Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Mol Biol Rep ; 51(1): 789, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990383

ABSTRACT

BACKGROUND: Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide. METHODS: The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR. RESULTS: Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1ß secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/ß, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment. CONCLUSION: The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.


Subject(s)
Glucosides , Lipopolysaccharides , Macrophages , Myeloid Differentiation Factor 88 , NF-kappa B , Phenylpropionates , Signal Transduction , Tinospora , Humans , Myeloid Differentiation Factor 88/metabolism , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction/drug effects , Tinospora/chemistry , Glucosides/pharmacology , Phenylpropionates/pharmacology , NF-kappa B/metabolism , U937 Cells , Dinoprostone/metabolism , Interleukin-1beta/metabolism , Down-Regulation/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Inflammation Mediators/metabolism , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Toll-Like Receptor 4/metabolism
2.
Int Immunopharmacol ; 131: 111830, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38520788

ABSTRACT

Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 µg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.


Subject(s)
Glucosides , Phenols , Phenylpropionates , Semen , Zebrafish , Animals , Male , Oxidative Stress , Benzhydryl Compounds/toxicity , Inflammation/chemically induced , Inflammation/drug therapy
3.
Heliyon ; 10(1): e22972, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169693

ABSTRACT

Magnolia champaca Linn. has traditionally been used for medicinal activity in Asia for treating various chronic diseases as well as a source of food, medicines, and other commodities. Due to the long-used history of this plant, the present study was designed to explore the in vitro, in vivo and in silico anti-inflammatory and antineoplastic properties of the methanolic extract and fractions and the pure compound isolated from the most active chloroform fraction (CHF) of the stem bark of the plant. The isolated compound from the most active CHF was characterized and identified as a glycoside, trans-syringin, through chromatographic and spectroscopic (1H-NMR and 13C-NMR) analyses. In the in vitro anti-inflammatory assay, CHF was most effective in inhibiting inflammation and hemolysis of RBCs by 73.91 ± 1.70% and 75.92 ± 0.14%, respectively, induced by heat and hypotonicity compared to standard acetylsalicylic acid. In the egg albumin denaturation assay, CME and CHF showed the highest inhibition by 56.25 ± 0.82% and 65.82 ± 3.52%, respectively, contrasted with acetylsalicylic acid by 80.14 ± 2.44%. In an in vivo anti-inflammatory assay, statistically significant (p < 0.05) decreases in the parameters of inflammation, such as paw edema, leukocyte migration and vascular permeability, were recorded in a dose-dependent manner in the treated groups. In the antineoplastic assay, 45.26 ± 2.24% and 68.31 ± 3.26% inhibition of tumor cell growth for pure compound were observed compared to 73.26 ± 3.41% for standard vincristine. Apoptotic morphologic alterations, such as membrane and nuclear condensation and fragmentation, were also found in EAC cells after treatment with the isolated bioactive pure compound. Such treatment also reversed the increased WBC count and decreased RBC count to normal values compared to the untreated EAC cell-bearing mice and the standard vincristine-treated mice. Subsequently, in silico molecular docking studies substantiated the current findings, and the isolated pure compound and standard vincristine exhibited -6.4 kcal/mol and -7.3 kcal/mol binding affinities with topoisomerase-II. Additionally, isolated pure compound and standard diclofenac showed -8.2 kcal/mol and -7.6 kcal/mol binding affinities with the COX-2 enzyme, respectively. The analysis of this research suggests that the isolated bioactive pure compound possesses moderate to potent anti-inflammatory and antineoplastic activity and justifies the traditional uses of the stem bark of M. champaca. However, further investigations are necessary to analyze its bioactivity, proper mechanism of action and clinical trials for the revelation of new drug formulations.

