Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.040
Filter
1.
Methods Mol Biol ; 2833: 43-49, 2024.
Article in English | MEDLINE | ID: mdl-38949699

ABSTRACT

Current clinical practice assumes that a single antibiotic given as a bolus or as a course will successfully treat most infections. In modern medicine, this is becoming less and less true with drug-resistant, multi-drug-resistant, extensively drug-resistant, and untreatable infections becoming more common. Where single-drug therapy (monotherapy) fails, we will turn to multi-drug therapy. Alternatively, combination therapy could be useful to prevent the emergence of resistance. Multi-drug therapy is already standard for some multi-drug resistant infections and is the standard for the treatment of some pathogens such as Mycobacterium tuberculosis.The use of combination therapy for everyday infections could be a clear course out of the current AMR crisis we are facing. With every additional drug added to a combination (n + 1) the likelihood of the pathogen evolving resistance drops exponentially.Many generic antibiotics are cheap to manufacture as they have fallen out of patent protection but are less effective at pharmacologically effective doses due to overuse in the past. Combination therapy can combine these generic compounds into cocktails that can not only treat susceptible and resistant infections but can also reduce the risk of new resistances arising and can resuscitate the use of antimicrobials once thought defunct.In this chapter, we will summarize theory behind combination therapy and standard in vitro methodologies used.


Subject(s)
Drug Therapy, Combination , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects
2.
Global Health ; 20(1): 52, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956614

ABSTRACT

During the COVID-19 pandemic, intellectual property licensing through bilateral agreements and the Medicines Patent Pool were used to facilitate access to new COVID-19 therapeutics in low- and middle-income countries (LMICs). The lessons learnt from the application of the model to COVID-19 could be relevant for preparedness and response to future pandemics and other health emergencies.The speed at which affordable versions of a new product are available in LMICs is key to the realization of the potential global impact of the product. When initiated early in the research and development life cycle, licensing could facilitate rapid development of generic versions of innovative products in LMICs during a pandemic. The pre-selection of qualified manufacturers, for instance building on the existing network of generic manufacturers engaged during the COVID-19 pandemic, the sharing of know-how and the quick provision of critical inputs such as reference listed drugs (RLDs) could also result in significant time saved. It is important to find a good balance between speed and quality. Necessary quality assurance terms need to be included in licensing agreements, and the potentials of the new World Health Organization Listed Authority mechanism could be explored to promote expedited regulatory reviews and timely access to safe and quality-assured products.The number, capacity, and geographical distribution of licensed companies and the transparency of licensing agreements have implications for the sufficiency of supply, affordability, and supply security. To foster competition and support supply security, licenses should be non-exclusive. There is also a need to put modalities in place to de-risk the development of critical pandemic therapeutics, particularly where generic product development is initiated before the innovator product is proven to be effective and approved. IP licensing and technology transfer can be effective tools to improve the diversification of manufacturing and need to be explored for regional manufacturing for accelerated access at scale in in LMICs and supply security in future pandemics.


Subject(s)
COVID-19 , Developing Countries , Intellectual Property , Licensure , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , COVID-19 Drug Treatment , Antiviral Agents/therapeutic use , Drug Industry/legislation & jurisprudence , Drug Industry/organization & administration , Pandemic Preparedness
3.
J Clin Invest ; 134(12)2024 May 09.
Article in English | MEDLINE | ID: mdl-38950310

ABSTRACT

In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.


Subject(s)
Dependovirus , Gene Editing , Animals , Female , Dependovirus/genetics , Dependovirus/immunology , Mice , Pregnancy , Humans , Immunoglobulin G/immunology , Immunoglobulin G/genetics , Immunoglobulin G/blood , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/immunology , Genetic Vectors/immunology , Maternal-Fetal Exchange/immunology , Maternal-Fetal Exchange/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , CRISPR-Cas Systems , Fetus/immunology , Immunity, Maternally-Acquired/immunology
4.
Front Genet ; 15: 1436860, 2024.
Article in English | MEDLINE | ID: mdl-38983271

ABSTRACT

Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.

