Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 497
Filter
1.
Chin Med ; 19(1): 98, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010069

ABSTRACT

BACKGROUND: Heart failure (HF) is a complex cardiovascular syndrome with high mortality. Santalum album L. (SAL) is a traditional Chinese medicine broadly applied for various diseases treatment including HF. However, the potential active compounds and molecular mechanisms of SAL in HF treatment are not well understood. METHODS: The active compounds and possible mechanisms of action of SAL were analyzed and validated by a systems pharmacology framework and an ISO-induced mouse HF model. RESULTS: We initially confirmed that SAL alleviates heart damage in ISO-induced HF model. A total of 17 potentially active components in SAL were identified, with Luteolin (Lut) and Syringaldehyde (SYD) in SAL been identified as the most effective combination through probabilistic ensemble aggregation (PEA) analysis. These compounds, individually and in their combination (COMB), showed significant therapeutic effects on HF by targeting multiple pathways involved in anti-oxidation, anti-inflammation, and anti-apoptosis. The active ingredients in SAL effectively suppressed inflammatory mediators and pro-apoptotic proteins while enhancing the expression of anti-apoptotic factors and antioxidant markers. Furthermore, the synergistic effects of SAL on YAP and PI3K-AKT signaling pathways were further elucidated. CONCLUSIONS: Mechanistically, the anti-HF effect of SAL is responsible for the synergistic effect of anti-inflammation, antioxidation and anti-apoptosis, delineating a multi-targeted therapeutic strategy for HF.

3.
Expert Opin Drug Discov ; : 1-16, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963148

ABSTRACT

INTRODUCTION: Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED: Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION: In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.

4.
Front Cell Dev Biol ; 12: 1396890, 2024.
Article in English | MEDLINE | ID: mdl-38983788

ABSTRACT

Background: The Juan-Bi decoction (JBD) is a classic traditional Chinese medicines (TCMs) prescription for the treatment of rheumatoid arthritis (RA). However, the active compounds of the JBD in RA treatment remain unclear. Aim: The aim of this study is to screen effective compounds in the JBD for RA treatment using systems pharmacology and experimental approaches. Method: Botanical drugs and compounds in the JBD were acquired from multiple public TCM databases. All compounds were initially screened using absorption, distribution, metabolism, excretion, and toxicity (ADMET) and physicochemical properties, and then a target prediction was performed. RA pathological genes were acquired from the DisGeNet database. Potential active compounds were screened by constructing a compound-target-pathogenic gene (C-T-P) network and calculating the cumulative interaction intensity of the compounds on pathogenic genes. The effectiveness of the compounds was verified using lipopolysaccharide (LPS)-induced RAW.264.7 cells and collagen-induced arthritis (CIA) mouse models. Results: We screened 15 potentially active compounds in the JBD for RA treatment. These compounds primarily act on multiple metabolic pathways, immune pathways, and signaling transduction pathways. Furthermore, in vivo and in vitro experiments showed that bornyl acetate (BAC) alleviated joint damage, and inflammatory cells infiltrated and facilitated a smooth cartilage surface via the suppression of the steroid hormone biosynthesis. Conclusion: We screened potential compounds in the JBD for the treatment of RA using systems pharmacology approaches. In particular, BAC had an anti-rheumatic effect, and future studies are required to elucidate the underlying mechanisms.

