Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.399
Filter
1.
Cell Rep ; 43(9): 114676, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217614

ABSTRACT

Obesity and fatty liver diseases-metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH)-affect over one-third of the global population and are exacerbated in individuals with reduced functional aldehyde dehydrogenase 2 (ALDH2), observed in approximately 560 million people. Current treatment to prevent disease progression to cancer remains inadequate, requiring innovative approaches. We observe that Aldh2-/- and Aldh2-/-Sptbn1+/- mice develop phenotypes of human metabolic syndrome (MetS) and MASH with accumulation of endogenous aldehydes such as 4-hydroxynonenal (4-HNE). Mechanistic studies demonstrate aberrant transforming growth factor ß (TGF-ß) signaling through 4-HNE modification of the SMAD3 adaptor SPTBN1 (ß2-spectrin) to pro-fibrotic and pro-oncogenic phenotypes, which is restored to normal SMAD3 signaling by targeting SPTBN1 with small interfering RNA (siRNA). Significantly, therapeutic inhibition of SPTBN1 blocks MASH and fibrosis in a human model and, additionally, improves glucose handling in Aldh2-/- and Aldh2-/-Sptbn1+/- mice. This study identifies SPTBN1 as a critical regulator of the functional phenotype of toxic aldehyde-induced MASH and a potential therapeutic target.

2.
Acta Pharm Sin B ; 14(8): 3711-3729, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220887

ABSTRACT

SMAD4 deficiency in colorectal cancer (CRC) is highly correlated with liver metastasis and high mortality, yet there are few effective precision therapies available. Here, we show that CCR1+-granulocytic myeloid-derived suppressor cells (G-MDSCs) are highly infiltrated in SMAD4-deficient CRC via CCL15/CCR1 and CCL9/CCR1 axis in clinical specimens and mouse models, respectively. The excessive TGF-ß, secreted by tumor-infiltrated CCR1+-G-MDSCs, suppresses the immune response of cytotoxic T lymphocytes (CTLs), thus facilitating metastasis. Hereby, we develop engineered nanovesicles displaying CCR1 and TGFBR2 molecules (C/T-NVs) to chemotactically target the tumor driven by CCL9/CCR1 axis and trap TGF-ß through TGF-ß-TGFBR2 specific binding. Chemotactic C/T-NVs counteract CCR1+-G-MDSC infiltration through competitive responding CCL9/CCR1 axis. C/T-NVs-induced intratumoral TGF-ß exhaustion alleviates the TGF-ß-suppressed immune response of CTLs. Collectively, C/T-NVs attenuate liver metastasis of SMAD4-deficient CRC. In further exploration, high expression of programmed cell death ligand-1 (PD-L1) is observed in clinical specimens of SMAD4-deficient CRC. Combining C/T-NVs with anti-PD-L1 antibody (aPD-L1) induces tertiary lymphoid structure formation with sustained activation of CTLs, CXCL13+-CD4+ T, CXCR5+-CD20+ B cells, and enhanced secretion of cytotoxic cytokine interleukin-21 and IFN-γ around tumors, thus eradicating metastatic foci. Our strategy elicits pleiotropic antimetastatic immunity, paving the way for nanovesicle-mediated precision immunotherapy in SMAD4-deficient CRC.

3.
Heliyon ; 10(16): e35667, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220890

ABSTRACT

In this study, mesenchymal stem cells (MSCs) were primed with Tetrandrine (TET) having anti-inflammatory and immunomodulatory effects to examine the effects of this molecule on the antioxidative potential of MSCs as well as their modulatory effects on activated peripheral blood mononuclear cells (PBMCs). The viability of primed MSCs was detected using MTT assay and Trypan blue staining. Moreover, flow cytometry technique was applied to evaluate cell cycle distribution and immunophenotype of MSCs. The production of superoxide dismutase 3 (SOD3), malondialdehyde (MDA), kynurenine, TGF-ß, and IFN-γ were also measured by spectrophotometry to assess the alteration of antioxidative and immunomodulatory potential of MSCs. Then, TET-primed MSCs were cocultured with PBMCs. The MTT assay was used to measure the proliferation of PBMCs. Cell cycle progression of PBMCs and frequency of regulatory T cells were evaluated using Flow cytometry. ELISA assay was also applied to determine the concentrations of TGF-ß and IFN-γ after coculturing. According to our data, TET enhanced the secretion of SOD3 and kynurenine from MSCs, while the production of IFN-γ was reduced. No changes were observed in the viability, proliferation, and immunophenotype of MSCs after priming with TET. Moreover, the proliferation and frequency of PBMCs in the S and G2/M phases of cell cycle reduced after co-culturing with TET-primed MSCs. The concentration of TGF-ß was increased in the supernatant of PBMCs, but the level of IFN-γ was reduced. Our data suggested this priming method as a novel strategy for increasing the antioxidative and immunomodulatory activity of MSCs.

