Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 911
Filter
1.
J Oral Biosci ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222911

ABSTRACT

OBJECTIVES: This study aimed to investigate the effects of Y-27632 on the long-term maintainence of mouse submandibular epithelial cells (SG-Epis) in vitro and to elucidate the underlying mechanisms. METHODS: The role of the Rho-associated kinase (ROCK) inhibitor Y-27632 in maintaining SG-Epis and its underlying mechanisms were evaluated by examining the in vitro expansion of mouse SG-Epis. Changes in key cellular characteristics, such as proliferation, long-term expansion, and mRNA and protein expression, were assessed in the presence or absence of Y-27632. RESULTS: Treatment with Y-27632 significantly enhanced the proliferative potential of SG-Epis, preserving Krt8 and Krt14 expression over 17 passages. In the absence of Y-27632, SG-Epis lost their epithelial morphology. However, Y-27632 treatment maintained the epithelial morphology and downregulated mRNA levels of Tgf-ß1, Ctgf, and Rock2. Treatment with TGF-ß1 indicated that TGF-ß/CTGF/p38 signaling is responsible for the maintenance of SG-Epis, while RNA interference studies revealed that ROCK2/c-Jun N-terminal kinase (JNK) signaling is also crucial for SG-Epis proliferation and maintenance. CONCLUSIONS: The TGF-ß1/CTGF/p38 and ROCK2/JNK signaling pathways are responsible for SG-Epis proliferation, and Y-27632 treatment effectively inactivates these pathways, enabling long-term in vitro maintenance of SG-Epis. The culture method utilizing Y-27632 provides an effective approach for the in vitro expansion of SG-Epis.

2.
Heliyon ; 10(16): e36253, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253189

ABSTRACT

Objective: The epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs) plays a crucial role in renal interstitial fibrosis and inflammation, which are key components of chronic kidney disease (CKD). Alantolactone, a selective inhibitor of signal transducer and activator of transcription 3 (STAT3), is used in Chinese herbal medicine. Despite its use, the effects of alnatolactone on EMT of RTECs has not been fully elucidated. Methods: In this study, we investigated the potential of alantolactone to EMT in vivo and in vitro. Our experiments were performed using a unilateral ureteral obstruction (UUO) models and HK-2 cells, RTECs, treated with transforming growth factor (TGF-ß). Results: Alantolactone decreased tubular injury and reduced the expression of vimentin, a key EMT marker, while increasing E-cadherin expression in UUO kidneys. Similarly, in RTECs, alantolactone inhibited TGF-ß-induced EMT and its markers. Furthermore, alantolactone attenuated UUO- and TGF-ß-induced STAT3 phosphorylation both in vivo and in vitro, and inhibited the expression of TWIST, an EMT transcription factor, in both models. Conclusion: Alantolactone improves EMT in RTECs by inhibiting STAT3 phosphorylation and Twist expression, suggesting its potential as a therapeutic agent for kidney fibrosis.

3.
Aging Cell ; : e14322, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234801

ABSTRACT

GORAB is a key regulator of Golgi vesicle transport and protein glycanation. Loss of GORAB function in gerodermia osteodysplastica (GO) causes shortening of glycosaminoglycan chains, leading to extracellular matrix disorganization that results in wrinkled skin, osteoporosis and elevated TGF-ß signaling. In this study, we investigated the role of TGF-ß-signaling, oxidative stress, and resulting cellular senescence in the osteoporosis phenotype of GO. Treatment of GorabPrx1 conditional knockouts with the TGF-ß neutralizing antibody 1D11 rescued the trabecular bone loss, indicating that TGF-ß overactivation causes osteoporosis in GO. Using an inducible knockout system, we demonstrated that TGF-ß dysregulation was not a cell-intrinsic effect of GORAB inactivation, but a consequence of a disorganized extracellular matrix. Enhanced TGF-ß signaling caused elevated Nox4 expression in GorabPrx1 mutants and in GO patients' fibroblasts, resulting in overproduction of mitochondrial superoxide. The resulting oxidative stress was detected in GORAB null cells and also in wildtype bystander cells. The same effect was observed in zebrafish after TALEN-mediated gorab inactivation, indicating that the pathway is evolutionarily conserved. Treating GorabPrx1 mutants with the antioxidant N-acetylcysteine ameliorated the osteoporosis phenotype. TGF-ß induced oxidative stress coincided with accumulation of DNA damage and elevated expression of senescence markers. Inactivation of Cdkn2a in the GorabPrx1 rescued the osteoporosis phenotype. Reduced colony formation and altered subpopulations of bone marrow stromal cells were normalized upon inactivation of Cdkn2a, thus further demonstrating the relevance of cellular senescence in the pathogenesis. Our results shed light on the causative role of a TGF-ß-Nox4-senescence axis and therapeutic strategies for GO.

