ABSTRACT
Background: Whole-Body Vibration (WBV) is an oscillatory mechanical stimulus spreading throughout the body and considered a type of physical exercise because of the activation of the cardiovascular, musculoskeletal, and neuroendocrine systems. It is a physical exercise modality since it promotes cardiovascular resistance, increase in muscular strength and neurosensitivity, and motor coordination improvement. For use of WBV as an exercise modality for dogs, it is necessary to evaluate the Dopplerfluxometry parameters of the common carotid artery in healthy dogs in order to perform a safe protocol without inducing any cerebral alteration. This study aimed to evaluate the acute effects of WBV on systolic peak velocity (SPV), resistivity (RI), and pulsatility index (PI) of the both common carotid artery among adults and elderly non-athletes healthy dog. Materials, Methods & Results: Fourteen clinically healthy, neutered crossbreed male dogs, non-athlete were divided into two groups of seven dogs, according to the age group: Group 1 (G1)- Adult dogs: age between 12 and 84 months; Group 2 (G2)- Elderly dogs: aged over 84 months. All dogs were submitted to sessions of WBV using the protocol of 30 Hz for 5 min, followed by an increase to 50 Hz for 5 more min and ending with 5 min at 30 Hz, without rest between the variation of the vibration frequency. The systolic peak velocity (SPV), resistivity (RI), and pulsatility index (PI) of the common carotid artery were assessed in two time-points: 5 min before the WBV sessions (5PRE) and 1 min after the WBV (1POS). No significant variations in the SPS, RI, and PI of both common carotid artery of the G1 and G2 were identified. The anatomic reference for the left and right common carotid artery was the right and left extern jugulars veins, which were...
Subject(s)
Male , Animals , Dogs , Carotid Arteries/diagnostic imaging , Physical Conditioning, Animal/methods , Laser-Doppler Flowmetry/adverse effects , Laser-Doppler Flowmetry/veterinary , Stroke VolumeABSTRACT
Testicular tissue maintenance is performed by the testicular artery, and the hemodynamics of this artery can be evaluated using Doppler ultrasonography. The aim of this study was to characterize the peak systolic velocity (PSV), end diastolic velocity (EDV), pulsatility index (PI) and resistivity index (RI) of five regions of the testicular artery in dogs, including two proposed regions and three that have been previously described. Twenty-two dogs were used, and the PSV, EDV, PI and RI of the testicular artery were measured in five regions: proximal, medial and distal supratesticular; marginal; and intratesticular. The median values for PSV (cm/s), EDV (cm/s), PI and RI in the five regions were as follows: proximal supratesticular (23.1, 3.7, 2.1 and 0.8); medial supratesticular (17.2, 4.5, 1.5, and 0.7); distal supratesticular (12.2, 5.7, 0.8, and 0.5); marginal (11.3, 6.5, 0.5, and 0.4); and intratesticular (5.7, 3.5, 0.5, and 0.4). There was a difference between the PSV of the medial and distal supratesticular regions. There were differences in the PSV, EDV, PI and RI among the distal supratesticular, marginal and intratesticular regions. Measurements of PSV, EDV, PI and RI of the testicular artery in dogs at the proposed regions showed different results due to the hemodynamic and morphological differences of the artery during its course in the spermatic cord and to the testicles. It is necessary to identify the region in testicular artery Doppler velocimetric evaluations of dogs, given that there is a difference according to the region measured.
Subject(s)
Arteries/physiology , Blood Flow Velocity/veterinary , Dogs/anatomy & histology , Dogs/physiology , Testis/blood supply , Ultrasonography, Doppler/veterinary , Animals , Male , Ultrasonography, Doppler/methodsABSTRACT
Introducción: La aplicación de métodos para la detección de puntos clínicos de interés de la onda de pulso permite la obtención de parámetros como el índice de rigidez vascular y el de reflexión que facilitan la evaluación de los efectos vasculares del envejecimiento, la hipertensión y la aterosclerosis. Por esto es necesaria la adecuada localización del inicio, pico sistólico, incisura dicrota y el pico diastólico de la onda de pulso arterial. Objetivo: Desarrollar un algoritmo para la localización del inicio, pico sistólico, incisura dicrota y el pico diastólico de la onda de pulso arterial. Método: El algoritmo presentado utiliza la primera derivada unido a condicionales móviles para eliminar puntos no deseados, al igual que intervalos no confiables. El algoritmo fue evaluado utilizando la anotación de un experto, con 5 registros de onda de pulso arterial de 5 minutos (5236 anotaciones) y contaminadas a diferente relaciones señal ruido (15, 12 and 9 dB). Resultados: Cuando se comparó con las anotaciones de un experto el algoritmo detecto estos puntos fiduciales con una sensibilidad promedio, predictividad positiva y exactitud del 100 por ciento y mostró errores menores de 10ms. En señales de onda de pulso arterial contaminadas con ruido en ambos casos el error relativo fue menor que 2 por ciento respecto a un periodo de muestreo de 800ms. Conclusiones: el algoritmo provee una simple pero precisa detección de los puntos clínicos de interés de la onda de pulso arterial, robusto a ruido y artefactos de movimiento que pudiera ser utilizado en la evaluación del índice de rigidez y de reflexión vascular(AU)