4.
Cancer Lett ; : 217195, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222678

ABSTRACT

TGF-ß-SMAD signaling pathway plays an important role in the progression of various cancers. However, posttranscriptional regulation such as N6-methyladenosine (m6A) of TGF-ß-SMAD signaling axis remains incompletely understood. Here, we reveal that insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) is low expression as well as associated with poor prognosis in clear cell renal cell carcinoma (ccRCC) patients and inhibits proliferation as well as promotes metastasis of ccRCC cells. Mechanistically, IGF2BP2 systematically regulates TGF-ß-SMAD signaling family, including TGF-ß1/2, TGF-ßR1/2 and SMAD2/3/4, through mediating their mRNA stability in an m6A-dependent manner. Furthermore, the functional effects of IGF2BP2 on ccRCC cells is mediated by TGF-ß-SMAD signaling downstream effector SMAD4, which is identified three m6A sites in 5'UTR and CDS. Our study establishes IGF2BP2-TGF-ß-SMAD axis as a new regulatory effector in ccRCC, providing new insights for developing novel therapeutic strategies.

5.
Chem Biodivers ; : e202401078, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223082

ABSTRACT

Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.

6.
Heliyon ; 10(16): e36050, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224277

ABSTRACT

Atrial fibrillation (AF) is a common cardiac arrhythmia that seriously affects the quality of life of patients. Effective treatment and prevention are important to control the morbidity and mortality of AF. It has been found that cardiac fibrosis promotes the onset and progression of AF. It is now known that transforming growth factor ß (TGF-ß), an important fibrotic cytokine, plays an important role in cardiac fibrosis by inducing myofibroblast activation via the activation of classical (SMAD-based) and non-classical (non-SMAD-based) signaling pathways. In addition, specific activation of the Wnt/ß-catenin pathway has been shown to promote the transformation of fibroblasts into myofibroblasts. In recent years, a new family of proteins, namely Disheveled-associated antagonist of beta-catenin (DACT) 2, can affect the Wnt/ß-catenin and TGF-ß signaling pathways by regulating the phosphorylation levels of these target proteins, which in turn affects the progression of fibrosis. The present study focuses on the effect of DACT2-guided ß-catenin on atrial fibrosis. It is expected that the summarized information can be helpful in the treatment of AF.