4.
Cells ; 13(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39120302

ABSTRACT

Asthma and chronic obstructive pulmonary disease (COPD) represent chronic inflammatory respiratory disorders that, despite having distinct pathophysiological underpinnings, both feature airflow obstruction and respiratory symptoms. A critical component in the pathogenesis of each condition is the transforming growth factor-ß (TGF-ß), a multifunctional cytokine that exerts varying influences across these diseases. In asthma, TGF-ß is significantly involved in airway remodeling, a key aspect marked by subepithelial fibrosis, hypertrophy of the smooth muscle, enhanced mucus production, and suppression of emphysema development. The cytokine facilitates collagen deposition and the proliferation of fibroblasts, which are crucial in the structural modifications within the airways. In contrast, the role of TGF-ß in COPD is more ambiguous. It initially acts as a protective agent, fostering tissue repair and curbing inflammation. However, prolonged exposure to environmental factors such as cigarette smoke causes TGF-ß signaling malfunction. Such dysregulation leads to abnormal tissue remodeling, marked by excessive collagen deposition, enlargement of airspaces, and, thus, accelerated development of emphysema. Additionally, TGF-ß facilitates the epithelial-to-mesenchymal transition (EMT), a process contributing to the phenotypic alterations observed in COPD. A thorough comprehension of the multifaceted role of TGF-ß in asthma and COPD is imperative for elaborating precise therapeutic interventions. We review several promising approaches that alter TGF-ß signaling. Nevertheless, additional studies are essential to delineate further the specific mechanisms of TGF-ß dysregulation and its potential therapeutic impacts in these chronic respiratory diseases.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Transforming Growth Factor beta , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Transforming Growth Factor beta/metabolism , Asthma/metabolism , Asthma/pathology , Animals , Airway Remodeling , Signal Transduction , Epithelial-Mesenchymal Transition
5.
Cells ; 13(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39120319

ABSTRACT

Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Signal Transduction , Animals
6.
J Cell Physiol ; : e31396, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39104026

ABSTRACT

RECK is a candidate tumor suppressor gene isolated as a gene that induces flat reversion in a cell line transformed by the KRAS oncogene. Since RECK knockout mice die in utero, they are not suitable for studying the effects of RECK on tumor formation. In this study, we found an increased incidence of spontaneous pulmonary adenomas in mice with reduced RECK expression (RECK-Hypo mice). To evaluate the effects of RECK expressed by either tumor cells or host cells on tumor growth, we established a tumorigenic cell line (MKER) from the kidney of a C57BL/6 mouse and performed syngeneic transplantation experiments. Our results indicate that when RECK expression is low in host cells, transplanted MKER cells grow faster and kill the animal more rapidly. Since RECK is required for the formation of proper fibrillin fibers that serve as a tissue reservoir for precursors of TGFß-family cytokines, we assessed the levels of TGFß1 in the peripheral blood. We found a significant increase in TGFß1 in RECK-Hypo mice compared to wild-type mice. We also found that the proportion of FOXP3-positive regulatory T (Treg) cells among splenocytes was higher in RECK-Hypo mice compared to the control mice. Furthermore, the number of FOXP3-positive cells in spontaneous hematopoietic neoplasms in the lungs as well as tumors that formed after MKER transplantation was significantly higher in RECK-Hypo mice compared to the control mice. These findings indicate that RECK-mediated tumor suppression involves a non-cell-autonomous mechanism and that possible roles of TGFß1 and Treg cells in such a mechanism warrant further study.