5.
Article in English | MEDLINE | ID: mdl-38858306

ABSTRACT

Recently, immunotherapies for antitumoral response have adopted conditionally activated molecules with the objective of reducing systemic toxicity. Amongst these are conditionally activated antibodies, such as PROBODY® activatable therapeutics (Pb-Tx), engineered to be proteolytically activated by proteases found locally in the tumor microenvironment (TME). These PROBODY® therapeutics molecules have shown potential as PD-L1 checkpoint inhibitors in several cancer types, including both effectiveness and locality of action of the molecule as shown by several clinical trials and imaging studies. Here, we perform an exploratory study using our recently published quantitative systems pharmacology model, previously validated for triple-negative breast cancer (TNBC), to computationally predict the effectiveness and targeting specificity of a PROBODY® therapeutics drug compared to the non-modified antibody. We begin with the analysis of anti-PD-L1 immunotherapy in non-small cell lung cancer (NSCLC). As a first contribution, we have improved previous virtual patient selection methods using the omics data provided by the iAtlas database portal compared to methods previously published in literature. Furthermore, our results suggest that masking an antibody maintains its efficacy while improving the localization of active therapeutic in the TME. Additionally, we generalize the model by evaluating the dependence of the response to the tumor mutational burden, independently of cancer type, as well as to other key biomarkers, such as CD8/Treg Tcell and M1/M2 macrophage ratio. While our results are obtained from simulations on NSCLC, our findings are generalizable to other cancer types and suggest that an effective and highly selective conditionally activated PROBODY® therapeutics molecule is a feasible option.

6.
Front Pharmacol ; 15: 1389768, 2024.
Article in English | MEDLINE | ID: mdl-38846089

ABSTRACT

Huanglian Wendan Decoction (HWD) is a traditional Chinese medicine (TCM) prescribed to patients diagnosed with insomnia, which can achieve excellent therapeutic outcomes. As positively modulating the γ-aminobutyric acid (GABA) type A receptors (GABAARs) is the most effective strategy to manage insomnia, this study aimed to investigate whether the activation of GABAARs is involved in the anti-insomnia effect of HWD. We assessed the metabolites of HWD using LC/MS and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and tested the pharmacological activity in vitro and in vivo using whole-cell patch clamp and insomnia zebrafish model. In HEK293 cells expressing α1ß3γ2L GABAARs, HWD effectively increased the GABA-induced currents and could induce GABAAR-mediated currents independent of the application of GABA. In the LC-MS (QToF) assay, 31 metabolites were discovered in negative ion modes and 37 metabolites were found in positive ion modes, but neither three selected active metabolites, Danshensu, Coptisine, or Dihydromyricetin, showed potentiating effects on GABA currents. 62 active metabolites of the seven botanical drugs were collected based on the TCMSP database and 19 of them were selected for patch-clamp verification according to the virtual docking simulations and other parameters. At a concentration of 100 µM, GABA-induced currents were increased by (+)-Cuparene (278.80% ± 19.13%), Ethyl glucoside (225.40% ± 21.77%), and ß-Caryophyllene (290.11% ± 17.71%). In addition, (+)-Cuparene, Ethyl glucoside, and ß-Caryophyllene could also serve as positive allosteric modulators (PAMs) and shifted the GABA dose-response curve (DRC) leftward significantly. In the PCPA-induced zebrafish model, Ethyl glucoside showed anti-insomnia effects at concentrations of 100 µM. In this research, we demonstrated that the activation of GABAARs was involved in the anti-insomnia effect of HWD, and Ethyl glucoside might be a key metabolite in treating insomnia.

7.
Drug Metab Pharmacokinet ; 56: 101011, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833901

ABSTRACT

Physiologically-based pharmacokinetic (PBPK) models and quantitative systems pharmacology (QSP) models have contributed to drug development strategies. The parameters of these models are commonly estimated by capturing observed values using the nonlinear least-squares method. Software packages for PBPK and QSP modeling provide a range of parameter estimation algorithms. To choose the most appropriate method, modelers need to understand the basic concept of each approach. This review provides a general introduction to the key points of parameter estimation with a focus on the PBPK and QSP models, and the respective parameter estimation algorithms. The latter part assesses the performance of five parameter estimation algorithms - the quasi-Newton method, Nelder-Mead method, genetic algorithm, particle swarm optimization, and Cluster Gauss-Newton method - using three examples of PBPK and QSP modeling. The assessment revealed that some parameter estimation results were significantly influenced by the initial values. Moreover, the choice of algorithms demonstrating good estimation results heavily depends on factors such as model structure and the parameters to be estimated. To obtain credible parameter estimation results, it is advisable to conduct multiple rounds of parameter estimation under different conditions, employing various estimation algorithms.