4.
Plants (Basel) ; 12(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38068607

ABSTRACT

Ginkgo biloba L. stands as one of the oldest living tree species, exhibiting a diverse range of biological activities, including antioxidant, neuroprotective, anti-inflammatory, and cardiovascular activities. As part of our ongoing discovery of novel bioactive components from natural sources, we directed our focus toward the investigation of potential bioactive compounds from G. biloba fruit. The profiles of its chemical compounds were examined using a Global Natural Products Social (GNPS)-based molecular networking analysis. Guided by this, we successfully isolated and characterized 11 compounds from G. biloba fruit, including (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-ß-D-glucopyranoside (3), vanillic acid 4-O-ß-D-glucopyranoside (4), syringic acid 4-O-ß-D-glucopyranoside (5), (E)-ferulic acid 4-O-ß-D-glucoside (6), (E)-sinapic acid 4-O-ß-D-glucopyranoside (7), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-ß-D-glucopyranoside (8), eucomic acid (9), rutin (10), and laricitrin 3-rutinoside (11). The structural identification was validated through a comprehensive analysis involving nuclear magnetic resonance (NMR) spectroscopic data and LC/MS analyses. All isolated compounds were evaluated using an E-screen assay for their estrogen-like effects in MCF-7 cells. As a result, compounds 2, 3, 4, 8, and 9 promoted cell proliferation in MCF-7 cells, and these effects were mitigated by the ER antagonist, ICI 182,780. In particular, cell proliferation increased most significantly to 140.9 ± 6.5% after treatment with 100 µM of compound 2. The mechanism underlying the estrogen-like effect of syringin (2) was evaluated using a Western blot analysis to determine the expression of estrogen receptor α (ERα). We found that syringin (2) induced an increase in the phosphorylation of ERα. Overall, these experimental results suggest that syringin (2) can potentially aid the control of estrogenic activity during menopause.

5.
Aging (Albany NY) ; 15(21): 11994-12020, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37916984

ABSTRACT

Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse biological functions in various biological processes. We explored the underlying hepatoprotective effects of syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an effective candidate drug for the treatment of ALI.


Subject(s)
NF-kappa B , Proto-Oncogene Proteins c-akt , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Liver/metabolism
6.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882327

ABSTRACT

Inflammation plays a crucial role in the onset or progression of a variety of acute and chronic diseases. Non-steroidal anti-inflammatory drugs (NSAIDs) are the only available FDA-approved therapy. The therapeutic outcome of NSAIDs is still finite due to off-target effects and extreme side effects on other vital organs. Bioactive syringin has been manifested to hold anti-osteoporosis, cardiac hypertrophy, alter autophagy, anti-cancer, neuro-preventive effects, etc. However, its multi-protein targeting potential in inflammation mostly remains unexplored. In the present work, we have checked the multi-protein targeting potential of bioactive glycoside syringin in inflammatory diseases. Based on the binding score of protein-ligand complexes, glycoside syringin scored greater than -7 kcal/mol against 12 inflammatory proteins. Our molecular dynamic simulation study (200 ns) confirmed that bioactive syringin remained inside the binding cavity of inflammatory proteins (JAK1, TYK2, and COX1) in a stable conformation. Further, our co-expression analysis suggests that these genes play an essential role in multiple pathways and are regulated by multiple miRNAs. Our study demonstrates that bioactive glycoside syringin might be a multi-protein targeting potential against inflammatory diseases and could be further investigated utilizing different preclinical approaches.Communicated by Ramaswamy H. Sarma.

7.
Cells ; 12(18)2023 09 19.
Article in English | MEDLINE | ID: mdl-37759532

ABSTRACT

Defective autophagy is one of the cellular hallmarks of Parkinson's disease (PD). Therefore, a therapeutic strategy could be a modest enhancement of autophagic activity in dopamine (DA) neurons to deal with the clearance of damaged mitochondria and abnormal protein aggregates. Syringin (SRG) is a phenolic glycoside derived from the root of Acanthopanax senticosus. It has antioxidant, anti-apoptotic, and anti-inflammatory properties. However, whether it has a preventive effect on PD remains unclear. The present study found that SRG reversed the increase in intracellular ROS-caused apoptosis in SH-SY5Y cells induced by neurotoxin 6-OHDA exposure. Likewise, in C. elegans, degeneration of DA neurons, DA-related food-sensitive behaviors, longevity, and accumulation of α-synuclein were also improved. Studies of neuroprotective mechanisms have shown that SRG can reverse the suppressed expression of SIRT1, Beclin-1, and other autophagy markers in 6-OHDA-exposed cells. Thus, these enhanced the formation of autophagic vacuoles and autophagy activity. This protective effect can be blocked by pretreatment with wortmannin (an autophagosome formation blocker) and bafilomycin A1 (an autophagosome-lysosome fusion blocker). In addition, 6-OHDA increases the acetylation of Beclin-1, leading to its inactivation. SRG can induce the expression of SIRT1 and promote the deacetylation of Beclin-1. Finally, we found that SRG reduced the 6-OHDA-induced expression of miR-34a targeting SIRT1. The overexpression of miR-34a mimic abolishes the neuroprotective ability of SRG. In conclusion, SRG induces autophagy via partially regulating the miR-34a/SIRT1/Beclin-1 axis to prevent 6-OHDA-induced apoptosis and α-synuclein accumulation. SRG has the opportunity to be established as a candidate agent for the prevention and cure of PD.


