Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Sci Rep ; 14(1): 15033, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951568

ABSTRACT

The application of terahertz time-domain spectroscopy (THz-TDS) in the quantitative analysis of major minerals in Bayan Obo magnetite ore was explored. The positive correlation between the optical parameters of the original ore and its iron content is confirmed. The detections of three main iron containing minerals, including magnetite, pyrite, and hematite, were simulated using corresponding reagents. The random forest algorithm is used for quantitative analysis, and FeS2 is detected with precision of R2 = 0.7686 and MAE = 0.6307% in ternary mixtures. The experimental results demonstrate that THz-TDS can distinguish specific iron containing minerals and reveal the potential application value of this testing method in exploration and mineral processing fields.

2.
Sci Rep ; 14(1): 15629, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972917

ABSTRACT

The impact of soil erosion on soil quality is still not systematically understood. The purpose of this study was thus to quantify the impact of soil erosion on soil quality and its change with slope morphology in an agricultural field, northeastern China based on radionuclide 137Cs, unmanned aerial vehicle derived high resolution digital elevation model, and soil sampling. 137Cs method yielded an average soil erosion rate of - 275 t km-2 yr-1 ranging from - 1870 to 1557 t km-2 yr-1. The soil quality index derived from total dataset (SQI_TDS) can be well explained by that derived from minimum data set (SQI_MDS) with a determination coefficient R2 of 0.874. SOM, sand, and cation exchange capacity in the MDS play more important roles than other soil indicators. Soil quality was significantly affected by soil erosion, with Adj. R2 of 0.29 and 0.33 for SQI_TDS and SQI_MDS, respectively. The spatial variations of soil erosion and soil quality were both affected by slope topography. Soil erosion must be controlled according to topographic and erosion characteristics in northeastern China.

3.
Appl Spectrosc ; : 37028241261097, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881287

ABSTRACT

This paper describes an approach based on the method of terahertz time-domain spectroscopy, which allows the analysis of dynamical hydration shells of proteins with a thickness of 1-2 nm. Using the example of bovine serum albumin in three conformations, it is shown that the hydration shells of the protein are characterized by increased binding of water molecules in the primary hydration layers, and in more distant areas of hydration, on the contrary, the water structure is somewhat destroyed. The fraction of free or weakly bound molecules, usually observed in the structure of liquid water in hydration shells, become more numerous but its average binding is greater than in undisturbed water. The energy distribution of hydrogen bonds in hydration shells is narrowed compared to undisturbed water. All these manifestations of hydration are most pronounced for the native conformation of the protein. Also, the hydration shells of the native protein are characterized by a smaller number of hydrogen bonds and a tendency to decrease their average energy compared to non-native conformations. The fact of a pronounced peculiarity of the hydration shells of the protein in the native conformation has been noted for different proteins before. However, the methodological approach used in this work for the first time allowed this peculiarity to be described by specific parameters of the intermolecular structure and dynamics of water.