7.
Front Biosci (Landmark Ed) ; 29(8): 290, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39206896

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). TNBC has a poor prognosis due to high intratumoral heterogeneity and metastasis, pointing to the need to explore distinct molecular subtypes and gene regulatory networks. METHODS: The scRNA-seq data of five primary BC samples were downloaded from the Gene Expression Omnibus (GEO) database. Clustering was performed based on filtered and normalized data using the Seurat R package to identify marker genes, which were subsequently annotated to each subset using the CellMarker database. AUCell R package was applied to calculate the hallmark score for each epithelial cell. Marker genes of each subset were screened with FindAllMarkers and their biological functions were analyzed using the Database for Annotation Visualization and Integrated Discovery (DAVID) database. Next, cell-cell communication was performed with the CellChat R package. To identify the key regulatory genes, single-cell regulatory network inference and clustering (SCENIC) analysis was conducted. Finally, the expression and potential biological functions of the key regulatory factors were verified through cellular experiments. RESULTS: A total of 29,101 cells were classified into nine cell subsets, namely, Fibroblasts, Fibroepithelial cells, Epithelial cells 1, Epithelial cells 2, Epithelial cells 3, Endothelial cells, T cells, Plasma B cells and Macrophages. Particularly, the epithelial cells had a higher proportion and higher transforming growth factor-ß (TGF-ß) activity in the TNBC pathotype as compared to the non-TNBC pathotype. Furthermore, four epithelial cell subsets (marked as Stearoyl-CoA Desaturase (SCD1), marker of proliferation Ki67 (MKI67), Annexin A3 (ANXA3) and aquaporin 5 (AQP5)) were identified as having the greatest impact on the TNBC pathotype. Cell-cell interaction analysis revealed that ANXA3-epithelial cell subset suppressed the T cell function through different mechanisms. C-fos gene (FOS) and X-box binding protein 1 (XBP1) were considered critical regulons involved in TNBC progression. Notably, cellular experiments demonstrated that silencing XBP1 and overexpressing FOS inhibited cancer cell invasion. CONCLUSION: The four epithelial cell subsets and two critical regulons identified based on the scRNA-seq data could help explore the underlying intratumoral heterogeneity molecular mechanism and develop effective therapies for TNBC.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Single-Cell Analysis , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Single-Cell Analysis/methods , Female , Sequence Analysis, RNA/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Communication/genetics , Genetic Heterogeneity , Gene Expression Profiling/methods
8.
Mol Divers ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212874

ABSTRACT

Four series of sulfonamide derivatives (13a-b, 14a-d, 15a-b, and 16a-d) were synthesized and evaluated for their activin receptor-like kinase 5 (ALK5) inhibitory activities. Of these, compounds 13b (IC50 = 0.130 µM) and 15a (IC50 = 0.130 µM) showed the highest inhibitory activities against ALK5 kinase, with activities similar to the positive control LY-2157299. Notably, we discovered that introduction of sulfonamide group at the 2-position of the central imidazole ring significantly increased ALK5 inhibitory activity. Compounds 13b and 15a did not show toxicity in A549 cells up to the maximum concentration of 50 µM, and effectively inhibited TGF-ß1-induced Smad-signaling and cell motility in A549 cells. The results indicate that compounds 13b and 15a are worth of further development as anticancer agents.

9.
Cancer Biomark ; 40(3-4): 241-250, 2024.
Article in English | MEDLINE | ID: mdl-39213051

ABSTRACT

Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that plays a vital role in regulating cell growth, differentiation and survival in various tissues. It participates in a variety of cellular processes, including cell apoptosis, cell migration and evasion, and plays a paradoxical role in tumor genesis and development. In the early stage of tumor, TGF-ß inhibits the occurrence of tumor by inhibiting cell proliferation and regulating cell apoptosis. In the advanced stage of tumor, TGF-ß promotes tumor development and affects prognosis by promoting cell survival and proliferation, cell migration and invasion, participates in immune escape, etc. In this article, we will review the paradoxical role of TGF-ß on the occurrence and development of oral squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Transforming Growth Factor beta , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Signal Transduction , Cell Proliferation , Apoptosis , Animals , Prognosis
10.
J Reprod Immunol ; 165: 104317, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39154624

ABSTRACT

Uterine fibroids (UFs), the most common tumors in women of reproductive age, are characterized by sex steroid-dependent growth and excessive deposition of extracellular matrix (ECM) surrounding UF smooth muscle cells. Women with symptomatic UFs experience heavy menstrual bleeding and consequent iron-deficiency anemia. They also have a risk of recurrent pregnancy loss, preterm birth, and cesarean delivery, indicating that UFs can negatively affect reproductive outcomes. Various types of immune cells, including innate and adaptive cells, are observed in UFs; however, the impact of these cells on the pathophysiology of UFs remains unclear. Inflammation may play important roles in the growth of UFs, and expression levels of proinflammatory and inflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-10, TNF-α, and TGF-ß, are upregulated in UFs. These cytokines play important roles in the interaction between growth factors and ECM that is regulated by the sex steroids estrogen and progesterone. Furthermore, proinflammatory mediators are upregulated in females with UFs, with higher expression levels in the endometrium with submucosal and intramural UFs than in the endometrium without UFs, indicating that these proinflammatory cytokines may impair endometrial receptivity, leading to implantation failure in in vitro fertilization programs. Hormonal treatments using gonadotropin releasing hormone analogs and the selective progesterone receptor modulator ulipristal acetate significantly shrink UFs and improve UF-related symptoms. These compounds can regulate local inflammation in UFs and adjacent myometrium. Controlling and improving local inflammation caused by UFs may represent a novel therapeutic strategy for UFs and potentially improve reproductive outcomes in women with symptomatic UFs.

