION: Most studies reported synergistic effects on cytotoxicity, apoptosis, and tumor growth inhibition. These effects were found to be associated with cell cycle arrest, anti-angiogenesis, and gene expression regulation. Further studies leading to clinical trials are required. Clinical experiences in East Asian countries could provide insights for future research.


Subject(s)
Drug Synergism , Neoplasms , Humans , Neoplasms/drug therapy , Apoptosis/drug effects , Phytotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Animals , Plants, Medicinal/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Herbal Medicine/methods
16.
Food Res Int ; 190: 114647, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945586

ABSTRACT

Ethyl hexanoate and ethyl butyrate are indispensable flavor metabolites in strong-flavor Baijiu (SFB), but batch production instability in fermenting grains can reduce the quality of distilled Baijiu. Biofortification of the fermentation process by designing a targeted microbial collaboration pattern is an effective method to stabilize the quality of Baijiu. In this study, we explored the metabolism under co-culture liquid fermentation with Clostridium tyrobutyricum DB041 and Saccharomyces cerevisiae YS219 and investigated the effects of inoculation with two functional microorganisms on physicochemical factors, flavor metabolites, and microbial communities in solid-state simulated fermentation of SFB for the first time. The headspace solid-phase microextraction-gas chromatography-mass spectrometry results showed that ethyl butyrate and ethyl hexanoate significantly increased in fermented grain. High-throughput sequencing analysis showed that Pediococcus, Lactobacillus, Weissella, Clostridium_sensu_stricto_12, and Saccharomyces emerged as the dominant microorganisms at the end of fermentation. Co-occurrence analysis showed that ethyl hexanoate and ethyl butyrate were significantly correlated (|r| > 0.5, P < 0.05) with a cluster of interactions dominated by lactic acid bacteria (Pediococcus, Lactobacillus, Weissella, and Lactococcus), which was driven by the functional C. tyrobutyricum and S. cerevisiae. Mantel test showed that moisture and reducing sugars were the main physicochemical factor affecting microbial collaboration (|r| > 0.7, P < 0.05). Taken together, the collaborative microbial pattern of inoculation with C. tyrobutyricum and S. cerevisiae showed positive results in enhancing typical flavor metabolites and the synergistic effects of microorganisms in SFB.


Subject(s)
Butyrates , Caproates , Clostridium tyrobutyricum , Fermentation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Clostridium tyrobutyricum/metabolism , Clostridium tyrobutyricum/growth & development , Caproates/metabolism , Butyrates/metabolism , Taste , Flavoring Agents/metabolism , Food Microbiology , Gas Chromatography-Mass Spectrometry , Coculture Techniques , Alcoholic Beverages/microbiology , Solid Phase Microextraction
17.
Biomater Adv ; 162: 213932, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917648

ABSTRACT

Clay minerals have attracted wide attention as biomedical materials due to the unique crystal structure, abundant morphology and good biocompatibility. However, the relevant studies on the abundant natural mixed clay deposits were scarcely reported. Herein, the hemostatic performance of natural mixed-dimensional attapulgite clay (MDAPT) composed of one-dimensional attapulgite and multiple two-dimensional clay were systematically investigated based on the structural evolution using oxalic acid for different time. The results of hemostatic evaluation showed that MDAPT leached by oxalic acid with 1 h presented the shortest clotting time (134 ± 12.17 s), a 15.09 % and 41.74 % reduction of relative hemoglobin absorbance at 180 s and 120 s when compared with the control group, respectively, and an increase of 19.45 % of the blood clotting index in vitro, as well as MDAPT obtained the shortest bleeding time (158.5 ± 6.9 s), nearly 66 % and 31 % reduction blood loss as compared to the blank group and the YNBY group in vivo. This improvement was primarily ascribed to the synergistic effect of lamellar non-expandable illite, and nano rod-like attapulgite. Furthermore, the rapid hemostasis of MDAPT was also due to the joint effect of superhydrophobic property toward blood, minimizing blood loss, surface negative charge, metal ions from MDAPT structural skeleton, promoting an average increase of 21 % for platelet activation. The results suggested that MDAPT could be served as a promising efficient inorganic hemostatic materials, which provided a feasible strategy to realize the high-valued utilization of natural mixed clay resources.