Subject(s)
MicroRNAs , Neuroblastoma , Neurotoxicity Syndromes , Parkinson Disease , Humans , Animals , Oxidopamine/pharmacology , Caenorhabditis elegans , alpha-Synuclein , Beclin-1 , Sirtuin 1/genetics , Autophagy , MicroRNAs/genetics
8.
Tissue Cell ; 83: 102159, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37467688

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a key risk factor for the developing of metabolic liver injury and easily evolving to advanced fibrosis. Syringin (SYR), isolated from Acanthopanax senticosus, has anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, its hepatoprotective effects and mechanisms in T2DM-induced liver fibrosis remain unclear. Here, we investigated whether syringin (SYR) could serve as a therapeutic agent for liver fibrosis and its mechanism in high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetic mice. C57BL/6 mice were induced with T2DM via HFD and STZ injection and treated with different doses of SYR. Serum lipid parameters and liver function indicators were measured, and hepatic histology and fibrosis were examined. The mechanism of SYR was explored through molecular analyses Results demonstrated SYR improved oral glucose tolerance, decreased the levels of ALT, AST, and AKP, and reduced hepatic lipid deposition in diabetic mice. Moreover, SYR ameliorated epithelial-to-mesenchymal transition to reverse hepatic fibrosis via suppressing TRIB3-SMAD3 interaction to restrain nuclear localization of SMAD3. Strikingly, SYR reversed hyperglycemia-induced deficiency in autophagic flux by regulation of Raptor/mTORC1, triggering nuclear translocation of TFEB to improve autophagosome-lysosomal fusion. In brief, SYR potentially ameliorates hepatic injury and fibrosis by enhancing autophagic flux and inhibing TRIB3 activation in diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Mice, Inbred C57BL , Liver Cirrhosis/drug therapy , Streptozocin/adverse effects , Lipids
9.
Curr Issues Mol Biol ; 45(7): 5950-5966, 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37504292

ABSTRACT

Saussurea neoserrata Nakai offers a reliable and efficient source of antioxidants that can help alleviate adverse skin reactions triggered by air pollutants. Air pollutants, such as particulate matter (PM), have the ability to infiltrate the skin and contribute to the higher occurrence of cardiovascular, cerebrovascular, and respiratory ailments. Individuals with compromised skin barriers are particularly susceptible to the impact of PM since it can be absorbed more readily through the skin. This study investigated the impact of protocatechuic acid and syringin, obtained from the n-BuOH extract of S. neoserrata Nakai, on the release of PGE2 and PGD2 induced by PM10. Additionally, it examined the gene expression of the synthesis of PGE2 and PGD2 in human keratinocytes. The findings of this research highlight the potential of utilizing safe and efficient plant-derived antioxidants in dermatological and cosmetic applications to mitigate the negative skin reactions caused by exposure to air pollution.

10.
Pharmacol Res Perspect ; 11(3): e01105, 2023 06.
Article in English | MEDLINE | ID: mdl-37278329

ABSTRACT

Syringin is a natural chemical compound first isolated from the bark of lilac and is known to have neuroprotective effects in middle cerebral artery occlusion (MCAO). Volume regulated anion channel (VRAC) is a cell swelling-activated anion channel, which is implicated in brain ischemia. However, the mechanism underlying the syringin protecting the neuron from damage in MCAO is still unclear. We hypothesized that syringin has an inhibitory effect on the opening of VRAC channels. To access the effect of syringin on VRAC currents and predict how syringin interacts with VRAC proteins, we performed whole-cell patch-clamp experiments using HEK293 cells. Initially, HEK293 cells were perfused with isotonic extracellular solution, followed by hypotonic extracellular solution to stimulate endogenous VRAC currents. Once the VRAC currents reached a steady state, the hypotonic solution containing syringin was perfused to study the effect of syringin on VRAC currents. The potential interaction between syringin and the VRAC protein was investigated using molecular docking as a predictive model. In this study, we found that syringin moderately inhibited VRAC currents in a dose-dependent manner. The potential binding of syringin to LRRC8 protein was predicted through in silico molecular docking, which suggests an affinity of -6.6 kcal/mol and potential binding sites of arginine 103 and leucine 101. Our results herein characterize syringin as an inhibitor of the VRAC channels, which provides valuable insights for the future development of VRAC channel inhibitors.