5.
Transl Pediatr ; 13(6): 963-975, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984029

ABSTRACT

Background and Objective: Ferroptosis, a form of programmed cell death driven by lipid peroxidation and dependent on iron ions, unfolds through a sophisticated interplay of multiple biological processes. These include perturbations in iron metabolism, lipid peroxidation, aberrant amino acid metabolism, disruptions in hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) axis, and endoplasmic reticulum (ER) stress. Recent studies indicate that ferroptosis may serve as a promising therapeutic target for hypoxia-associated brain injury such as hypoxic-ischemic brain damage (HIBD) and cerebral ischemia-reperfusion injury (CIRI). HIBD is a neonatal disease that can be fatal, causing death or mental retardation in newborns. HIBD is a kind of diffuse brain injury, which is characterized by apoptosis of nerve cells and abnormal function and structure of neurons after cerebral hypoxia and ischemia. At present, there are no fundamental prevention and treatment measures for HIBD. The brain is the most sensitive organ of the human body to hypoxia. Cerebral ischemia will lead to the damage of local brain tissue and its function, and CIRI will lead to a series of serious consequences. We hope to clarify the mechanism of ferroptosis in hypoxia-associated brain injury, inhibit the relevant targets of ferroptosis in hypoxia-associated brain injury to guide clinical treatment, and provide guidance for the subsequent treatment of disease-related drugs. Methods: Our research incorporated data on "ferroptosis", "neonatal hypoxic ischemia", "hypoxic ischemic brain injury", "hypoxic ischemic encephalopathy", "brain ischemia-reperfusion injury", and "therapeutics", which were sourced from Web of Science, PubMed, and comprehensive reviews and articles written in English. Key Content and Findings: This review delineates the underlying mechanisms of ferroptosis and the significance of these pathways in hypoxia-associated brain injury, offering an overview of therapeutic strategies for mitigating ferroptosis. Conclusions: Ferroptosis involves dysregulation of iron metabolism, lipid peroxidation, amino acid metabolism, dysregulation of HIF-PHD axis and endoplasmic reticulum stress (ERS). By reviewing the literature, we identified the involvement of the above processes in HIBD and CIRI, and summarized a series of therapeutic measures for HIBD and CIRI by inhibiting ferroptosis. We hope this study would provide guidance for the clinical treatment of HIBD and CIRI in the future.

6.
Front Mol Neurosci ; 17: 1423340, 2024.
Article in English | MEDLINE | ID: mdl-38984196

ABSTRACT

Alzheimer's disease (AD) affects the elderly population by causing memory impairments, cognitive and behavioral abnormalities. Currently, no curative treatments exist, emphasizing the need to explore therapeutic options that modify the progression of the disease. MicroRNAs (miRNAs), as non-coding RNAs, demonstrate multifaceted targeting potential and are known to be dysregulated in AD pathology. This mini review focuses on two promising miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential regulation in AD. By employing computational predictions and referencing published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA target relationships associated with hsa-miR-132 and hsa-miR-129. Our review consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in AD brains as a non-coding RNA molecular signature across studies conducted over the past 15 years in AD research.

7.
Life Sci ; 352: 122890, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971364

ABSTRACT

Cancer cells undergo metabolic reprogramming to survive in hypoxic conditions and meet the elevated energy demands of the cancer microenvironment. This metabolic alteration is orchestrated by hypoxia-inducible factor 1 (HIF-1), regulating various processes within cancer cells. The intricate metabolic modifications induced by hypoxia underscore the significance of HIF-1-induced metabolic reprogramming in promoting each aspect of cancer progression. The complex interactions between HIF-1 signalling and cellular metabolic processes in response to hypoxia are examined in this study, focusing on the metabolism of carbohydrates, nucleotides, lipids, and amino acids. Comprehending the various regulatory mechanisms controlled by HIF-1 in cellular metabolism sheds light on the intricate biology of cancer growth and offers useful insights for developing targeted treatments.