Subject(s)
Algorithms , Models, Biological , Pharmacokinetics , Humans , Animals , Software
8.
Drug Metab Dispos ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821856

ABSTRACT

Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American ISSX meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlooks that were outlined for future meetings. Significance Statement This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine, and outlines outlooks for improved integration into model-informed drug development.

9.
MAbs ; 16(1): 2324485, 2024.
Article in English | MEDLINE | ID: mdl-38700511

ABSTRACT

Model-informed drug discovery advocates the use of mathematical modeling and simulation for improved efficacy in drug discovery. In the case of monoclonal antibodies (mAbs) against cell membrane antigens, this requires quantitative insight into the target tissue concentration levels. Protein mass spectrometry data are often available but the values are expressed in relative, rather than in molar concentration units that are easier to incorporate into pharmacokinetic models. Here, we present an empirical correlation that converts the parts per million (ppm) concentrations in the PaxDb database to their molar equivalents that are more suitable for pharmacokinetic modeling. We evaluate the insight afforded to target tissue distribution by analyzing the likely tumor-targeting accuracy of mAbs recognizing either epidermal growth factor receptor or its homolog HER2. Surprisingly, the predicted tissue concentrations of both these targets exceed the Kd values of their respective therapeutic mAbs. Physiologically based pharmacokinetic (PBPK) modeling indicates that in these conditions only about 0.05% of the dosed mAb is likely to reach the solid tumor target cells. The rest of the dose is eliminated in healthy tissues via both nonspecific and target-mediated processes. The presented approach allows evaluation of the interplay between the target expression level in different tissues that determines the overall pharmacokinetic properties of the drug and the fraction that reaches the cells of interest. This methodology can help to evaluate the efficacy and safety properties of novel drugs, especially if the off-target cell degradation has cytotoxic outcomes, as in the case of antibody-drug conjugates.


Subject(s)
Antibodies, Monoclonal , Mass Spectrometry , Humans , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/immunology , Mass Spectrometry/methods , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , ErbB Receptors/immunology , ErbB Receptors/antagonists & inhibitors , Tissue Distribution , Neoplasms/drug therapy , Neoplasms/immunology
10.
Article in English | MEDLINE | ID: mdl-38734778

ABSTRACT

Hereditary angioedema (HAE) due to C1-inhibitor deficiency is a rare, debilitating, genetic disorder characterized by recurrent, unpredictable, attacks of edema. The clinical symptoms of HAE arise from excess bradykinin generation due to dysregulation of the plasma kallikrein-kinin system (KKS). A quantitative systems pharmacology (QSP) model that mechanistically describes the KKS and its role in HAE pathophysiology was developed based on HAE attacks being triggered by autoactivation of factor XII (FXII) to activated FXII (FXIIa), resulting in kallikrein production from prekallikrein. A base pharmacodynamic model was constructed and parameterized from literature data and ex vivo assays measuring inhibition of kallikrein activity in plasma of HAE patients or healthy volunteers who received lanadelumab. HAE attacks were simulated using a virtual patient population, with attacks recorded when systemic bradykinin levels exceeded 20 pM. The model was validated by comparing the simulations to observations from lanadelumab and plasma-derived C1-inhibitor clinical trials. The model was then applied to analyze the impact of nonadherence to a daily oral preventive therapy; simulations showed a correlation between the number of missed doses per month and reduced drug effectiveness. The impact of reducing lanadelumab dosing frequency from 300 mg every 2 weeks (Q2W) to every 4 weeks (Q4W) was also examined and showed that while attack rates with Q4W dosing were substantially reduced, the extent of reduction was greater with Q2W dosing. Overall, the QSP model showed good agreement with clinical data and could be used for hypothesis testing and outcome predictions.