Subject(s)
Membrane Proteins , Humans , HEK293 Cells , Membrane Proteins/metabolism , Molecular Docking Simulation , Anions/metabolism
11.
Molecules ; 28(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375368

ABSTRACT

Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).


Subject(s)
Neoplasms , Saussurea , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Saussurea/chemistry , Hexanes , Chloroform , Reproducibility of Results
12.
J Biomol Struct Dyn ; : 1-14, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37243678

ABSTRACT

Many diseases, such as rheumatoid arthritis, neurodegenerative disease, lupus, autoimmune disease, and cancer, are described by chronic inflammation following tissue damage. Anti-inflammatory drugs like non-steroidal anti-inflammatory drugs and other steroids cause many side effects and generally need careful consideration and monitoring during usage. In recent years, a significant interest in plant-derived approaches has been warranted. The bioactive glycoside syringin might be one of the effective immunomodulatory agents. However, its immunomodulatory potential needs to be better known. In this study, we evaluated the immunomodulatory potential of syringin using network pharmacology, molecular docking, and molecular dynamics simulation-based approaches. First, we applied the GeneCards and OMIM databases to acquire the immunomodulatory agents. Then, the STRING database was utilized to get the hub genes. Interaction analysis and molecular docking described strong binding of the active site of immunomodulatory proteins with the bioactive syringin. Molecular dynamics simulations (200 ns) showed a very stable interaction of syringin with the immunomodulatory protein. Further, the optimized structure and molecular electrostatic potential of the syringin were calculated by a density-functional theory utilizing basis levels of B3LYP/6-31. Syringin investigated in this study holds the required drug-likeness characteristics and follows Lipinski's rule of five. However, quantum-chemical estimations show the syringin has potent reactivity, demonstrating a lower energy gap. Furthermore, the gap between ELUMO and EHOMO was low, suggesting the excellent affinity of syringin towards the immunomodulatory proteins. The present study shows that syringin might be an effective immunomodulatory agent and can be further explored using different experimental methods.Communicated by Ramaswamy H. Sarma.

13.
Turk J Med Sci ; 53(5): 1312-1320, 2023.
Article in English | MEDLINE | ID: mdl-38813032

ABSTRACT

Background/aim: A significant cause of mortality and morbidity in the neonatal era is hypoxic-ischemic encephalopathy (HIE). This study examined the histopathological analysis and neuroprotective impact of syringin (SYR) in an experimental HIE rat model. Material and methods: On the 7th postnatal day, 24 Wistar albino rats were evaluated in 3 groups using the HIE model under gas anesthesia. In the experiment, Group A received 10 mg/kg SYR plus dimethyl sulfoxide (DMSO), Group B received DMSO only, and Group C served as a sham group. Immunohistochemical techniques were used to assess apoptotic cell measurement and proinflammatory cytokines (TNF-α and IL-1ß primary antibodies). Results: Rats suffering from hypoxic-ischemic brain damage had their apoptosis assessed. The SYR and sham groups had statistically fewer cells undergoing apoptosis (p < 0.001). There was no difference between the groups in terms of IL-1ß and TNF-α during immunohistochemical staining. Neuronal degeneration was significantly lower in the histological evaluation of the hippocampus in the SYR group (p = 0.01). A statistically significant difference (p = 0.01) was observed between the SYR and the control groups regarding pericellular and perivascular edema. Conclusion: SYR reduced apoptosis, perivascular and pericellular edema, and neuronal degeneration in rat cerebral tissue. These results raise the possibility that SYR may have a neuroprotective effect on the harm brought on by HIE. This is the first investigation of SYR's function within the HIE paradigm.