7.
Int J Mol Sci ; 25(16)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39201678

ABSTRACT

Skin wounds, primarily in association with type I diabetes mellitus, are a public health problem generating significant health impacts. Therefore, identifying the main pathways/mechanisms involved in differentiating fibroblasts into myofibroblasts is fundamental to guide research into effective treatments. Adopting the PRISMA guidelines, this study aimed to verify the main pathways/mechanisms using diabetic murine models and analyze the advances and limitations of this area. The Medline (PubMed), Scopus, and Web of Science platforms were used for the search. The studies included were limited to those that used diabetic murine models with excisional wounds. Bias analysis and methodological quality assessments were undertaken using the SYRCLE bias risk tool. Eighteen studies were selected. The systematic review results confirm that diabetes impairs the transformation of fibroblasts into myofibroblasts by affecting the expression of several growth factors, most notably transforming growth factor beta (TGF-beta) and NLRP3. Diabetes also compromises pathways such as the SMAD, c-Jun N-terminal kinase, protein kinase C, and nuclear factor kappa beta activating caspase pathways, leading to cell death. Furthermore, diabetes renders the wound environment highly pro-oxidant and inflammatory, which is known as OxInflammation. As a consequence of this OxInflammation, delays in the collagenization process occur. The protocol details for this systematic review were registered with PROSPERO: CRD42021267776.


Subject(s)
Cell Transdifferentiation , Inflammation , Myofibroblasts , Wound Healing , Myofibroblasts/metabolism , Myofibroblasts/pathology , Animals , Inflammation/pathology , Inflammation/metabolism , Humans , Mice , Transforming Growth Factor beta/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
8.
J Microbiol Biotechnol ; 34(8): 1698-1704, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39113194

ABSTRACT

Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.


Subject(s)
Bifidobacterium longum subspecies infantis , Breast Neoplasms , Colorectal Neoplasms , Smad4 Protein , Transforming Growth Factor beta , Humans , Smad4 Protein/metabolism , Smad4 Protein/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Cell Line, Tumor , Transforming Growth Factor beta/metabolism , Bifidobacterium longum subspecies infantis/metabolism , Bifidobacterium longum subspecies infantis/genetics , Female , Cell Death/drug effects , Cell Proliferation/drug effects , Probiotics , Antineoplastic Agents/pharmacology
9.
Clin Sci (Lond) ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212293

ABSTRACT

The progression of pancreatic ductal adenocarcinoma (PDAC) is significantly affected by TGF-ß but targeting TGF-ß can also compromize physiological effects in patients. Our study examined the functions of the ubiquitously expressed protein, PDCD10, as a modulator of TGF-ß signaling. Using in silico analyses we found that in patient samples, PDCD10 is significantly higher expressed in PDAC tumor tissue compared to normal pancreas and it is highly correlated with reduced survival. We created stable KO's of PDCD10 in two PDAC lines, PaTu 8902 (SMAD4 +/+) and PaTu 8988t (SMAD4 -/-), and found that KO lines are more sensitive to 5-FU and Gemcitabine treatment than their wild type counterparts. Performing viability and wound closure assays we further found that PDCD10 promotes cell survival and proliferation by enhancing specifically the mitogenic functions of TGF-ß. The molecular mechanism underlying this effect was further investigated using Western blots and with primary organoid lines derived from patient PDAC tissue samples. The data imply that PDCD10 mediates an increase in p-ERK through a non-SMAD4 pathway, leading to EMT promotion. Furthermore, PDCD10 facilitates deactivation of RB via a SMAD4-dependent pathway, thereby counter-acting the anti-proliferative actions of TGF-ß. By performing proximity ligation assays (PLA) we found that PDCD10 associates with the kinase MST4, translocates it intracellularly and thereby facilitates phosphorylations of RB and ERK1/2. Our study indicates that PDCD10 promotes the proliferative function and EMT induction of TGF-ß in pancreatic cancer cells. Therefore, targeting PDCD10 in PDAC patients could represent a promising new strategy to optimize TGF-ß targeted therapies.