8.
Adv Sci (Weinh) ; : e2400196, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978353

ABSTRACT

Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes. Osteocytes, the most abundant bone cells, secrete excess neuropeptide Y (NPY) during osteoarthritis, and this alteration can be altered by intermittent fasting. Both NPY and the NPY-abundant culture medium of osteocytes (OCY-CM) from osteoarthritic mice possess pro-inflammatory, pro-osteoclastic, and pro-neurite outgrowth effects, while OCY-CM from the intermittent fasting-treated osteoarthritic mice fails to induce significant stimulatory effects on inflammation, osteoclast formation, and neurite outgrowth. Depletion of osteocyte NPY significantly attenuates DMM-induced osteoarthritis and abolishes the benefits of intermittent fasting on osteoarthritis. This study suggests that osteocyte NPY is a key contributing factor in the pathogenesis of osteoarthritis and intermittent fasting represents a promising nonpharmacological antiosteoarthritis method by targeting osteocyte NPY.

10.
Mol Biotechnol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980514

ABSTRACT

Interleukin-6 (IL-6) is a highly pro-inflammatory cytokine involved in the etiopathology of several inflammatory diseases and cancer. As so, the inhibition of IL-6 signaling pathways has emerged as an attractive therapeutic avenue for the treatment of several chronic diseases. Since IL-6 trans-signaling was described as the pathological branch of IL-6, selective inhibitors were developed. Next-generation variants with increased trans-signaling specificity and potency emerged as great candidates for the treatment of several diseases, with reduced off-target effects. The highly time-consuming and costly processes involving recombinant protein production, however, have hampered the progress of anti-cytokine pharmaceuticals in clinic so far. Herein, we developed gene therapeutic modalities of IL-6-trans-signaling inhibitors as alternatives for sustained recombinant protein secretion. By using an IL-6-dependent lymphoma cell line and xenograft tumor model, we demonstrated the superior inhibitory potential of second-generation anti-IL-6 trans-signaling therapeutic. We compared the efficiency of distinct gene delivery modalities using a bioluminescent biomarker probe and observed consistent protein production via cell-based delivery. When delivered intratumorally, genetically engineered sgp130FlyRFc-secreting cells significantly reduced tumor burden and increased animal survival, representing a promising therapeutic avenue to be explored in clinically relevant gene delivery applications.

11.
Biol Psychiatry ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960019

ABSTRACT

Digital therapeutics-web-based programs, smartphone applications, and wearable devices designed to prevent, treat, or manage clinical conditions through software-driven, evidence-based intervention-can provide accessible alternatives and/or may supplement standard care for patients with serious mental illnesses (SMI), including schizophrenia. In this paper we provide a targeted summary of the rapidly growing field of digital therapeutics for schizophrenia and related SMI. We first define digital therapeutics. We then provide a brief summary of the emerging evidence of efficacy of digital therapeutics for improving clinical outcomes, focusing on potential mechanisms of action for addressing some of the most challenging problems, including negative symptoms of psychosis. Our focus on these promising targets for digital therapeutics, including the latest in prescription models in the commercial space, highlights future directions for research and practice in this exciting field.

12.
Neuro Oncol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981018

ABSTRACT

BACKGROUND: Atypical Teratoid Rhabdoid Tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered three molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. METHODS: We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multi-omics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. RESULTS: We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and PLK1. We identified two classes of multi-kinase inhibitors (MKIs) predominantly targeting receptors tyrosine kinase (RTKs) including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. CONCLUSIONS: Taken together our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.

13.
J Bone Miner Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988138

ABSTRACT

An 18-month old male presented with gross motor delay and poor growth (weight z-score -2.21, length z-score -4.26). Radiographs showed metaphyseal irregularities suggesting metaphyseal dysplasia and sagittal craniosynostosis. Biochemical evaluation revealed evidence of hypophosphatemic rickets [serum phosphorus 2.3 mg/dL (reference range (RR) 4.3-6.8), alkaline phosphatase 754 unit/L (RR 156-369)] due to renal phosphate wasting (TmP/GFR 4.3 mg/dL, normal for age 4.3-6.8), with C-terminal FGF23 125 RU/mL (>90 during hypophosphatemia suggests FGF23-mediated hypophosphatemia). Treatment was initiated with calcitriol and phosphate. Genetic analysis showed a pathogenic variant of FGF23: c.527G > A (p.Arg176Gln) indicative of autosomal dominant hypophosphatemic rickets (ADHR). Consistent with reports linking iron deficiency with the ADHR phenotype, low ferritin was detected, 18 ng/mL (RR 24-336). Oral ferrous sulfate replacement was initiated. Following normalization of ferritin level (41 ng/mL) biochemical improvement was demonstrated (FGF23 69 RU/mL, phosphorus 5.0 mg/dL and alkaline phosphatase 228 unit/L). Calcitriol and phosphate were discontinued. Three years later, the patient demonstrated improved developmental milestones, linear growth (length Z-score -2.01), radiographic normalization of metaphyses, and stabilization of craniosynostosis. While the most common cause of hypophosphatemic rickets is X-linked hypophosphatemia, other etiologies should be considered as treatment differs. In ADHR, normalization of iron leads to biochemical and clinical improvement.