Subject(s)
Animals, Newborn , Disease Models, Animal , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Rats, Wistar , Animals , Neuroprotective Agents/pharmacology , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/drug therapy , Rats , Phenylpropionates/pharmacology , Phenylpropionates/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Apoptosis/drug effects , Interleukin-1beta/metabolism
14.
Cells ; 11(19)2022 10 05.
Article in English | MEDLINE | ID: mdl-36231090

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal disease in which motor neurons gradually degenerate. The mutation of the C9orf72 gene is the main genetic cause of ALS (C9-ALS). One of its specific pathological features is the production of proline-arginine (PR) dipeptide repeat protein (DPR). In this study, we developed a PR-DPR (PR50)-expressing human HMC3 microglial cell model. We found that PR50 mainly aggregates into spots in the nucleus and induces significant NLRP3 inflammasome activity. Moreover, mouse NSC-34 motor neuron cells treated with a conditional medium of PR50-expressing HMC3 cells (PR-CM) caused cell damage and apoptosis activity. However, R50-expressing HMC cells treated with MCC950 (an NLRP3 inhibitor) reversed this result. Furthermore, we identified complement component 1 q subcomponent-binding protein (C1QBP) as one of the interaction partners of PR50. The downregulation of C1QBP in HMC3 cells induces NLRP3 inflammasome activity similar to PR50 expression. Finally, we found that syringin can block the interaction between PR50 and C1QBP, and effectively reduce the PR50-induced NLRP3 inflammasome activity in HMC3 cells. This improves the apoptosis of NSC-34 cells caused by PR-CM. This study is the first to link PR50, C1QBP, and NLRP3 inflammasome activity in microglia and develop potential therapeutic strategies for syringin intervention in C9-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/metabolism , Animals , Arginine , C9orf72 Protein/genetics , Carrier Proteins , Complement C1/metabolism , Dipeptides/metabolism , Dipeptides/pharmacology , Glucosides , Humans , Inflammasomes/metabolism , Mice , Microglia/metabolism , Mitochondrial Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phenylpropionates , Proline , Proteins/metabolism
15.
J Transl Med ; 20(1): 310, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794555

ABSTRACT

BACKGROUND: Breast cancer (BC) is one of the most common malignant tumors with the highest mortality in the world. Modern pharmacological studies have shown that Syringin has an inhibitory effect on many tumors, but its anti-BC efficacy and mechanism are still unclear. METHODS: First, Syringin was isolated from Acanthopanax senticosus (Rupr. & Maxim.) Harms (ASH) by systematic solvent extraction and silica gel chromatography column. The plant name is composed of genus epithet, species additive words and the persons' name who give its name. Then, the hub targets of Syringin against BC were revealed by bioinformatics. To provide a more experimental basis for later research, the hub genes which could be candidate biomarkers of BC and a ceRNA network related to them were obtained. And the potential mechanism of Syringin against BC was proved in vitro experiments. RESULTS: Syringin was obtained by liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). Bioinformatics results showed that MAP2K1, PIK3CA, HRAS, EGFR, Caspase3, and PTGS2 were the hub targets of Syringin against BC. And PIK3CA and HRAS were related to the survival and prognosis of BC patients, the PIK3CA-hsa-mir-139-5p-LINC01278 and PIK3CA-hsa-mir-375 pathways might be closely related to the mechanism of Syringin against BC. In vitro experiments confirmed that Syringin inhibited the proliferation and migration and promoted apoptosis of BC cells through the above hub targets. CONCLUSIONS: Syringin against BC via PI3K-AKT-PTGS2 and EGFR-RAS-RAF-MEK-ERK pathways, and PIK3CA and HRAS are hub genes for adjuvant treatment of BC.


Subject(s)
Breast Neoplasms , Glucosides , MicroRNAs , Phenylpropionates , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/metabolism , Cyclooxygenase 2/metabolism , ErbB Receptors/metabolism , Female , Glucosides/pharmacology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phenylpropionates/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , raf Kinases/metabolism , ras Proteins/metabolism
16.
Molecules ; 27(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163950