11.
Drug Metab Pharmacokinet ; 56: 100996, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797090

ABSTRACT

The use of mathematical models has become increasingly prevalent in pharmacological fields, particularly in drug development processes. These models are instrumental in tasks such as designing clinical trials and assessing factors like efficacy, toxicity, and clinical practice. Various types of models have been developed and documented. Nevertheless, emphasizing the reliability of parameter values is crucial, as they play a pivotal role in shaping the behavior of the system. In some instances, parameter values reported previously are treated as fixed values, which can lead to convergence towards values that deviate substantially from those found in actual biological systems. This is especially true when parameter values are determined through fitting to limited observations. To mitigate this risk, the reuse of parameter values from previous reports should be approached with a critical evaluation of their validity. Currently, there is a proposal for a simultaneous search for plausible values for all parameters using comprehensive search algorithms in both pharmacokinetic and pharmacodynamic or systems pharmacological models. Implementing these methodologies can help address issues related to parameter determination. Furthermore, integrating these approaches with methods developed in the field of machine-learning field has the potential to enhance the reliability of parameter values and the resulting model outputs.


Subject(s)
Computer Simulation , Humans , Reproducibility of Results , Models, Biological , Algorithms , Models, Theoretical
12.
Drug Metab Pharmacokinet ; 56: 101020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797089

ABSTRACT

Quantitative Systems Pharmacology (QSP) has emerged as a promising modeling and simulation (M&S) approach in drug development, with potential to improve clinical success rates. While conventional M&S has significantly contributed to quantitative understanding in late preclinical and clinical phases, it falls short in explaining unexpected phenomena and testing hypotheses in the early research phase. QSP presents a solution to these limitations. To harness the full potential of QSP in early preclinical stages, preclinical modelers who are familiar with conventional M&S need to update their understanding of the differences between conventional M&S and QSP. This review focuses on QSP applications during the preclinical stage, citing case examples and sharing our experiences in oncology. We emphasize the critical role of QSP in increasing the probability of success for clinical proof of concept (PoC) when applied from the early preclinical stage. Enhancing the quality of both hypotheses and QSP models from early preclinical stage is of critical importance. Once a QSP model achieves credibility, it facilitates predictions of clinical responses and potential biomarkers. We propose that sequential QSP applications from preclinical stages can improve success rates of clinical PoC, and emphasize the importance of refining both hypotheses and QSP models throughout the process.


Subject(s)
Drug Evaluation, Preclinical , Humans , Animals , Drug Evaluation, Preclinical/methods , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Network Pharmacology , Drug Development/methods , Models, Biological , Computer Simulation
13.
Drug Metab Pharmacokinet ; 56: 101019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797092

ABSTRACT

The quantitative systems pharmacology (QSP) approach is widely applied to address various essential questions in drug discovery and development, such as identification of the mechanism of action of a therapeutic agent, patient stratification, and the mechanistic understanding of the progression of disease. In this review article, we show the current landscape of the application of QSP modeling using a survey of QSP publications over 10 years from 2013 to 2022. We also present a use case for the risk assessment of hyperkalemia in patients with diabetic nephropathy treated with mineralocorticoid receptor antagonists (MRAs, renin-angiotensin-aldosterone system inhibitors), as a prospective simulation of late clinical development. A QSP model for generating virtual patients with diabetic nephropathy was used to quantitatively assess that the nonsteroidal MRAs, finerenone and apararenone, have a lower risk of hyperkalemia than the steroidal MRA, eplerenone. Prospective simulation studies using a QSP model are useful to prioritize pharmaceutical candidates in clinical development and validate mechanism-based pharmacological concepts related to the risk-benefit, before conducting large-scale clinical trials.