Introduction: The application of methods for the detection of clinical points of interest of the pulse wave allows obtaining parameters such as the index of vascular rigidity and reflection that facilitate the evaluation of the vascular effects of aging, hypertension and atherosclerosis. For this reason, the appropriate localization of the onset, systolic peak, dicrotic notchs and the diastolic peak of the arterial pulse wave is necessary. Objective: To develop an algorithm for the localization of the onset, systolic peak, dicrotic notchs and the diastolic peak of the arterial pulse wave. Method: The presented algorithm uses the first derivative linked to mobile conditionals to eliminate unwanted points, as well as unreliable intervals. The algorithm was evaluated using the annotation of an expert, with 5 records of arterial pulse wave of 5 minutes (5236 annotations) and contaminated at different signal-to-noise ratios (15, 12 and 9 dB). Results: When compared with the annotations of an expert, the algorithm detected these fiducial points with an average sensitivity, positive predictivity and 100 percent accuracy and showed errors of less than 10ms. In arterial pulse wave signals contaminated with noise in both cases the relative error was less than 2 percent with respect to a sampling period of 800ms. Conclusions: the algorithm provides a simple but accurate detection of the clinical points of interest of the arterial pulse wave, robust to noise and movement artifacts that could be used in the evaluation of the stiffness index and vascular reflection(AU)
Subject(s)
Humans , Algorithms , Pulse Wave Analysis/methods , Blood PressureABSTRACT
Introducción: La aplicación de métodos para la detección de puntos clínicos de interés de la onda de pulso permite la obtención de parámetros como el índice de rigidez vascular y el de reflexión que facilitan la evaluación de los efectos vasculares del envejecimiento, la hipertensión y la aterosclerosis. Por esto es necesaria la adecuada localización del inicio, pico sistólico, incisura dicrota y el pico diastólico de la onda de pulso arterial. Objetivo: Desarrollar un algoritmo para la localización del inicio, pico sistólico, incisura dicrota y el pico diastólico de la onda de pulso arterial. Método: El algoritmo presentado utiliza la primera derivada unido a condicionales móviles para eliminar puntos no deseados, al igual que intervalos no confiables. El algoritmo fue evaluado utilizando la anotación de un experto, con 5 registros de onda de pulso arterial de 5 minutos (5236 anotaciones) y contaminadas a diferente relaciones señal ruido (15, 12 and 9 dB). Resultados: Cuando se comparó con las anotaciones de un experto el algoritmo detecto estos puntos fiduciales con una sensibilidad promedio, predictividad positiva y exactitud del 100 por ciento y mostró errores menores de 10ms. En señales de onda de pulso arterial contaminadas con ruido en ambos casos el error relativo fue menor que 2 por ciento respecto a un periodo de muestreo de 800ms. Conclusiones: el algoritmo provee una simple pero precisa detección de los puntos clínicos de interés de la onda de pulso arterial, robusto a ruido y artefactos de movimiento que pudiera ser utilizado en la evaluación del índice de rigidez y de reflexión vascular(AU)
Introduction: The application of methods for the detection of clinical points of interest of the pulse wave allows obtaining parameters such as the index of vascular rigidity and reflection that facilitate the evaluation of the vascular effects of aging, hypertension and atherosclerosis. For this reason, the appropriate localization of the onset, systolic peak, dicrotic notchs and the diastolic peak of the arterial pulse wave is necessary. Objective: To develop an algorithm for the localization of the onset, systolic peak, dicrotic notchs and the diastolic peak of the arterial pulse wave. Method: The presented algorithm uses the first derivative linked to mobile conditionals to eliminate unwanted points, as well as unreliable intervals. The algorithm was evaluated using the annotation of an expert, with 5 records of arterial pulse wave of 5 minutes (5236 annotations) and contaminated at different signal-to-noise ratios (15, 12 and 9 dB). Results: When compared with the annotations of an expert, the algorithm detected these fiducial points with an average sensitivity, positive predictivity and 100 percent accuracy and showed errors of less than 10ms. In arterial pulse wave signals contaminated with noise in both cases the relative error was less than 2 percent with respect to a sampling period of 800ms. Conclusions: the algorithm provides a simple but accurate detection of the clinical points of interest of the arterial pulse wave, robust to noise and movement artifacts that could be used in the evaluation of the stiffness index and vascular reflection(AU)
Subject(s)
Humans , Male , Female , Blood Pressure , Algorithms , Electrocardiography/methods , Pulse Wave Analysis/methodsABSTRACT
Low-amplitude PPG signals are more affected by noise contamination and other undesirable effects because the signal strength is comparable to noise power. Although several authors claim that decreases in the amplitude of the PPG wave should be addressed from signal acquisition and conditioning stages such decreases can also be associated with changes in the patient condition. In that instance, it is important to ensure continuous and reliable HR monitoring which, in turn, depends on how robust is the peak detection method. Numerous efforts have been made to develop algorithms for accurate PPG peak detection under high motion artefact conditions. However, little has been done regarding peak detection in low-amplitude PPG signals. In an attempt to address this issue, a novel and simple peak detection algorithm for PPG signals was proposed. Results show that our method could be a good contribution for robust strategies that can dynamically adapt their peak detection method to circumstances in which a decrease in the amplitude of the PPG signal is expected. Still, more extensive testing under a wide range of conditions (e.g. intensive physical exercise) is needed to perform a rigorous validation.