10.
Cancers (Basel) ; 16(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39001498

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents significant oncological challenges due to its aggressive nature and poor prognosis. The tumor microenvironment (TME) plays a critical role in progression and treatment resistance. Non-neoplastic cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), contribute to tumor growth, angiogenesis, and immune evasion. Although immune cells infiltrate TME, tumor cells evade immune responses by secreting chemokines and expressing immune checkpoint inhibitors (ICIs). Vascular components, like endothelial cells and pericytes, stimulate angiogenesis to support tumor growth, while adipocytes secrete factors that promote cell growth, invasion, and treatment resistance. Additionally, perineural invasion, a characteristic feature of PDAC, contributes to local recurrence and poor prognosis. Moreover, key signaling pathways including Kirsten rat sarcoma viral oncogene (KRAS), transforming growth factor beta (TGF-ß), Notch, hypoxia-inducible factor (HIF), and Wnt/ß-catenin drive tumor progression and resistance. Targeting the TME is crucial for developing effective therapies, including strategies like inhibiting CAFs, modulating immune response, disrupting angiogenesis, and blocking neural cell interactions. A recent multi-omic approach has identified signature genes associated with anoikis resistance, which could serve as prognostic biomarkers and targets for personalized therapy.

11.
Immunol Rev ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034662

ABSTRACT

The last few decades have seen striking changes in the field of food allergy. The prevalence of the disease has risen dramatically in many parts of the globe, and management of the condition has undergone major revision. While delayed introduction of common allergenic foods during infancy was advised for many years, the learning early about peanut allergy (LEAP) trial and other studies led to a major shift in infant feeding practices, with deliberate early introduction of these foods now recommended. Additionally, the Food and Drug Administration approved the first treatment for food allergy in 2020-a peanut oral immunotherapy (OIT) product that likely represents just the beginning of new immunotherapy-based and other treatments for food allergy. Our knowledge of the environmental and genetic factors contributing to the pathogenesis of food allergy has also undergone transformational advances. Here, we will discuss our efforts to improve the clinical care of patients with food allergy and our understanding of the immunological mechanisms contributing to this common disease.

12.
J Hazard Mater ; 476: 134772, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38901254

ABSTRACT

Bisphenol A (BPA) and its analogues (BPAF, BPS) are ubiquitous environmental contaminants used as plastic additives in various daily life products, with many concerns on their role as environmental estrogens. Uterine leiomyomas (fibroids) are highly prevalent gynecologic tumors with progressive fibrosis. Fibroids are hormone-responsive and may be the target of environmental estrogens. However, the effects of BPA, BPAF, and BPS exposure on uterine fibrosis are largely unknown. Here, we evaluated fibrosis and the crucial role of TGF-beta signaling in human fibroid tumors, the profibrotic effects of BPA, BPAF or BPS in a human 3D uterine leiomyoma (ht-UtLM) in vitro model, and the long-term outcomes of BPAF exposure in rat uterus. In 3D ht-UtLM spheroids, BPA, BPAF, and BPS all promoted cell proliferation and fibrosis by increasing the production of extracellular matrices. Further mechanistic analysis showed the profibrotic effects were induced by TGF-beta signaling activation mainly through SMAD2/3 pathway and crosstalk with multiple non-SMAD pathways. Furthermore, the profibrotic effects of BPAF were supported by observation of uterine fibrosis in vivo in rats following long-term BPAF exposure. Overall, the 3D ht-UtLM spheroid can be an important model for investigating environment-induced fibrosis in uterine fibroids. BPA and its analogues can induce fibrosis via TGF-beta signaling.