11.
Arch Gerontol Geriatr ; 127: 105597, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39121531

ABSTRACT

PURPOSE: Latent TGF-ß binding protein 4 (LTBP4) is involved in the production of elastin fibers and has been implicated in LTBP4-related cutis laxa and its complication, emphysema-like changes. Various factors have been implicated in the pathogenesis of emphysema, including elastic degeneration, inflammation, cellular senescence, mitochondrial dysfunction, and decreased angiogenesis in the lungs. We investigated the association between LTBP4 and emphysema using human lung fibroblasts with silenced LTBP4 genes. METHODS: Cell contraction, elastin expression, cellular senescence, inflammation, anti-inflammatory factors, and mitochondrial function were compared between the LTBP4 small interfering RNA (siRNA) and control siRNA. RESULTS: Under the suppression of LTBP4, significant changes were observed in the following: decreased cell contractility, decreased elastin expression, increased expression of the p16 gene involved in cellular senescence, increased TNFα, decreased GSTM3 and SOD, decreased mitochondrial membrane potential, and decreased VEGF expression. Furthermore, the decreased cell contractility and increased GSTM3 expression observed under LTBP4 suppression were restored by the addition of N-acetyl-L-cysteine or recombinant LTBP4. CONCLUSION: The decreased elastin expression, cellular senescence, inflammation, decreased antioxidant activity, mitochondrial dysfunction, and decreased VEGF expression under reduced LTBP4 expression may all be involved in the destruction of the alveolar wall in emphysema. Smoking is the most common cause of emphysema; however, genetic factors related to LTBP4 expression and other factors may also contribute to its pathogenesis.

12.
Biochem Biophys Res Commun ; 738: 150497, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39151293

ABSTRACT

Fibrosis results in one-third of all deaths globally and is a major healthcare challenge. Fibrosis is scarring caused by the excess deposition of extracellular matrix proteins by fibroblasts. Inhibition of pathways downstream of transforming growth factor ß (TGF-ß) a pluripotent growth factor, has potent antifibrotic effects in different organs. Here we show that loss of bone morphogenetic protein (BMP-3) is a feature of kidney fibrosis, independent of the initiating injury, suggesting loss of this cytokine is a core fibrotic mechanism. TGF-ß decreased BMP3 expression in human fibroblasts is possibly a feed-forward loop that contributes to increased and sustained TGF-ß activity. Recombinant human BMP-3 reduced TGF-ß induced fibroblast contraction, migration and invasion, pathways that lead to scarring and tissue stiffening. BMP-3 reduced TGF-ß stimulated collagen cross-linking, and Ox-LDL receptor 1, a regulator of collagen deposition. BMP-3 inhibited TGF-ß stimulated lysyl oxidase activity. Lysyl oxidase mediated collagen cross-linking is a critical process in TGF-ß induced fibrosis. We propose that BMP-3 alters fibroblast responses to TGF-ß, shifting the balance from fibrosis to repair. Recombinant human BMP-3 shows promise for development as a novel therapeutic for fibrosis.

13.
Food Chem Toxicol ; 192: 114935, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151875

ABSTRACT

Sodium nitrite (SN), a prevalent food preservative, is known to precipitate hepatotoxicity upon exposure. This study elucidates the hepatoprotective effects of corn oligopeptide (COP) and vitamin E (VE) against SN-induced hepatic injury in canine hepatocytes. Canine liver cells were subjected to SN to induce hepatotoxicity, followed by treatment with COP and VE. Evaluations included assays for cell viability, oxidative stress markers, apoptosis, and inflammatory cytokines. Additionally, transcriptomic and metabolomic analyses were performed to delineate the underlying molecular mechanisms. The findings demonstrated that COP and VE significantly ameliorated SN-induced cytotoxicity, oxidative stress, and apoptosis. It was evidenced by restored cell viability, enhanced antioxidant enzyme activity, reduced cytoplasmic enzyme leakage, and decreased levels of malondialdehyde and inflammatory cytokines, with COP showing superior efficacy. The RNA sequencing revealed that COP treatment suppressed the SN-activated aminoacyl-tRNA biosynthesis pathway and TGF-ß/NF-κB signaling pathways, thereby mitigating amino acid depletion, apoptosis, and inflammation. Moreover, COP treatment upregulated genes associated with protein folding, bile acid synthesis, and DNA repair. Metabolomic analysis corroborated these results, showing that COP restored amino acid levels and enhanced bile acid metabolism, alleviating SN-induced metabolic disruptions. These findings offered significant insights into the protective mechanisms of COP underscoring its prospective application in treating liver injuries.