14.
Int J Biochem Cell Biol ; : 106616, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992790

ABSTRACT

Extracellular vesicles (EVs) are important mediators of intercellular communication within the cardiovascular system, playing essential roles in physiological homeostasis and contributing to the pathogenesis of various cardiovascular diseases (CVDs). However, their potential as diagnostic biomarkers and therapeutic agents in rare cardiovascular diseases, such as valvular heart disease (VHD) and cardiomyopathies, remains largely unexplored. This review comprehensively emphasizes recent advancements in extracellular vesicle research, explicitly highlighting their growing significance in diagnosing and potentially treating rare cardiovascular diseases, with a particular focus on valvular heart disease and cardiomyopathies. We highlight the potential of extracellular vesicle-based liquid biopsies as non-invasive tools for early disease detection and risk stratification, showcasing specific extracellular vesicle-associated biomarkers (proteins, microRNAs, lipids) with diagnostic and prognostic value. Furthermore, we discussed the therapeutic promise of extracellular vesicles derived from various sources, including stem cells and engineered extracellular vesicles, for cardiac repair and regeneration through their ability to modulate inflammation, promote angiogenesis, and reduce fibrosis. By integrating the findings and addressing critical knowledge gaps, this review aims to stimulate further research and innovation in extracellular vesicle-based diagnostics and therapeutics of cardiovascular disease.

15.
ESMO Open ; 9(7): 103494, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981309

ABSTRACT

BACKGROUND: High tumor mutational burden (TMB) is one of the widely researched predictive biomarkers of immune checkpoint inhibitors and has been shown to be closely related with response to immunotherapy in multiple cancer types. However, for patients who have failed conventional therapy and are about to undergo immunotherapy, there is no consensus recommendation on the timing of tumor sampling for TMB analysis, and the effects of different therapies on TMB have not been clarified. This retrospective observational study aimed to investigate the heterogeneity of TMB and genomic mutation under the treatment pressure. PATIENTS AND METHODS: We retrospectively collected the available genomic and therapeutic information from 8051 samples across 15 tumor types (>50 samples/tumor) found in 30 published studies and investigated the distribution and heterogeneity of TMB under treatment across diverse cohorts. RESULTS: This integrated analysis has shown anticancer treatments increased TMB. Significant effects of treatment on TMB were more frequently observed in tumor types with lower treatment-naïve TMB, including breast, prostate, and pediatric cancers. For different cancer therapies, chemotherapy was prone to be correlated with an increased TMB in most cancer types. Meanwhile, the fraction of the TMB-high category of breast, prostate, and bladder cancers and glioma increased significantly after chemotherapy. Several actionable genes including ERS1 and NF1 in breast cancer, as well as some prognostic markers including TERT in bladder cancer and IDH1 in glioma, were significantly changed in post-chemotherapy tumors compared to treatment-naïve tumors. CONCLUSION: Our study reveals the heterogeneity of TMB under treatment across diverse cancer types and provides evidences that chemotherapy was associated with increases in TMB as well as the fraction of TMB-high category, suggesting that resampling tumor tissues for calculating post-chemotherapy TMB could be a better option for predicting the response to immunotherapy, especially for tumors with initially low TMB.