4.
Heliyon ; 10(11): e32396, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933963

ABSTRACT

The impact of seawater intrusion from coast to inland terrain in the Cauvery River Basin (CRB) and Uppanar River Basin (URB) was evaluated based on major ion groundwater chemistry. TDS ranges from 229 to 2260 mg/l, and 408 to 3732 mg/l; Na+ range from 67 to 560 mg/l, and 74 to 1600 mg/l, and Cl- range from 120 to 906 mg/l, and 110 to 3260 mg/l for CRB and URB respectively. Piper Diagram, Hydrochemical Facies Evolution Diagram (HFE-D), rock-water interaction (Gibbs Plots), various bivariate plots viz., TDS vs. Cl-; Na+ vs. Cl-; Ca2+ vs. Cl-; Ca2+ vs. SO4 2-; TH vs. TDS and Principal Component Analysis (PCA) (Cluster and Factor analysis) were used to identify the seawater intrusion from coast to inland aquifers and to understand hydrogeochemical characterization and salinization processes. Piper diagram shows that most of the samples are Na+-Cl- type, HFE-D diagram also shows that most of the samples were saline intrusion type and mixing behavior, while TH vs. TDS plot shows hard fresh to hard brackish type from both the basins. PCA results clearly show the three factors, explaining 84.02 % and 76.67 % variance in URB and CRB. Factor-1 records 53.03 % alteration, with a strong confidence loading of TDS, Na+, Cl-, Ca2+, K+, SO4 2, Total Alkalinity (TA), and Total Hardness (TH) in URB indicating saline nature. A total variance of 46.23 % in CBR is more positively loaded with TH, Mg2+, Ca2+, and SO4 2- indicating rock-water interaction. Cluster analyses of these parameters illustrate the cluster distribution in CRB and URB. In URB, TDS, Na+, and Cl- ions make a cluster with a linkage distance of 5000 m, whereas in CRB, the TDS, Na+, Cl-, and TA ions make a cluster with a linkage distance of 2800 m. The factor and cluster analysis fetched out an effect of intensive use of fertilizers, aquaculture activities, and excessive groundwater exploitation. This technique gave the relationship between various chemical parameters in groundwater. Factor and cluster analysis have proven highly effective in groundwater quality studies. The study concluded that the study area has the threat of saline water intrusion in shallow aquifers with continuous influences of seawater mixing.

5.
J Pers Med ; 14(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38929778

ABSTRACT

Renal cell carcinoma (RCC) remains incurable in advanced stages. Biomarkers have proven to be quite useful in cancer therapeutics. Herein, we provide a comparative/integrative statistical analysis of seminal immunohistochemistry (IHC) findings for Wilms' Tumor 1 antigen (WT1) and thymine dimers (TDs), emerging as atypical, yet promising, potential biomarkers for RCCs. We assessed WT1/TD reactivity in adult RCC tumor cells, tumor microenvironment (TME), and tumor-adjacent healthy renal tissue (HRT). WT1 positivity was scarce and strictly nuclear in tumor cells, whereas TD-reactive tumor tissues were prevalent. We report statistically significant positive correlations between the density of reactive RCC cellularity and the intensity of nuclear staining for both biomarkers (WT1 - rho = 0.341, p-value = 0.036; TDs - rho = 0.379, p-value = 0.002). RCC stromal TME TD-positivity was much more frequent than WT1 reactivity, apparently proportional to that of the proper RCC cellularity and facilitated by extensive RCC inflammatory infiltration. TDs exhibited nuclear reactivity for most TME cell lines, while RCC TME WT1 expression was rare and inconsistent. In HRTs, TDs were entirely restricted to renal tubular cells, the likely cellular progenitor of most conventional RCC subtypes. In lieu of proper validation, these early findings have significant implications regarding the origins/biology of RCCs and may inform RCC therapeutics, both accounting for the high frequency of immunotherapy-permissive frameshift indels in RCCs, but also hinting at novel predictive clinical tools for WT1-targeted immunotherapy. Overall, the current study represents a meek yet hopefully significant step towards understanding the molecular biology and potential therapeutic targets of RCCs.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124490, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38820816

ABSTRACT

Chiral enantiomers have significant differences in biochemical functions. The use of THz wave polarization detection to characterize the optical properties of chiral substances is of great significance to the development of life science and the identification and application of chiral substances. However, the traditional polarization detection procedures of THz waves are complex, which limits the study of chiral substances. Herein, we proposed a high-sensitivity THz polarization detector, which can simultaneously obtain the change information of amplitude, phase, and polarization state through a single measurement. The optical rotation and elliptical angle of solid and liquid D/L-Glutamic acid 5-methyl ester in the THz band are studied. Then it is verified that anisotropic interference may occur in the preparation of solid samples. Finally, the effects of sample content and thickness on polarization are obtained. The experimental results show that different chirality has the opposite effect on the state of polarization, and the difference between chiral enantiomers can be detected by this method. This work is of great significance for understanding the optical properties of chiral substances and promoting the development of chiral recognition.