14.
Int Immunopharmacol ; 141: 112958, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39159564

ABSTRACT

Acute myeloid leukemia (AML) is one of the most common types of blood cancer in adults and is associated with a poor survival rate. NK cells play a crucial role in combating AML, and alterations in immune checkpoint expression can impair NK cell function against AML. Targeting certain checkpoints may restore this function. CD96, an inhibitory immune checkpoint, has unclear expression and roles on NK cells in AML patients. In this study, we initially evaluated CD96 expression and compared CD96+ NK with the inhibitory receptor and stimulatory receptors on NK cells from AML patients at initial diagnosis. We observed increased CD96 expression on NK cells with dysfunctional phenotype. Further analysis revealed that CD96+ NK cells had lower IFN-γ production than CD96- NK cells. Blocking CD96 enhanced the cytotoxicity of primary NK and cord blood-derived NK (CB-NK) cells against leukemia cells. Notably, patients with a high frequency of CD96+ NK cells at initial diagnosis exhibited poorer clinical outcomes. Additionally, TGF-ß1 was found to enhance CD96 expression on NK cells via SMAD3 signaling. These findings suggest that CD96 is invovled in NK dysfunction against AML blast, and might be a potential target for restoring NK cell function in the fight against AML.

15.
Int J Mol Cell Med ; 13(1): 64-78, 2024.
Article in English | MEDLINE | ID: mdl-39156874

ABSTRACT

Chronic spontaneous urticaria (CSU) is a skin disease caused by mast cells that produce inflammatory mediators. Immune checkpoint receptors such as program death-1 (PD-1) and T-cell immunoglobulin and mucin domain 3 (TIM-3) are essential for the pathophysiology of many autoimmune and allergic diseases. The aim of this study was to investigate the expression of PD-1 and TIM-3 in CSU patients and their relationship to the anti-inflammatory cytokines (TGF-ß and IL-10). In the current study, peripheral blood mononuclear cells (PBMCs) from CSU patients and healthy individuals were used and the Urticaria Activity Score 7 (UAS7) was used to assess disease severity. TaqMan-based RT-PCR was used to assess the expression of TIM-3 and PD-1 as well as the anti-inflammatory cytokines transforming growth factor-ß (TGF-ß) and IL-10. The protein concentrations of TGF-ß and IL-10 were also measured by ELISA. The relationship between the expression of TIM-3 and PD-1 as well as TGF- ß and IL-10 and the severity of the disease was investigated. The results showed that PD-1 mRNA expression was significantly increased in CSU patients (P<0.0001), while TGF- ß and IL-10 levels were higher in CSU patients, but this difference was not significant (p=0.638, p= 0.798). The increase in protein level of IL-10 was significant (P<0.0001). There was also a positive correlation between the expression of PD-1 and TGF- ß molecules and disease activity (P=0.0043, P=0.0018). In conclusion, the study found that the immune system expresses inhibitory molecules and anti-inflammatory cytokines to control disease severity. The higher expression of PD-1 molecules and IL-10 is associated with disease severity, suggesting that the immune system is trying to control inflammation and reduce disease severity.