Subject(s)
Benzhydryl Compounds , Fibrosis , Leiomyoma , Phenols , Transforming Growth Factor beta , Uterine Neoplasms , Female , Leiomyoma/chemically induced , Leiomyoma/pathology , Leiomyoma/metabolism , Phenols/toxicity , Benzhydryl Compounds/toxicity , Humans , Animals , Fibrosis/chemically induced , Uterine Neoplasms/chemically induced , Uterine Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Rats, Sprague-Dawley , Cell Proliferation/drug effects , Rats , Signal Transduction/drug effects , Uterus/drug effects , Uterus/pathology , Uterus/metabolism , Cell Line, Tumor
13.
Front Cell Dev Biol ; 12: 1416780, 2024.
Article in English | MEDLINE | ID: mdl-38887517

ABSTRACT

Introduction: Nail stem cell (NSC) differentiation plays a vital role in maintaining nail homeostasis and facilitating digit regeneration. Recently, onychofibroblasts (OFs), specialized mesenchymal cells beneath the nail matrix, have emerged as potential regulators of NSC differentiation. However, limited understanding of OFs' cellular properties and transcriptomic profiles hinders our comprehension of their role. This study aims to characterize human OFs and investigate their involvement in NSC differentiation. Methods: Human OFs were isolated and characterized for their mesenchymal stem cell (MSC)-like phenotype through flow cytometry and multilineage differentiation assays. Bulk RNA-seq analysis was conducted on three samples of OFs and control fibroblasts from human nail units to delineate their molecular features. Integrated analysis with scRNA-seq data was performed to identify key signaling pathways involved in OF-induced NSC differentiation. Co-culture experiments, siRNA transfection, RT-qPCR, and immunocytochemistry were employed to investigate the effect of OF-derived soluble proteins on NSC differentiation. Drug treatments, RT-qPCR, western blotting, and immunocytochemistry were used to verify the regulation of candidate signaling pathways on NSC differentiation in vitro. Results: Human OFs exhibited slow cell cycle kinetics, expressed typical MSC markers, and demonstrated multilineage differentiation potential. Bulk RNA-seq analysis revealed differential gene expression in OFs compared to control fibroblasts, highlighting their role in coordinating nail development. Integrated analysis identified BMP4 as a pivotal signal for OFs to participate in NSC differentiation through mesenchymal-epithelial interactions, with the TGF-beta pathway possibly mediating this signal. OFs synthesized and secreted more BMP4 than control fibroblasts, and BMP4 derived from OFs induced NSC differentiation in a co-culture model. Recombinant human BMP4 activated the TGF-beta pathway in NSCs, leading to cell differentiation, while the BMP type I receptor inhibitor LDN193189 attenuated this effect. Discussion: This study characterizes the cellular and molecular features of human OFs, demonstrating their ability to regulate NSC differentiation via the TGF-beta signaling pathway. These findings establish a connection between the dermal microenvironment and NSC differentiation, suggesting the potential of OFs, in conjunction with NSCs, for developing novel therapies targeting nail and digit defects, even severe limb amputation.

14.
Cancer Cell ; 42(7): 1258-1267.e2, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38906157

ABSTRACT

We conducted a proof-of-concept, phase 2 trial to assess neoadjuvant SHR-1701 with or without chemotherapy, followed by surgery or radiotherapy, and then consolidation SHR-1701 in unresectable stage III non-small-cell lung cancer (NSCLC). In the primary cohort of patients receiving neoadjuvant combination therapy (n = 97), both primary endpoints were met, with a post-induction objective response rate of 58% (95% confidence interval [CI] 47-68) and an 18-month event-free survival (EFS) rate of 56.6% (95% CI 45.2-66.5). Overall, 27 (25%) patients underwent surgery; all achieved R0 resection. Among them, 12 (44%) major pathological responses and seven (26%) pathological complete responses were recorded. The 18-month EFS rate was 74.1% (95% CI 53.2-86.7) in surgical patients and 57.3% (43.0-69.3) in radiotherapy-treated patients. Neoadjuvant SHR-1701 with chemotherapy, followed by surgery or radiotherapy, showed promising efficacy with a tolerable safety profile in unresectable stage III NSCLC. Surgical conversion was feasible in a notable proportion of patients and associated with better survival outcomes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoadjuvant Therapy , Neoplasm Staging , Proof of Concept Study , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Female , Neoadjuvant Therapy/methods , Middle Aged , Male , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antibodies, Monoclonal , Recombinant Fusion Proteins
15.
J Anim Sci Biotechnol ; 15(1): 80, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845033