7.
Food Chem ; 453: 139661, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38772310

ABSTRACT

The present study aimed to explore the similarity and difference in taste enhancement properties of N-succinyl-L-phenylalanine (N-Suc-Phe), N-succinyl-L-tryptophan (N-Suc-Trp), and N-succinyl-L-tyrosine (N-Suc-Tyr) using temporal dominance of sensations (TDS), temporal check-all-that-apply (TCATA), and time-intensity (TI) techniques. Meanwhile, leading taste enhancers in the market, such as N'-[(2,4-dimethoxyphenyl)methyl]-N-(2-pyridin-2-ylethyl) oxamide (DE) was chosen to conduct a comparative analysis with the aforementioned three compounds. Findings from TDS and TCATA revealed that all compounds under investigation notably enhanced umami and saltiness while reducing bitterness in a concentration-dependent fashion (0.25-1 mg/L). Additionally, the TI results indicated that the duration of umami was extended by 50-75%, and the duration of bitterness was decreased by 20-40% upon addition of DE, N-Suc-Phe, N-Suc-Trp, and N-Suc-Tyr (1 mg/L). Among these, N-Suc-Trp was identified as the most effective in augmenting umami and mitigating bitterness, whereas N-Suc-Tyr excelled in enhancing saltiness intensity. Partial least squares regression (PLSR) pinpointed the carbon­carbon double bond as the important structure influencing the enhancement of umami and reduction of bitterness, whereas the phenolic hydroxyl group was identified as critical for enhancing saltiness. This investigation provided insights into the different characteristics of taste enhancement of N-Suc-AAs and the impact of chemical structure on such specificity.


Subject(s)
Flavoring Agents , Taste , Humans , Flavoring Agents/chemistry , Adult , Male , Female , Amino Acids/chemistry , Young Adult , Molecular Structure , Phenylalanine/chemistry
8.
Water Res ; 256: 121559, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579508

ABSTRACT

Over the last six decades, northwest China has undergone a significant climatic shift from "warm-dry" to "warm-wet", profoundly impacting the structures and functions of lake ecosystem across the region. However, the influences of this climatic transition on the diversity patterns, co-occurrence network, and assembly processes of eukaryotic microbial communities in lake ecosystem, along with the underlying mechanisms, remain largely unexplored. To bridge this knowledge gap, our study focused on Lake Bosten, the largest inland freshwater body in China, conducting a comprehensive analysis. Firstly, we examined the dynamics of key water quality parameters in the lake based on long-term monitoring data (1992-2022). Subsequently, we collected 93 water samples spanning two distinctive periods: low water level (WL) and high total dissolved solids (TDS) (PerWLTDS; 2010-2011; attributed to "warm-dry" climate), and high WL and low TDS (PerTDSWL; 2021-2022; associated with "warm-wet" climate). Eukaryotic microorganisms were further investigated using 18S rRNA gene sequencing and various statistical methods. Our findings revealed that climatic warming and wetting significantly increased eukaryotic microbial α-diversity (all Wilcox. test: P<0.05), while simultaneously reducing ß-diversity (all Wilcox. test: P<0.001) and network complexity. Through the two sampling periods, assembly mechanisms of eukaryotic microorganisms were predominantly influenced by dispersal limitation (DL) and drift (DR) within stochastic processes, alongside homogeneous selection (HoS) within deterministic processes. WL played a mediating role in eukaryotic microbial DL and HoS processes in the PerTDSWL, whereas water quality and α-diversity influenced the DL process in the PerWLTDS. Collectively, these results underscore the direct and indirect impacts of "warm-wet" conditions on the eukaryotic microorganisms within Lake Bosten. This study provides valuable insights into the evolutionary dynamics of lake ecosystems under such climatic conditions and aids in predicting the ecological ramifications of global climatic changes.