16.
Cancer Biol Ther ; 25(1): 2392341, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39164192

ABSTRACT

Colorectal Cancer (CRC) is the third most common cancer worldwide, and the occurrence and development of CRC are influenced by the molecular biology characteristics of CRC, especially alterations in key signaling pathways. The transforming growth factor-ß (TGF-ß) plays a crucial role in cellular growth, differentiation, migration, and apoptosis, with SMAD4 protein serving as a key transcription factor in the TGF-ß signaling pathway, thus playing a significant role in the onset and progression of CRC. CRC is one of the malignancies with a high mortality rate worldwide. Despite significant research progress in recent years, especially regarding the role of SMAD4, its dual role in the early and late stages of tumor progression has promoted further discussion on its complexity as a therapeutic target, highlighting the urgent need for a deeper analysis of its role in CRC. This review aims to explore the function of SMAD4 protein in CRC and its potential as a therapeutic target.


Subject(s)
Colorectal Neoplasms , Smad4 Protein , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Smad4 Protein/metabolism , Smad4 Protein/genetics , Signal Transduction , Animals , Transforming Growth Factor beta/metabolism , Gene Expression Regulation, Neoplastic
17.
Immunol Invest ; : 1-14, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189542

ABSTRACT

INTRODUCTION: Human oral squamous cell carcinoma (OSCC) is the most common type of oral cancer and has a poor survival rate. Cell-cell communication between OSCC cells and cancer-associated fibroblasts (CAFs) plays important roles in OSCC progression. We previously demonstrated that CAFs promote OSCC cell migration and invasion. However, how OSCC cells influence CAFs proliferation is unknown. METHODS: Knockdown of PVT1 was confirmed using lentivirus infection technique. CAFs in tissues were identified by staining the cells with α-SMA using immunohistochemical technique. CCK-8 assay was used to evaluate cell proliferation. The mRNA level of a gene was measured by qRT-PCR. Secreted TGF-ß were detected using ELISA assay. RESULTS: We found that knockdown of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was associated with a low density of CAFs in xenograft tumors in mice; further analysis revealed that PVT1 in OSCC cells induced CAF proliferation through transforming growth factor (TGF)-ß. DISCUSSION: Our results demonstrate that lncRNA PVT1 in tumor cells participates in CAF development in OSCC by regulating TGF-ß. This study revealed a new mechanism by which PVT1 regulates OSCC progression and PVT1 is a potential therapeutic target in OSCC.

18.
ESMO Open ; 9(9): 103653, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214047

ABSTRACT

BACKGROUND: PF-06952229 is a selective small-molecule inhibitor of transforming growth factor-ß (TGF-ß) receptor 1. We evaluated its antitumor activity in preclinical studies and its safety, tolerability, pharmacokinetics, and pharmacodynamics in a phase I study (NCT03685591). PATIENTS AND METHODS: In vitro and in vivo preclinical studies were conducted. Patients (aged ≥18 years) received PF-06952229 monotherapy [20-500 mg, oral b.i.d., 7 days on/7 days off, 28-day cycles, Part 1A (P1A)] for advanced/metastatic solid tumors and combination therapy [250/375 mg with enzalutamide, Part 1B (P1B)] for metastatic castration-resistant prostate cancer (mCRPC). Primary endpoints were dose-limiting toxicity (DLT), adverse events (AEs), and laboratory abnormalities. Efficacy, pharmacokinetic parameters, and biomarker modulation were assessed. RESULTS: PF-06952229 showed activity in preclinical murine tumor models including pSMAD2 modulation in tumors. The study (NCT03685591) enrolled 49 patients (P1A, n = 42; P1B, n = 7). DLTs were reported in 3/35 (8.6%) P1A patients receiving PF-06952229 375 mg (anemia, intracranial tumor hemorrhage, and anemia and hypertension, all grade 3, n = 1 each). The most frequent grade 3 treatment-related AEs (TRAEs) were alanine aminotransferase increased and anemia (9.5% each). There were no grade 4-5 TRAEs. Plasma PF-06952229 exposures were dose proportional between 80 and 375 mg. Pharmacodynamic studies confirmed target modulation of pSMAD2/3 (peripheral monocytes). One P1A patient with prostate cancer receiving PF-06952229 375 mg monotherapy achieved confirmed partial response (31-month duration of response). A total of 8 patients (P1A, n = 6; P1B, n = 2) achieved stable disease. CONCLUSIONS: Antitumor activity of PF-06952229 was observed in preclinical studies. PF-06952229 was generally well tolerated with manageable toxicity; a small group of patients achieved durable responses and/or disease stabilization.