ABSTRACT

Polygala species are frequently used worldwide in the treatment of various diseases, such as inflammatory and autoimmune disorders as well as metabolic and neurodegenerative diseases, due to the large number of secondary metabolites they contain. The present study was performed on Polygala inexpectata, which is a narrow endemic species for the flora of Turkey, and resulted in the isolation of nine known compounds, 6,3'-disinapoyl-sucrose (1), 6-O-sinapoyl,3'-O-trimethoxy-cinnamoyl-sucrose (tenuifoliside C) (2), 3'-O-(O-methyl-feruloyl)-sucrose (3), 3'-O-(sinapoyl)-sucrose (4), 3'-O-trimethoxy-cinnamoyl-sucrose (glomeratose) (5), 3'-O-feruloyl-sucrose (sibiricose A5) (6), sinapyl alcohol 4-O-glucoside (syringin or eleutheroside B) (7), liriodendrin (8), and 7,4'-di-O-methylquercetin-3-O-ß-rutinoside (ombuin 3-O-rutinoside or ombuoside) (9). The structures of the compounds were determined by the spectroscopic methods including 1D-NMR (1H NMR, 13C NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC), and HRMS. The isolated compounds were shown in an in silico setting to be accommodated well within the inhibitor-binding pockets of myeloperoxidase and inducible nitric oxide synthase and anchored mainly through hydrogen-bonding interactions and π-effects. It is therefore plausible to suggest that the previously established anti-inflammatory properties of some Polygala-derived phytochemicals may be due, in part, to the modulation of pro-inflammatory enzyme activities.


Subject(s)
Phytochemicals/analysis , Plant Extracts/pharmacology , Polygala/metabolism , Anti-Inflammatory Agents/analysis , Chromatography, High Pressure Liquid/methods , Flavonoids/isolation & purification , Flavonoids/pharmacology , Glucosides/isolation & purification , Glucosides/pharmacology , Molecular Docking Simulation , Molecular Structure , Phenylpropionates/isolation & purification , Phenylpropionates/pharmacology , Phytochemicals/isolation & purification , Plant Roots/chemistry , Polygala/genetics , Sucrose/isolation & purification , Sucrose/metabolism , Turkey
17.
Perfusion ; 37(6): 562-569, 2022 09.
Article in English | MEDLINE | ID: mdl-33832376

ABSTRACT

INTRODUCTION: Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear. METHODS: Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4. RESULTS: CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats. CONCLUSION: Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , Glucosides , Infarction, Middle Cerebral Artery , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phenylpropionates , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Toll-Like Receptor 4/metabolism
18.
J Ethnopharmacol ; 282: 114656, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34551361

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aidi injection is one of the China Food and Drug Administration approved Chinese herbal injections and the most competitive product in cancer care in China. It is composed of the extracts from Mylabris Phalerata, Astragalus Membranaceus, Panax Ginseng, and Acanthopanax Senticosus. AIM OF THE STUDY: This overview aims to map systematic reviews (SRs) of Aidi injection for cancer and provide a summarized evidence for clinical practice and decision making. MATERIALS AND METHODS: Seven databases were searched for SRs and/or meta-analyses of randomized controlled trials on Aidi injection for cancer care until December 2020. Six authors worked in pairs independently identified studies, collected data, and assessed the quality of included studies according to the revised Assessment of Multiple Systematic Reviews (AMSTAR 2) and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A narrative synthesis was used for the evidence mapping. RESULTS: Fifty-two SRs on Aidi injection as adjuvant therapy were included, involving lung cancer (20 SRs), liver cancer (10), colorectal cancer (7), gastric cancer (6), lymphoma (2), breast cancer (2), esophageal cancer (1), ovary cancer (1), and a mix of different cancers (4). Except for one SR focusing on Aidi injection used alone, other SRs evaluated Aidi injection in combination with chemotherapy (43), radiotherapy (4), or chemo/radiology/targeting therapy (4). Aidi injection showed additional beneficial effects on survival (9), objective response rate (44), quality of life (42), and the reduction of side-effects from chemo/radiotherapy (48). Using AMSTAR 2 tool, two reviews were assessed as low and the rest as critically low methodological quality mainly due to the lack of prospective registration. The reporting quality was insufficient assessed with PRISMA in the reporting of search strategy (26, 50.0%), additional analysis (19, 36.5%), and the summary of evidence (2, 3.8%). CONCLUSION: Aidi injection has been evaluated for its adjuvant beneficial effects on cancer survival, tumor responses, quality of life, and reducing the side effects of chemo/radiotherapy, mainly focusing on lung, liver and colorectal cancer. The methodological and reporting quality are weak and need to be improved in the future.