16.
Microrna ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38952162

ABSTRACT

BACKGROUND: Publications reveal different outcomes achieved by genetically knocking out a long non-coding microRNA-host-gene (lncMIRHG) versus the administration of pharma-cologic antagomirs specifically targeting the guide strand of such intragenic microRNA. This suggests that lncMIRHGs may perform diverse functions unrelated to their role as intragenic miRNA precursors. OBJECTIVE: This review synthesizes in silico, in vitro, and in vivo findings from our lab and others to compare the effects of knocking out the long non-coding RNA MIR22HG, which hosts miR-22, versus administering pharmacological antagomirs targeting miR-22-3p. METHODS: In silico analyses at the gene, pathway, and network levels reveal both distinct and overlapping targets of hsa-miR-22-3p and its host gene, MIR22HG. While pharmacological an-tagomirs targeting miR-22-3p consistently improve various metabolic parameters in cell culture and animal models across multiple studies, genetic knockout of MIR22HG yields inconsistent results among different research groups. RESULTS: Additionally, MIR22HG functions as a circulating endogenous RNA (ceRNA) or "sponge" that simultaneously modulates multiple miRNA-mRNA interactions by competing for binding to several miRNAs. CONCLUSIONS: From a therapeutic viewpoint, genetic inactivation of a lncMIRHG and pharmaco-logic antagonism of the guide strand of its related intragenic miRNA produce different results. This should be expected as lncMIRHGs play dual roles, both as lncRNA and as a source for primary miRNA transcripts.

17.
World J Clin Oncol ; 15(6): 695-716, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38946839

ABSTRACT

Gallbladder cancer (GBC) is one of the commonest biliary malignancies seen in India, Argentina, and Japan. The disease has dismal outcome as it is detected quite late due to nonspecific symptoms and signs. Early detection is the only way to improve the outcome. There have been several advances in basic as well as clinical research in the hepatobiliary and pancreatic diseases in the West and other developed countries but not enough has been done in GBC. Therefore, it is important and the responsibility of the countries with high burden of GBC to find solutions to the many unanswered questions like etiopathogenesis, early diagnosis, treatment, and prognostication. As India being one of the largest hubs for GBC in the world, it is important to know how the country has progressed on GBC. In this review, we will discuss the outcome of the publications from India highlighting the work and the developments taken place in past several decades both in basic and clinical research.

18.
Article in English | MEDLINE | ID: mdl-38946674

ABSTRACT

OBJECTIVES: Combination therapy consists of both anti-tumor necrosis factor (anti-TNF) and an immunomodulator (IMM) and has been shown to improve outcomes in patients with inflammatory bowel disease (IBD). This study assesses the impacts of IMM withdrawal from combination therapy to anti-TNF monotherapy in children with IBD. METHODS: This single-center retrospective cohort study included children with IBD initiated on combination therapy between 2014 and 2019 who discontinued the IMM. We evaluated whether IMM withdrawal impacts laboratory values and disease activity. Linear mixed effects models with random intercepts were used to compare differences between groups. Chi-square and Kruskal-Wallis tests were used for comparisons between patients who did and did not require subsequent escalation of therapy. RESULTS: One hundred and fifty-two patients discontinued the IMM which did not significantly affect disease activity. However, 18% of patients escalated therapy after IMM withdrawal, primarily due to low anti-TNF levels. Lower anti-TNF and higher erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels before IMM withdrawal were associated with subsequent escalation of therapy. Overall, there was no statistically significant effect on anti-TNF drug levels. Patients with Crohn's disease (CD) on infliximab (IFX) and methotrexate (MTX) who discontinued the IMM had an increase in mean ESR and CRP (p < 0.05). CONCLUSIONS: IMM withdrawal from anti-TNF combination therapy may be considered safe in the setting of higher anti-TNF levels and normal serum inflammatory markers. Clinicians should consider assessing anti-TNF levels and inflammatory markers after IMM withdrawal, especially in patients with CD receiving IFX who discontinued MTX.

19.
J Clin Invest ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963708

ABSTRACT

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essentially meaningful. Here, we identified an under-appreciated Serine/Threonine kinase, CDKL3 (Cyclin-dependent kinase like 3), crucially drives the rapid cell cycle progression and cell growth in cancers. Mechanism-wise, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate Retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of CDK4 by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 (Cyclin-dependent kinase 4/6) inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes the acquired resistance of the latter. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presented an integrated paradigm of cancer cell cycle regulation and suggested CDKL3-targeting as a feasible approach in cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...