ABSTRACT

BACKGROUND: The intestinal epithelium performs essential physiological functions, such as nutrient absorption, and acts as a barrier to prevent the entry of harmful substances. Mycotoxins are prevalent contaminants found in animal feed that exert harmful effects on the health of livestock. Zearalenone (ZEA) is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals. Here, we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium. RESULTS: Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin, which induced Snail1-mediated epithelial-to-mesenchymal transition (EMT). In addition, ZEA induces Snail-mediated EMT through the activation of TGF-ß signaling. The treatment of IPEC-J2 cells with atractylenolide III, which were exposed to ZEA, alleviated EMT. CONCLUSIONS: Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epithelial cells and ways to mitigate it.

16.
Cureus ; 16(4): e57622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38707151

ABSTRACT

BACKGROUND:  The presence of microvascular inflammation (MVI) characterized by leukocyte margination in the glomeruli (glomerulitis, Banff score 'g') and peritubular capillaries (peritubular capillaritis, Banff score 'ptc') is a hallmark histological feature of antibody-mediated rejection (AMR), even in the absence of circumferential C4d positivity. In this study, we assessed the efficacy of pre-transplant plasma cytokines as an ancillary screening tool to identify MVI in kidney allograft indication biopsies to facilitate better graft survival. METHOD:  This single-center prospective analytical study comprises 38 kidney transplant recipients whose peripheral blood was collected before transplant and assessed for the plasma cytokine concentrations of FOXP3, IL-6, TGF beta, and IL-17 using enzyme-linked immunosorbent assays (ELISA). Histopathological assessment was done in post-transplant indication biopsies, and Banff scores of 'g+ ptc' were calculated to categorize recipients into three MVI groups. The correlational, regression, and ROC curve analyses were used to assess the association and predictive ability of the cytokines with respect to MVI. RESULTS:  In our study cohort, 27 recipients had MVI=0, five had MVI=1, and six had MVI≥2. A significant difference in plasma cytokines was observed between these groups, and we found a strong negative correlation of FOXP3 with MVI, whereas a strong positive correlation of IL-6, TGF beta, and IL-17 was recorded with MVI. We have also assessed the predictive ability of these cytokines, FOXP3, IL-6, TGF-beta, and IL-17, through the ROC curve, which showed an AUC of 0.70, 0.76, 0.84, and 0.72, respectively. CONCLUSION:  Our findings suggest that the pre-transplant levels of cytokines FOXP3, IL-6, TGF-beta, and IL-17 could be measured to identify recipients at risk of post-transplant MVI, which could further serve as an additional tool for effective management of the kidney allograft.

17.
Neoplasia ; 53: 101003, 2024 07.
Article in English | MEDLINE | ID: mdl-38759377

ABSTRACT

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Subject(s)
Endoplasmic Reticulum , MAP Kinase Kinase Kinases , Microtubules , Signal Transduction , Microtubules/metabolism , Endoplasmic Reticulum/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Acetylation , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Acetyltransferases/metabolism , Acetyltransferases/genetics , Endoplasmic Reticulum Stress , Mice , Microtubule Proteins
18.
Res Sq ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766125