Subject(s)
Diabetic Nephropathies , Drug Development , Hyperkalemia , Mineralocorticoid Receptor Antagonists , Humans , Hyperkalemia/chemically induced , Hyperkalemia/diagnosis , Diabetic Nephropathies/drug therapy , Mineralocorticoid Receptor Antagonists/adverse effects , Mineralocorticoid Receptor Antagonists/therapeutic use , Drug Development/methods , Prospective Studies , Network Pharmacology , Clinical Trials as Topic/methods
14.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38557676

ABSTRACT

Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.


Subject(s)
Neoplasms , Pharmacology , Humans , Multiomics , Network Pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Medical Oncology , Computational Biology , Tumor Microenvironment
15.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593781

ABSTRACT

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Subject(s)
Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/pharmacology , Network Pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction , Leukemia/drug therapy
16.
Article in English | MEDLINE | ID: mdl-38443663

ABSTRACT

2023 marks the 10th anniversary of Natpara's submission to the US FDA, which led to the first recorded regulatory interaction where a decision was supported by Quantitative and Systems Pharmacology (QSP) simulations. It had taken about 5 years for the timid QSP discipline to emerge as an effective Model-Informed Drug Development (MIDD) tool with visible impact in the pharmaceutical industry. Since then, the presence of QSP in the regulatory environment has continued to increase, to the point that the Agency reported 60 QSP submissions in 2020 alone, representing ~ 4% of their annual IND submissions [1]. What sort of industry mindset has enabled QSP to reach this level of success? How does QSP fit within the MIDD paradigm? Does QSP mean the same to Discovery and to Clinical Development projects? How do 'platforms' compare to 'fit-for-purpose' QSP models in an industrial setting? Can QSP and empirical Pharmacokinetic-Pharmacodynamic (PKPD) modelling be complementary? What level of validation is required to inform drug development decisions? This article reflects on all these questions, in particular addressing those audiences with limited line-of-sight into the drug industry decision-making machinery.

17.
Front Immunol ; 15: 1371620, 2024.
Article in English | MEDLINE | ID: mdl-38550585

ABSTRACT

The research & development (R&D) of novel therapeutic agents for the treatment of autoimmune diseases is challenged by highly complex pathogenesis and multiple etiologies of these conditions. The number of targeted therapies available on the market is limited, whereas the prevalence of autoimmune conditions in the global population continues to rise. Mathematical modeling of biological systems is an essential tool which may be applied in support of decision-making across R&D drug programs to improve the probability of success in the development of novel medicines. Over the past decades, multiple models of autoimmune diseases have been developed. Models differ in the spectra of quantitative data used in their development and mathematical methods, as well as in the level of "mechanistic granularity" chosen to describe the underlying biology. Yet, all models strive towards the same goal: to quantitatively describe various aspects of the immune response. The aim of this review was to conduct a systematic review and analysis of mathematical models of autoimmune diseases focused on the mechanistic description of the immune system, to consolidate existing quantitative knowledge on autoimmune processes, and to outline potential directions of interest for future model-based analyses. Following a systematic literature review, 38 models describing the onset, progression, and/or the effect of treatment in 13 systemic and organ-specific autoimmune conditions were identified, most models developed for inflammatory bowel disease, multiple sclerosis, and lupus (5 models each). ≥70% of the models were developed as nonlinear systems of ordinary differential equations, others - as partial differential equations, integro-differential equations, Boolean networks, or probabilistic models. Despite covering a relatively wide range of diseases, most models described the same components of the immune system, such as T-cell response, cytokine influence, or the involvement of macrophages in autoimmune processes. All models were thoroughly analyzed with an emphasis on assumptions, limitations, and their potential applications in the development of novel medicines.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Humans , Autoimmune Diseases/therapy , Autoimmune Diseases/drug therapy , Models, Theoretical , Immunity , T-Lymphocytes
18.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38399453