19.
Int Immunopharmacol ; 140: 112837, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39111147

ABSTRACT

Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-ß) and is crucial for the establishment of CC. The role of TGF-ß in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-ß. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-ß on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-ß using small molecule inhibitors, monoclonal antibodies and TGF-ß chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-ß in the management of CC.


Subject(s)
Papillomavirus Infections , Transforming Growth Factor beta , Tumor Microenvironment , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/immunology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/immunology , Tumor Microenvironment/immunology , Female , Papillomavirus Infections/immunology , Animals , Papillomaviridae/immunology
20.
Phytomedicine ; 133: 155921, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39121533

ABSTRACT

BACKGROUND: Transforming growth factor-beta (TGF-ß), an immunosuppressive cytokine, is often elevated in various tumors and inhibits the immune system's ability to combat tumor cells. Despite promising results from TGF-ß inhibitor therapies, their clinical efficacy remains limited. PURPOSE: This study aimed to enhance the antitumor capabilities of natural killer (NK) cells in the presence of TGF-ß by exploring the potential of asiaticoside, a natural compound with established clinical safety. STUDY DESIGN: The effects of asiaticoside on NK cells were investigated to determine its potential to counteract TGF-ß-induced immunosuppression and elucidate the underlying mechanisms. METHODS: Natural compounds were screened using a Luminex assay to identify those promoting Interferon-γ (IFN-γ) secretion from NK cells. Asiaticoside-pretreated NK cells' cytotoxicity was assessed against K562, OVCAR8, and A2780 cells using organoids from ascites-derived ovarian cancer (OC) cells. In vivo efficacy was evaluated with B16 melanoma lung metastasis and subcutaneous tumor models in C57BL/6 mice, using asiaticoside as a 50 mg/kg injection. The compound's ability to enhance NK cell-driven anti-neoplastic responses was further assessed in an OC murine model. Effects on TGF-ß/SMAD pathways and mitochondrial functions were examined through various microscopy and metabolomic techniques. The involvement of the mTOR/DRP1 axis in asiaticoside-mediated restoration of mitochondrial oxidation in NK cells after TGF-ß suppression was determined using the mTOR inhibitor rapamycin and the DRP1 inhibitor Mdivi-1. RESULTS: Asiaticoside-treated NK cells retained their ability to suppress tumor growth and metastasis despite TGF-ß presence. Asiaticoside downregulated TGF-ß receptors 1 (TGFBR1) expression, impaired the protein stability of TGFBR1 and TGF-ß receptors 2 (TGFBR2), and reduced SMAD2 phosphorylation, preventing SMAD2 translocation from the mitochondria. This preserved mitochondrial respiration and maintained NK cell antitumor activity. CONCLUSION: The study concludes that asiaticoside has significant potential as a strategy for "priming" NK cells in cellular immunotherapy. By demonstrating that asiaticoside degrades the TGF-ß receptor, leading to reduced phosphorylation of SMAD2 and preventing its mitochondrial translocation, thereby maintaining mitochondrial integrity. Meantime, asiaticoside counteracts TGF-ß-induced suppression of mitochondrial oxidative and aerobic respiration through the mTOR/DRP1 pathways. The research uncovers a previously unreported pathway for preserving mitochondrial respiration and NK cell functionality. A detailed mechanistic insight into how asiaticoside functions at the molecular level was explored. Its ability to counteract the immunosuppressive effects of TGF-ß makes it a valuable candidate for enhancing the effectiveness of immunotherapies in treating a variety of tumors with elevated TGF-ß levels.


Subject(s)
Killer Cells, Natural , Mice, Inbred C57BL , TOR Serine-Threonine Kinases , Transforming Growth Factor beta , Triterpenes , Tumor Microenvironment , Triterpenes/pharmacology , Killer Cells, Natural/drug effects , Animals , Humans , Tumor Microenvironment/drug effects , Transforming Growth Factor beta/metabolism , TOR Serine-Threonine Kinases/metabolism , Female , Mice , Cell Line, Tumor , Interferon-gamma/metabolism , Melanoma, Experimental/drug therapy , Lung Neoplasms/drug therapy , K562 Cells
SELECTION OF CITATIONS
SEARCH DETAIL