Subject(s)
Clay , Magnesium Compounds , Silicon Compounds , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Clay/chemistry , Animals , Silicon Compounds/chemistry , Hemostatics/pharmacology , Hemostatics/chemistry , Blood Coagulation/drug effects , Blood Coagulation/physiology , Hemostasis/drug effects , Hemostasis/physiology , Aluminum Silicates/chemistry , Humans
18.
Int J Biol Macromol ; 275(Pt 1): 133399, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945323

ABSTRACT

The development of efficient, safe, environmentally friendly, and user-friendly hemostatic dressings remains a great challenge for researchers. A variety of clay minerals and plant extracts have garnered considerable attention due to their outstanding hemostatic efficacy and favorable biosafety. In this study, a facile solution casting strategy was employed to prepare nanocomposite films by incorporating natural nanorod-like palygorskite (Pal) and herb-derived hemostat dencichine (DC) based on chitosan and polyvinylpyrrolidone. The dynamic blood clotting index demonstrated that the nanocomposite film with a DC addition of 1.0 wt% exhibited significantly superior hemostatic properties compared to both pure DC powder or commercial hemostatic agent Yunnan Baiyao. This improvement was primarily attributed to proper blood affinity, increased porosity, enhanced adhesion of platelets and erythrocytes, as well as the accelerated activation of coagulation factors and platelets. Under the synergistic effect of Pal and DC, the nanocomposite film displayed suitable tensile strength (20.58 MPa) and elongation at break (47.29 %), which may be due to the strong intermolecular hydrogen bonding and electrostatic interaction between Pal/DC and macropolymers. Notably, the nanocomposite film exhibited remarkable antibacterial effectiveness and desirable cytocompatibility, as well as the capability of promoting wound healing in vitro. Taken together, the nanocomposite film synergized with Pal and DC is expected to be an efficacious and suitable wound dressing.

19.
Nano Lett ; 24(26): 8134-8142, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900138

ABSTRACT

Developing highly efficient and carbon monoxide (CO)-tolerant platinum (Pt) catalysts for the formic acid oxidation reaction (FAOR) is vital for direct formic acid fuel cells (DFAFCs), yet it is challenging due to the high energy barrier of direct intermediates (HCOO* and COOH*) as well as the CO poisoning issues associated with Pt alloy catalysts. Here we present a versatile biphasic strategy by creating a hexagonal/cubic crystalline-phase-synergistic PtPb/C (h/c-PtPb/C) catalyst to tackle the aforementioned issues. Detailed investigations reveal that h/c-PtPb/C can simultaneously facilitate the adsorption of direct intermediates while inhibiting CO adsorption, thereby significantly improving the activation and CO spillover. As a result, h/c-PtPb/C showcases an outstanding FAOR activity of 8.1 A mgPt-1, which is 64.5 times higher than that of commercial Pt/C and significantly surpasses monophasic PtPb. Moreover, the h/c-PtPb/C-based membrane electrode assembly exhibits an exceptional peak power density of 258.7 mW cm-2 for practical DFAFC applications.

20.
ACS Appl Mater Interfaces ; 16(26): 33647-33656, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38898674

ABSTRACT

Electrolyte engineering plays a crucial role in enhancing the performance of lithium metal batteries (LMBs) featuring high-voltage cathodes and limited lithium anodes, thereby unlocking their potential for high-energy electrochemical storage. Herein, an entropy-driven hybrid gel electrolyte with enhanced diversity in Li-ion solvation structures is designed by incorporating substantial amounts of insoluble LiPO2F2 and LiNO3 salts into LiPF6-based carbonate electrolytes, followed by in situ thermal polymerization. Specifically, the Li+ solvation structures are modulated via ionophilic NO3- and PO2F2- to generate an anion-rich solvation sheath and thus promote anion reduction at the electrode-electrolyte interface. The interfaces enriched in anion-derived inorganic components facilitate rapid ionic transport, thus enabling smooth and dense Li morphology and ultimately enhancing the electrochemical performance of LMBs. As a result, this high-hybrid gel electrolyte confers LMBs employing high-voltage NCM cathodes, as demonstrated by sustained performance in both coin-cell (500 cycles at 4.5 V) and Ah-level pouch cell configurations under practical conditions (60 cycles, N/P: 1.92, and E/C: 2.0 g Ah -1).

SELECTION OF CITATIONS
SEARCH DETAIL
...