ABSTRACT

Immunotherapy has shown clinical benefit in patients with non-small-cell lung cancer (NSCLC). Due to the limited response of monotherapy, combining immune checkpoint inhibitors (ICIs) and chemotherapy is considered a treatment option for advanced NSCLC. However, the mechanism of combined therapy and the potential patient population that could benefit from combined therapy remain undetermined. Here, we developed an NSCLC model based on the published quantitative systems pharmacology (QSP)-immuno-oncology platform by making necessary adjustments. After calibration and validation, the established QSP model could adequately characterise the biological mechanisms of action of the triple combination of atezolizumab, nab-paclitaxel, and carboplatin in patients with NSCLC, and identify predictive biomarkers for precision dosing. The established model could efficiently characterise the objective response rate and duration of response of the IMpower131 trial, reproducing the efficacy of alternative dosing. Furthermore, CD8+ and CD4+ T cell densities in tumours were found to be significantly related to the response status. This significant extension of the QSP model not only broadens its applicability but also more accurately reflects real-world clinical settings. Importantly, it positions the model as a critical foundation for model-informed drug development and the customisation of treatment plans, especially in the context of combining single-agent ICIs with platinum-doublet chemotherapy.

19.
EJHaem ; 5(1): 76-83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406517

ABSTRACT

CD19-targeting treatments have shown promise in relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Loncastuximab tesirine (loncastuximab tesirine-lpyl [Lonca]) is a CD19-targeting antibody-drug conjugate indicated for R/R DLBCL after at least two systemic treatments. CD19 expression was evaluated in patients receiving Lonca in the LOTIS-2 clinical trial with available tissue samples obtained after last systemic therapy/before Lonca treatment. Lonca cytotoxicity was evaluated in a panel of six lymphoma cell lines with various CD19 expression levels. Quantitative systems pharmacology (QSP) modelling was used to predict Lonca responses. Lonca responses were seen in patients across all CD19 expression levels, including patients with low/no detectable CD19 expression and H-scores at baseline. Similarly, Lonca induced cytotoxicity in cell lines with different levels of CD19 expression, including one with very low expression. QSP modelling predicted that CD19 expression by immunohistochemistry alone does not predict Lonca response, whereas inclusion of CD19 surface density improved response prediction. Virtual patients responded to Lonca with estimated CD19 as low as 1000 molecules/cell of CD19, normally below the immunohistochemistry detection level. We found Lonca is an effective treatment for R/R DLBCL regardless of CD19 expression by immunohistochemistry. These results provide the basis for future studies addressing CD19-targeted agent sequencing.

20.
Acta Pharmacol Sin ; 45(6): 1287-1304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360930

ABSTRACT

HER2-positive (HER2+) metastatic breast cancer (mBC) is highly aggressive and a major threat to human health. Despite the significant improvement in patients' prognosis given the drug development efforts during the past several decades, many clinical questions still remain to be addressed such as efficacy when combining different therapeutic modalities, best treatment sequences, interindividual variability as well as resistance and potential coping strategies. To better answer these questions, we developed a mechanistic quantitative systems pharmacology model of the pathophysiology of HER2+ mBC that was extensively calibrated and validated against multiscale data to quantitatively predict and characterize the signal transduction and preclinical tumor growth kinetics under different therapeutic interventions. Focusing on the second-line treatment for HER2+ mBC, e.g., antibody-drug conjugates (ADC), small molecule inhibitors/TKI and chemotherapy, the model accurately predicted the efficacy of various drug combinations and dosing regimens at the in vitro and in vivo levels. Sensitivity analyses and subsequent heterogeneous phenotype simulations revealed important insights into the design of new drug combinations to effectively overcome various resistance scenarios in HER2+ mBC treatments. In addition, the model predicted a better efficacy of the new TKI plus ADC combination which can potentially reduce drug dosage and toxicity, while it also shed light on the optimal treatment ordering of ADC versus TKI plus capecitabine regimens, and these findings were validated by new in vivo experiments. Our model is the first that mechanistically integrates multiple key drug modalities in HER2+ mBC research and it can serve as a high-throughput computational platform to guide future model-informed drug development and clinical translation.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Network Pharmacology , Models, Biological , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage , Mice , Cell Line, Tumor , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...