ABSTRACT
Magnetic nanoparticles modified with tetraethyl orthosilicate (Fe3O4@TEOS) and bovine serum albumin (Fe3O4@TEOS@BSA) were evaluated as sorbent in albumin depletion from human serum samples by magnetic dispersive solid phase extraction. Characterization studies were carried out by X-ray diffraction, thermogravimetry, Fourier transform infrared spectroscopy, zeta potential, and scanning electron microscopy. Both nanoparticles also showed high thermal stability and pH-dependent surface charges. The human serum albumin adsorption protocol was optimized using a central composite rotatable design. Nanoparticle mass, pH, and albumin concentration were the most influential variables. Avrami's fractional order and Freundlich isotherm models best fitted the data for human albumin adsorption kinetic and isotherm studies for Fe3O4@TEOS and Fe3O4@TEOS@BSA, and the maximum adsorption capacities were 11.93 and 14.89 mg g-1, respectively. The protein desorption was influenced by the pH of samples and eluent volume. Electrophoresis in a polyacrylamide gel containing sodium dodecyl sulfate showed different patterns of serum protein bands when consecutive depletions were performed. The Fe3O4@TEOS showed greater affinity for HSA and efficiency in depletion. The process was versatile, and the depleted albumin proportion could be controlled by the nanoparticle masses. The proposed method is a powerful sample preparation technique for rapid, reliable, and specific depletion of albumin.
ABSTRACT
In this work, new adsorbent composites from the silica precursor tetraethyl orthosilicate (TEOS) and chitosan have been successfully synthesized, denominated 20%Chi, 30%Chi and 40%Chi. The composites presented enhanced chemical and physical characteristics, with emphasis on the high surface areas between 374.94 m2/g to 886.31 m2/g. The application of the composites in the model system (TY - Tartrazine yellow dye), presented adsorption capacities dependent on the amount of chitosan in the composite (40%Chi > 30%Chi > 20%Chi). However, from the experimental data of the constituent materials, 30%Chi provided the greatest increase in the adsorption capacity in the monolayer, with values of 36%. This demonstrates that the amount of chitosan in the compound alters the arrangement of adsorption sites. The 30%Chi composite presented life cycle superior to 10 reuse cycles.