Subject(s)
Lakes , Lakes/microbiology , China , Biodiversity , Climate Change , Ecosystem , Eukaryota/genetics , RNA, Ribosomal, 18S/genetics
9.
Sci Rep ; 14(1): 7520, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553492

ABSTRACT

The consumption of water constitutes the physical health of most of the living species and hence management of its purity and quality is extremely essential as contaminated water has to potential to create adverse health and environmental consequences. This creates the dire necessity to measure, control and monitor the quality of water. The primary contaminant present in water is Total Dissolved Solids (TDS), which is hard to filter out. There are various substances apart from mere solids such as potassium, sodium, chlorides, lead, nitrate, cadmium, arsenic and other pollutants. The proposed work aims to provide the automation of water quality estimation through Artificial Intelligence and uses Explainable Artificial Intelligence (XAI) for the explanation of the most significant parameters contributing towards the potability of water and the estimation of the impurities. XAI has the transparency and justifiability as a white-box model since the Machine Learning (ML) model is black-box and unable to describe the reasoning behind the ML classification. The proposed work uses various ML models such as Logistic Regression, Support Vector Machine (SVM), Gaussian Naive Bayes, Decision Tree (DT) and Random Forest (RF) to classify whether the water is drinkable. The various representations of XAI such as force plot, test patch, summary plot, dependency plot and decision plot generated in SHAPELY explainer explain the significant features, prediction score, feature importance and justification behind the water quality estimation. The RF classifier is selected for the explanation and yields optimum Accuracy and F1-Score of 0.9999, with Precision and Re-call of 0.9997 and 0.998 respectively. Thus, the work is an exploratory analysis of the estimation and management of water quality with indicators associated with their significance. This work is an emerging research at present with a vision of addressing the water quality for the future as well.

10.
Food Chem ; 444: 138503, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38335677

ABSTRACT

Reheating chicken soup is a common culinary practice in daily life. To investigate the impact of reheating frequency on the sensory quality of chicken soup, temporal dominance of sensations (TDS) and multi-TDS were used to characterize changes in dominant sensory attributes during consumption. Additionally, E-nose and E-tongue were utilized to analyze differences in aroma and taste profiles. The alterations in sensory properties were further elucidated by analyzing variations in amino acids, volatile compounds. The findings revealed that there was no significant disparity between fresh soup and heating. However, saltiness and umami, as the most prominent dominant characteristics, intensified with increasing reheating cycles. This can be attributed to an elevation in certain amino acids that contribute to umami perception. Conversely, a reduction in some aldehydes weakened the flavor associated with fat and meat components. Moreover, enlarged oil droplets with uneven distribution within heated soup may account for the heightened greasiness sensation.


Subject(s)
Chickens , Taste , Animals , Taste Perception , Meat/analysis , Amino Acids/analysis
11.
Food Res Int ; 179: 113971, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342525

ABSTRACT

Cabernet Sauvignon (CS) and a combination of Cabernet Sauvignon with blueberry extract (CS + B), were spray dried (using maltodextrin DE10, 13.5% w/w as a carrier) to obtain two types of phenolic-rich powders. The addition of blueberry to CS increased phenolic compounds content by 16%. Eight chocolate formulations were obtained by modifying concentrations of cocoa solids, cocoa butter, and sugar. Six of the samples were added with 10% w/w of phenolic-rich powder, while two of them remained as powder-free controls. The anthocyanin and flavan-3-ol profiles of chocolates were determined by HPLC-DAD-MS and HPLC-MS, respectively. In addition, the sensory dynamic profile of samples was assessed by Temporal Dominance of Sensations with a consumer panel. Results showed that the addition of phenolic-rich powders produced a significant increase in the anthocyanin composition obtaining the highest anthocyanin content in the white chocolate added with CS + B powder. On the other hand, adding 10% of CS powder to dark chocolate (55% cocoa pellets) did not result in a significant increase in phenolic compounds. The addition of phenolic-rich powders to chocolates influenced visual color, texture, and taste, leading to new products with distinctive characteristics and increasing the possibility of using phenolic-rich powders as innovative and healthy ingredients.


Subject(s)
Blueberry Plants , Cacao , Chocolate , Plant Extracts , Wine , Chocolate/analysis , Powders , Anthocyanins , Phenols/analysis
12.
Int J Pharm ; 651: 123767, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38199448

ABSTRACT

Salicylic acid is a raw material for preparing aspirin and holds an important position in medical history. Studying the crystallization of these two drugs is of great significance in improving their dissolution rate, bioavailability, and physical stability. Although various techniques have been used for structural characterization, there is still a lack of information on the collective vibrational behavior of aspirin and salicylic acid eutectic compounds. Firstly, two starting materials (salicylic acid and aspirin) were ground in a 1:1 M ratio to prepare eutectic compounds. The eutectic composition was studied using vibrational spectroscopy techniques, such as X-ray powder diffusion (XRPD), terahertz time-domain spectroscopy (THz-TDS), and Raman spectroscopy. Additionally, the structure of the aspirin and salicylic acid eutectic was simulated and optimized using density functional theory. It was found that the eutectic type II was the most consistent with the experiment, and the corresponding vibration modes of each peak were provided. These results offer a unique method for characterizing the structural composition of eutectic crystals, which can be utilized to enhance the physical and chemical properties, as well as the pharmacological activity, of specific drugs at the molecular level.


Subject(s)
Aspirin , Terahertz Spectroscopy , Aspirin/chemistry , Salicylic Acid/chemistry , Vibration , Spectrum Analysis, Raman
13.
Int J Pharm ; 652: 123816, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38246479

ABSTRACT

A better understanding of crystallization kinetics and the effect on drug product quality characteristics is needed to exploit the use of semi-crystalline polymers in pharmaceutical fused filament fabrication. Filaments were prepared from polycaprolactone or polyethylene oxide loaded with a crystallization inhibitor or inducer, which was either 10% (w/w) ibuprofen or theophylline. A design-of-experiments approach was conducted to investigate the effect of nozzle temperature, bed temperature and print speed on the printed tablets' microstructure and dissolution kinetics. Helium pycnometry derived porosity proved an ideal technique to capture significant distortions in the tablets' microstructure. On the other hand, terahertz time domain spectroscopy (THz-TDS) analysis proved valuable to investigate additional enclosed pores of the tablets' microstructure. The surface roughness was analyzed using optical coherence tomography, showing the importance of extensional viscosity for printed drug products. Drug release occurred via erosion for tablets consisting of polyethylene oxide, which partly reduced the effect of the inner microstructure on the drug release kinetics. An initial burst release effect was noted for polycaprolactone tablets, after which drug release continued via diffusion. Both the pore and crystalline microstructure were deemed essential to steer drug release. In conclusion, this research provided guidelines for material and process choice when a specific microstructure has to be constructed from semi-crystalline materials. In addition, non-destructive tests for the characterization of printed products were evaluated.


Subject(s)
Polyethylene Glycols , Polymers , Porosity , Drug Liberation , Tablets/chemistry , Polymers/chemistry , Technology, Pharmaceutical/methods , Printing, Three-Dimensional , Solubility
14.
J Environ Manage ; 351: 119896, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171121

ABSTRACT

Groundwater salinization in coastal aquifers is a major socioeconomic challenge in Oman and many other regions worldwide due to several anthropogenic activities and natural drivers. Therefore, assessing the salinization of groundwater resources is crucial to ensure the protection of water resources and sustainable management. The aim of this study is to apply a novel approach using predictive optimized ensemble trees-based (ETB) machine learning models, namely Catboost regression (CBR), Extra trees regression (ETR), and Bagging regression (BA), at two levels of modeling strategy for predicting groundwater TDS as an indicator for seawater intrusion in a coastal aquifer, Oman. At level 1, ETR and CBR models were used as base models or inputs for BA in level 2. The results show that the models at level 1 (i.e., ETR and CBR) yielded satisfactory results using a limited number of inputs (Cl, K, and Sr) from a few sets of 40 groundwater wells. The BA model at level 2 improved the overall performance of the modeling by extracting more information from ETR and CBR models at level 1 models. At level 2, the BA model achieved a significant improvement in accuracy (MSE = 0.0002, RSR = 0.062, R2 = 0.995 and NSE = 0.996) compared to each individual model of ETR (MSE = 0.0007, RSR = 0.245, R2 = 0.98 and NSE = 0.94), and CBR (MSE = 0.0035, RSR = 0.258, R2 = 0.933 and NSE = 0.934) at level 1 models in the testing dataset. BA model at level 2 outperformed all models regarding predictive accuracy, best generalization of new data, and matching the locations of the polluted and unpolluted wells. Our approach predicts groundwater TDS with high accuracy and thus provides early warnings of water quality deterioration along coastal aquifers which will improve water resources sustainability.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring/methods , Salinity , Water Pollutants, Chemical/analysis , Water Resources , Seawater
15.
Small ; 20(16): e2306200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037679

ABSTRACT

The transport properties of charge carriers in MXene, a promising material, have been studied using terahertz time-domain spectroscopy (THz-TDS) to examine its potential applications in optical and electronic devices. However, previous studies have been limited by narrow frequency ranges, which have hindered the understanding of the intrinsic mechanisms of carrier transport in MXenes. To address this issue, ultrabroadband THz-TDS with frequencies of up to 15 THz to investigate the complex photoconductances of MXene (Ti3C2Tx) films with different thicknesses are employed. The findings indicate that the electronic localization is substrate-dependent, and this effect decreases with an increase in the number of layers. This is attributed to the screening effect of the high carrier density in Ti3C2Tx. Additionally, the layer-independent photocarrier relaxations revealed by optical pump THz probe spectroscopy (OPTP) provide evidence of the carrier heating-induced screening effect. These results are significant for practical applications in both scientific research and various industries.

16.
J Texture Stud ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049369

ABSTRACT

We have calculated an entropy or information measure of previously reported experimentally determined temporal dominance of sensations (TDS) data of texture attributes for two sets of emulsion filled gels throughout the mastication cycle. The samples were emulsion filled gels and two-layered emulsion filled gels. We find that the entropy measure follows an average curve, which is different for each set. The specifics of the entropy curve may serve as a fingerprint for the perception of a specific food sample.

17.
Water Environ Res ; 95(12): e10952, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38148734

ABSTRACT

BACKGROUND: Tannery wastewater effluents contain many toxic and carcinogenic heavy metals and physiochemical parameters that need to be removed before these effluents enter in the main water bodies or rivers. In this study, the effluents from the tannery industry are treated through aeration, coagulation, and Chlorella vulgaris pond treatment processes for the removal of physiochemical: parameters only. METHODS: The effect of removal efficiencies (%) was studied on the physicochemical parameters, including salinity, electrical conductivity (EC), total dissolved solids (TDS), turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). RESULTS: The key results showed that the removal of EC, TDS, turbidity, TSS, BOD, and COD was 80.2%, 67%, 81%, 80.8%, 68.6%, and 100%, respectively, in raw wastewater treatment having 25, 50, and 70 g of algae C. vulgaris doses. The removal efficiencies (%) of salinity, EC, TDS, turbidity, TSS, BOD, and COD were 83%, 87.1%, 77.1%, 80%, 40%, 97%, and 98%, respectively, during coagulated wastewater treatment with three doses of algae. The observed improvement in treated wastewater indicated that the removal efficiencies (%) of salinity, EC, TDS, turbidity, TSS, BOD, and COD were 85.7%, 39.3%, 81.3%, 67.8%, 50.3%, 97%, and 98%, with C. vulgaris. CONCLUSION: This study confirmed that the treatment of tannery wastewater by these processes increased the pollutant removal efficiencies as all the physiochemical parameters were exceeding the permissible limits. RESULTS CONTRIBUTION IN FUTURE: This research will be helpful to treat the industrial wastewaters or effluents before it further mixes up in the main water streams. In this way, water quality will be better, aquatic life will be saved, and further researchers can analyze more ways for efficient treatments as they have a baseline data through this study findings. PRACTITIONER POINTS: One of the most pollutant sources in terms of both physical and chemical parameters is the produced wastewater from tannery industries. The effluents from tannery industry are treated through aeration, coagulation, and algae ponds treatment processes. These treatment made the tannery wastewater as environmental friendly.


Subject(s)
Chlorella vulgaris , Environmental Pollutants , Wastewater , Ponds , Biological Oxygen Demand Analysis
18.
Biophys Rev ; 15(5): 833-849, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37974994

ABSTRACT

The hydration of biomolecules is one of the fundamental processes underlying the construction of living matter. The formation of the native conformation of most biomolecules is possible only in an aqueous environment. At the same time, not only water affects the structure of biomolecules, but also biomolecules affect the structure of water, forming hydration shells. However, the study of the structure of biomolecules is given much more attention than their hydration shells. A real breakthrough in the study of hydration occurred with the development of the THz spectroscopy method, which showed that the hydration shell of biomolecules is not limited to 1-2 layers of strongly bound water, but also includes more distant areas of hydration with altered molecular dynamics. This review examines the fundamental features of the THz frequency range as a source of information about the structural and dynamic characteristics of water that change during hydration. The applied approaches to the study of hydration shells of biomolecules based on THz spectroscopy are described. The data on the hydration of biomolecules of all main types obtained from the beginning of the application of THz spectroscopy to the present are summarized. The emphasis is placed on the possible participation of extended hydration shells in the realization of the biological functions of biomolecules and at the same time on the insufficient knowledge of their structural and dynamic characteristics.

19.
MethodsX ; 11: 102401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37817981

ABSTRACT

This paper presents the design and construction of a hydroponics monitoring system that can collect parameters of hydroponic systems, such as temperature, water limit, pH level, and nutrient levels. The monitoring system was developed using an ESP32 microcontroller and several sensors, including total dissolved solids (TDS), pH, water level, and temperature sensors. The ESP32 microcontroller gathers and processes data from the sensors to automatically activate the water or salt pump and drain the necessary materials into the hydroponic system's plant basin. The user can then view the hydroponic parameters through the Blynk application on a smartphone. The user can also activate the pumps for water, nutrients, or salt using the application's interface on a smartphone, or the ESP32 microcontroller can activate them automatically if the parameter values deviate from the required values. The monitoring hydroponics system and IoT interface were successfully built and implemented. The experiments were compiled, and the data gathered and discussed.•An ESP32 microcontroller with TDS, pH, water level, and temperature sensors was used to build the hydroponic monitoring system.•The ESP32 automatically collects and evaluates sensor data in order to drain water nutrients, or salt into the plant basin of the hydroponic system as necessary.•The user can also check the parameters of the hydroponic system and, if necessary, run the pumps for water, fertilizers, or salt using his smartphone through the Blynk IoT app.

20.
Article in English | MEDLINE | ID: mdl-37883033

ABSTRACT

Atomically thin platinum diselenide (PtSe2) films are promising for applications in the fields of electronics, spintronics, and photodetectors owing to their tunable electronic structure and high carrier mobility. Using terahertz (THz) spectroscopy techniques, we investigated the layer-dependent semiconducting-to-metallic phase transition and associated intrinsic carrier dynamics in large-scale PtSe2 films grown by molecular beam epitaxy. The uniformity of large-scale PtSe2 films was characterized by spatially and frequency-resolved THz-based sheet conductivity mapping. Furthermore, we use an optical-pump-THz-probe technique to study the transport dynamics of photoexcited carriers and explore light-induced intergrain carrier transport in PtSe2 films. We demonstrate large-scale THz-based mapping of the electrical properties of transition metal dichalcogenide films and show that the two noncontact THz-based approaches provide insight in the spatial and temporal properties of PtSe2 films.

SELECTION OF CITATIONS
SEARCH DETAIL
...