Subject(s)
Asian People , Drugs, Chinese Herbal/therapeutic use , Neoplasms/drug therapy , China , Humans , Meta-Analysis as Topic , Systematic Reviews as Topic
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-930185

ABSTRACT

Objective:To discuss the protective effect of Syringin (SYR) on myotube cell atrophy induced by lipopolysaccharide (LPS) and its molecular mechanism.Methods:After C2C12 myoblasts were differentiated into myotubes, they were divided into normal control group, model group and syringin group according to the random number table method. The cultured medium of model group and syringin group were added with LPS with a concentration of 200 ng/ml; the cultured medium of the syringin group was also added with 10 μmol/L syringin for 24 h. CCK8 was used to detect cell viability. In cell supernatant, NO release was detected with Griess and TNF-α level was detected by ELISA kit. The expression of NF-κB, PPAR γ1, MyHC were detected by Western blot.Results:Compared with the model group, the viability of cells [(101.08±8.92)%, (79.53±5.19)% vs. (69.07±7.16)%] in the 10 μmol/L and 100 μmol/L syringin groups were significantly increased ( P<0.01 or P<0.01), of which 10 μmol/L syringin had better effect. Compared with the model group, the level of NO [(2.92±0.33) μmol/L vs. (3.57±0.41) μmol/L] in the syringin group was significantly decreased after 6 hours of intervention ( P<0.01), and the cells in the syringin group after 24 hours of intervention, the level of TNF-α [(2.73±0.29) pg/ml vs. (4.15±0.29) pg/ml] was significantly decreased ( P<0.01), and the protein expression of cellular NF-κB (0.95±0.24 vs. 1.16±0.28) was significantly decreased ( P<0.05), the protein expression of MyHC (0.79±0.15 vs. 0.70±0.16) was increased ( P<0.05). Conclusion:SYR could inhibit the inflammatory response induced by LPS, promote the activity of myotubes, and antagonize the damage of LPS to myotube cells.

20.
J Ethnopharmacol ; 277: 114233, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34044077

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Viscum comprises approximately 100 species that are mainly distributed across Africa, Asia and Europe. The extracts and preparations of Viscum species are widely used as common complementary and alternative medicines in the treatment of rheumatism and cancer. AIM OF THE REVIEW: This review aims to explore the medicinal properties of twelve species belonging to the genus Viscum for potential therapeutic applications. MATERIALS AND METHODS: We collected online information (including PubMed, CNKI, Google Scholar, and Web of Science) from January 1915 to April 2021 and knowledge from classical books on Chinese herbal medicines available for 12 species of the genus Viscum, including Viscum coloratum (Kom.) Nakai, Viscum album L., Viscum articulatum Burm. f., Viscum liquidambaricola Hayata, Viscum ovalifolium DC., Viscum capitellatum Sm., Viscum cruciatum Sieber ex Boiss., Viscum nudum Danser, Viscum angulatum B.Heyne ex DC., Viscum tuberculatum A.Rich., Viscum multinerve Hayata, and Viscum diospyrosicola Hayata. RESULTS: At least 250 different compounds have been reported across twelve Viscum species, including amino acid and peptides, alkaloids, phenolic acids, flavonoids, terpenoids, carbohydrates, fatty acids, lipids, and other types of compounds. In particular, for Viscum coloratum (Kom.) Nakai and Viscum album L., the plants, preparations, and bioactive components have been thoroughly reviewed. This has allowed to elucidate the role of active components, including lectins, viscotoxins, flavonoids, terpenoids, phenolic acids, and polysaccharides, in multiple bioactivities, such as anti-cancer, anti-rheumatism arthralgia, anti-inflammation, anti-cardiovascular diseases, enhancing immunity, and anti-chemotherapy side effects. We also evaluated quality control methods based on active compounds, in vivo exposure compounds, and discriminated chemical markers. CONCLUSIONS: This is the first report to systematically review the pharmaceutical development history, chemical composition, clinical evidence, pharmacological activity, discriminated chemical markers, in vivo exposure, and quality control on twelve distinct species of Viscum plants with medicinal properties. The significant safety and efficacy, along with the minor side effects are constantly confirmed in clinics. The genus Viscum is thus an important medicinal resource that is worth exploring and developing in future pharmacological and chemical studies.


Subject(s)
Phytochemicals/pharmacology , Plant Extracts/pharmacology , Viscum/chemistry , Animals , Ethnopharmacology , Humans , Medicine, Traditional/methods , Phytochemicals/isolation & purification , Plant Extracts/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...