ABSTRACT

Background: Urate-lowering treatment (ULT) to target with xanthine oxidase inhibitors (XOIs) paradoxically causes early increase in gouty arthritis flares. Because delayed reduction in flare burden is mechanistically unclear, we tested for ULT inflammation responsiveness markers. Methods: Unbiased proteomics analyzed blood samples (baseline, 48 weeks ULT) in two, independent ULT out trial cohorts (n = 19, n = 30). STRING-db and multivariate analyses supplemented determinations of altered proteins via Wilcoxon matched pairs signed rank testing in XOI ULT responders. Mechanistic studies characterized proteomes of cultured XOI-treated murine bone marrow macrophages (BMDMs). Results: At 48 weeks ULT, serum urate normalized in all gout patients, and flares declined, with significantly altered proteins (p < 0.05) in clustering and proteome networks in sera and peripheral blood mononuclear cells. Serum proteome changes included decreased complement C8 heterotrimer C8A and C8G chains and chemokine PPBP/CXCL7, and increased urate crystal phagocytosis inhibitor sCD44. In both cohorts, a treatment-emergent serum interactome included key gouty inflammation mediators (C5, IL-1B, CXCL8, IL6). Last, febuxostat inhibited complement activation pathway proteins in cultured BMDMs. Conclusions: Reduced gout flares are kinked with a XOI-treatment emergent complement- and inflammation-regulatory serum protein interactome. Serum and leukocyte proteomes could help identify onset of anti-inflammatory responsiveness to ULT in gout. Trial registration: ClinicalTrials.gov Identifier: NCT02579096, posted October 19, 2015.

19.
Front Physiol ; 15: 1296504, 2024.
Article in English | MEDLINE | ID: mdl-38808357

ABSTRACT

We propose that the key initiators of renal fibrosis are myofibroblasts which originate from four predominant sources-fibroblasts, pericytes, endothelial cells and macrophages. Increased accumulation of renal interstitial myofibroblasts correlates with an increase in collagen, fibrillar proteins, and fibrosis severity. The canonical TGF-ß pathway, signaling via Smad proteins, is the central molecular hub that initiates these cellular transformations. However, directly targeting these classical pathway molecules has proven challenging due their integral roles in metabolic process, and/or non-sustainable effects involving compensatory cross-talk with TGF-ß. This review explores recently discovered alternative molecular targets that drive transdifferentiation into myofibroblasts. Discovering targets outside of the classical TGF-ß/Smad pathway is crucial for advancing antifibrotic therapies, and strategically targeting the development of myofibroblasts offers a promising approach to control excessive extracellular matrix deposition and impede fibrosis progression.

20.
Cell Calcium ; 121: 102895, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703416

ABSTRACT

Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) as a wound healing process. Activated hepatic stellate cells (HpSCs) are the major producer of the ECM and play a central role in liver fibrogenesis. It has been widely accepted that elimination of activated HpSCs or reversion to a quiescent state can be a feasible strategy for resolving the disease, further highlighting the urgent need for novel therapeutic targets. Calreticulin (CRT) is a molecular chaperone that normally resides in the endoplasmic reticulum (ER), important in protein folding and trafficking through the secretory pathway. CRT also plays a critical role in calcium (Ca2+) homeostasis, with its Ca2+ storage capacity. In the current study, we aimed to demonstrate its function in directing HpSC activation. In a mouse liver injury model, CRT was up-regulated in HpSCs. In cellular experiments, we further showed that this activation was through modulating the canonical TGF-ß signaling. As down-regulation of CRT in HpSCs elevated intracellular Ca2+ levels through a form of Ca2+ influx, named store-operated Ca2+ entry (SOCE), we examined whether moderating SOCE affected TGF-ß signaling. Interestingly, blocking SOCE had little effect on TGF-ß-induced gene expression. In contrast, inhibition of ER Ca2+ release using the inositol trisphosphate receptor inhibitor 2-APB increased TGF-ß signaling. Treatment with 2-APB did not alter SOCE but decreased intracellular Ca2+ at the basal level. Indeed, adjusting Ca2+ concentrations by EGTA or BAPTA-AM chelation further enhanced TGF-ß-induced signaling. Our results suggest a crucial role of CRT in the liver fibrogenic process through modulating Ca2+ concentrations and TGF-ß signaling in HpSCs, which may provide new information and help advance the current discoveries for liver fibrosis.


Subject(s)
Calreticulin , Hepatic Stellate Cells , Signal Transduction , Smad Proteins , Transforming Growth Factor beta , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Calreticulin/metabolism , Animals , Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Mice , Humans , Calcium/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Calcium Signaling/drug effects , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL