Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
J Nat Med ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014275

ABSTRACT

Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.

2.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928791

ABSTRACT

This study aimed to explore the protective effects of raffinose (Raf) against inflammatory bowel disease in mice with colitis. Mice were administered 100, 200, or 400 mg/kg Raf for 21 d, followed by drinking-water containing 3% dextran sulfate sodium salt (DSS) for 3 d. Thereafter, the phenotype, pathological lesions in the colon, cytokines levels, and gut microbiota were evaluated. Treatment with Raf reduced the severity of the pathological changes in the colon, mitigating the reduction in colon length. Following Raf intervention, serum levels of inflammatory cytokines (IL-2, IL-6, IL-1ß, and TNF-α) tended to return to normal. These results suggest that the anti-inflammatory effects of Raf are associated with a reduction in TLR4-MyD88-NF-κB pathway expression in mouse colonic tissues. Analysis of gut microbiota abundance and its correlation with colitis parameters revealed that DSS-induced dysbiosis was partially mitigated by Raf. In conclusion, Raf exerts a protective effect in colitis by modulating the gut microbiota and TLR4-MyD88-NF-κB pathway.

3.
Zhongguo Zhen Jiu ; 44(6): 661-8, 2024 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-38867628

ABSTRACT

OBJECTIVE: To observe the effects of acupuncture on blood pressure, fecal short-chain fatty acids (SCFAs) and toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway in spontaneously hypertensive rats (SHR), and to explore the mechanism of acupuncture for anti-hypertension. METHODS: Twenty-four male SHR of SPF grade were randomly divided into a model group, a western medication group, an acupuncture group and a sham acupuncture group, with 6 rats in each group, and 6 male Wistar-Kyoto rats were selected as the blank group additionally. Hydrochlorothiazide solution was given by gavage in the western medication group; acupuncture was applied at bilateral "Renying" (ST 9) and "Zusanli" (ST 36) in the acupuncture group, 20 min a time; acupuncture was applied at the non-meridian and non-acupoint points close to bilateral "Renying" (ST 9) and "Zusanli" (ST 36) in the sham acupuncture group, 20 min a time. The intervention was adopted once a day for 4 weeks continuously in each group. The systolic blood pressure (SBP) of the caudal artery was measured before intervention and after 1, 2, 3 and 4 weeks of intervention. After intervention, the morphology of colonic tissue was observed by HE staining; the fecal level of SCFAs was detected by gas chromatography; the serum levels of interleukin (IL)-6, IL-1ßand tumor necrosis factor-α (TNF-α) were detected by ELISA; the protein expression of TLR4, MyD88 and NF-κB p65 in the mesenteric artery was detected by Western blot. RESULTS: Compared with the blank group, in the model group, the SBP was increased (P<0.05), significant pathological changes could be found in the colonic tissue, the fecal SCFAs level was decreased (P<0.05), the serum levels of IL-6, IL-1ß and TNF-α were increased (P<0.05), the protein expression of TLR4, MyD88 and NF-κB p65 in the mesenteric artery was increased (P<0.05). Compared with the model group, the SBP after 2, 3 and 4 weeks of intervention was decreased (P<0.05), the serum levels of IL-6, IL-1ß and TNF-α were decreased (P<0.05) in the acupuncture group and the western medication group; the mucosal epithelium of colonic tissue was intact, the number of intestinal glands was abundant, the fecal SCFAs level was increased (P<0.05), and the protein expression of TLR4, MyD88 and NF-κB p65 in the mesenteric artery was decreased (P<0.05) in the acupuncture group. Compared with the sham acupuncture group, the SBP after 2, 3 and 4 weeks of intervention was decreased (P<0.05), the fecal SCFAs level was increased (P<0.05), the serum levels of IL-6, IL-1ß and TNF-α were decreased (P<0.05), the protein expression of TLR4, MyD88 and NF-κB p65 in the mesenteric artery was decreased (P<0.05) in the acupuncture group. CONCLUSION: Acupuncture at bilateral "Renying" (ST 9) and "Zusanli" (ST 36) can effectively play an anti-hypertensive role in SHR. Its mechanism may be related to regulating fecal SCFAs level and inhibiting the TLR4/MyD88/NF-κB signaling pathway.


Subject(s)
Acupuncture Therapy , Fatty Acids, Volatile , Feces , Myeloid Differentiation Factor 88 , NF-kappa B , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Male , Rats , NF-kappa B/metabolism , Humans , Feces/chemistry , Fatty Acids, Volatile/metabolism , Hypertension/therapy , Hypertension/metabolism , Hypertension/physiopathology , Blood Pressure , Acupuncture Points
4.
Biomed Pharmacother ; 177: 116929, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889644

ABSTRACT

Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1ß, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.

5.
Curr Pharm Des ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38910274

ABSTRACT

BACKGROUND: Neuroinflammation is the pathological basis of many neurological diseases, including neurodegenerative diseases and stroke. Hua-Feng-Dan (HFD) is a well-established traditional Chinese medicine that has been used for centuries to treat stroke and various other brain-related ailments. OBJECTIVE: Our study aims to elucidate the molecular mechanism by which HFD mitigates neuroinflammation by combining network pharmacology and in vitro experiments. METHODS: TCMSP and SymMap databases were used to extract active compounds and their related targets. The neuroinflammation-related targets were obtained from the GeneCards database. The common targets of HFD and neuroinflammation were used to construct a protein-protein interaction (PPI) network. MCODE plug-in was used to find the hub module genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to dissect the hub module genes. The lipopolysaccharide (LPS)-induced BV2 microglial neuroinflammation model was utilized to assess the therapeutic effects of HFD on neuroin- flammation. Western blotting analysis was performed to examine the core target proteins in the TLR4/My- D88/NF-κB signaling pathway, potentially implicated in HFD's therapeutic effects on neuroinflammation. Hoechst 33342 staining and JC-1 staining were employed to evaluate neuronal apoptosis. RESULTS: Through network pharmacology, 73 active compounds were identified, with quercetin, beta-sitos- terol, luteolin, and (-)-Epigallocatechin-3-Gallate recognized as important compounds. Meanwhile, 115 com- mon targets of HFD and neuroinflammation were identified, and 61 targets were selected as the hub targets uti- lizing the MCODE algorithm. The results of in vitro experiments demonstrated that HFD significantly inhibit- ed microglial-mediated neuronal inflammation induced by LPS. Integrating the predictions from network phar- macology with the in vitro experiment results, it was determined that the mechanism of HFD in mitigating neu- roinflammation is closely related to the TLR4/MyD88/NF-κB pathway. Furthermore, HFD demonstrated the capacity to shield neurons from apoptosis by curbing the secretion of pro-inflammatory factors subsequent to microglial activation. CONCLUSION: The findings demonstrated that HFD had an inhibitory effect on LPS-induced neuroinflammation in microglia and elucidated its underlying mechanism. These findings will offer a theoretical foundation for the clinical utilization of HFD in treating neurodegenerative diseases associated with neuroinflammation.

.

6.
Nat Prod Bioprospect ; 14(1): 36, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833115

ABSTRACT

Adenosma buchneroides Bonati, also known as fleagrass, is an important medicinal plant used by the Akha (Hani) people of China for treating inflammation-related skin swelling, acne, and diarrhoea, among other conditions. In this study, we aimed to evaluate the anti-inflammatory activities and explore the molecular mechanisms of fleagrass on treating skin swelling and acne. The results demonstrated that fleagrass inhibited the enzymatic activities of 5-LOX and COX-2 in vitro, and decreased the release of NO, IL-6, TNF-α, and IL-10 in the LPS-induced RAW264.7 macrophages. The levels of proteins associated with the nuclear factor-kappa B (NF-κB) pathway were examined by western blotting and immunofluorescence, demonstrating that fleagrass downregulated the expression of TLR4, MyD88, NF-κB/p65, and iNOS and blocked the nuclear translocation of NF-κB/p65. Furthermore, fleagrass exhibited acute anti-inflammatory activity in paw oedema models. The results confirm that fleagrass exhibits remarkable anti-inflammatory activity and can be used in alleviating inflammation, suggesting that fleagrass has the potential to be a novel anti-inflammatory agent.

7.
J Adv Res ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626873

ABSTRACT

INTRODUCTION: Obesity-induced bone loss affects the life quality of patients all over the world. Irisin, one of the myokines, plays an essential role in bone and fat metabolism. OBJECTIVE: Investigate the effects of irisin on bone metabolism via adipocytes in the bone marrow microenvironment. METHODS: In this study, we fed fibronectin type III domain-containing protein 5 (FNDC5, the precursor protein of irisin) knockout mice (FNDC5-/-) with a high-fat diet (HFD) for 10 weeks. The quality of bone mass was assessed by micro-CT analysis, histological staining, and dynamic bone formation. In vitro, the lipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was assayed by Oil Red O staining, and the osteogenic differentiation was assayed by alkaline phosphatase staining. Meanwhile, the gene expression in the BMSC-differentiated adipocytes by RNA sequence and the involved pathway of irisin were determined by western blot and qRT-PCR were performed. RESULTS: The FNDC5-/- mice fed with a HFD showed an increased body weight, fat content of the bone marrow and bone, and a decreased bone formation compared with those with a standard diet (SD). In vitro, irisin inhibited the differentiation of BMSCs into adipocytes and alleviated the inhibition of osteogenesis derived from BMSCs by the adipocyte supernatant. RNA sequence and blocking experiment showed that irisin reduced the production of interleukin 6 (IL-6) in adipocytes through downregulating the TLR4/MyD88/NF-κB pathway. Immunofluorescence staining of bone marrow further confirmed an increased IL-6 expression in the FNDC5-/- mice fed with HFD compared with those fed with SD, which suffered serious bone loss. CONCLUSION: Irisin downregulates activation of the TLR4/MyD88/NF-κB pathway, thereby reducing IL-6 production in adipocytes to enhance the osteogenesis of BMSCs. Thus, the rescue of osteogenesis of BMSCs, initially inhibited by IL-6, is a potential therapeutic target to mitigate obesity-induced osteoporosis.

8.
Eur J Pharmacol ; 973: 176566, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636801

ABSTRACT

Wogonoside (WG) is a natural flavonoid extracted from Scutellariae Radix, recognized for its established anti-inflammatory properties. However, the role of WG in the context of neuroinflammation after spinal cord injury (SCI) remains inadequately elucidated. This study employed in silico, in vitro, and in vivo methodologies to investigate the impact of WG on microglia-mediated neuroinflammation after SCI. In the in silico experiment, we identified 15 potential target genes of WG associated with SCI. These genes were linked to the regulation of inflammatory response and immune defense. Molecular docking maps revealed toll-like receptor 4 as a molecular target for WG, demonstrating binding through a hydrogen bond (Lys263, Ser120). In lipopolysaccharide-stimulated BV2 cells and SCI mice, WG significantly attenuated microglial activation and facilitated a phenotype shift from M1 to M2. This was evidenced by the reversal of the increased expressions of Iba1, GFAP, and iNOS, as well as the decreased expression of Arg1. WG also suppressed the production of pro-inflammatory mediators (NO, TNF-α, IL-6, IL-1α, IL-1ß, C1q). WG exerted these effects by suppressing the TLR4/MyD88/NF-κB signaling axis in microglia. Furthermore, by reducing levels of TNF-α, IL-1α, and C1q in supernatant of LPS-induced microglia, WG indirectly induced astrocytes change to A2 phenotype, evidenced by transcriptome sequencing result of primary mouse astrocytes. All these events above collectively created a favorable microenvironment, contributing to a significant alleviation of weight loss and neuronal damage at the lesion site of SCI mice. Our findings substantiate the efficacy of WG in mitigating neuroinflammation after SCI, thereby warranting further exploration.


Subject(s)
Flavanones , Glucosides , Microglia , Myeloid Differentiation Factor 88 , NF-kappa B , Neuroinflammatory Diseases , Signal Transduction , Spinal Cord Injuries , Toll-Like Receptor 4 , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Myeloid Differentiation Factor 88/metabolism , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Flavanones/pharmacology , Flavanones/therapeutic use , Male , Mice, Inbred C57BL , Cell Line , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation Mediators/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
9.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1000-1006, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621907

ABSTRACT

This study aims to investigate the effect and mechanism of Maxingshigan Decoction on inflammation in the rat model of cough variant asthma(CVA). The SPF-grade SD rats of 6-8 weeks were randomized into normal, model, Montelukast sodium, and low-, medium-, and high-dose Maxing Shigan Decoction groups, with 8 rats in each group. The CVA rat model was induced by ovalbumin(OVA) and aluminum hydroxide sensitization and ovalbumin stimulation. The normal group and model group were administrated with equal volume of normal saline by gavage, and other groups with corresponding drugs by gavage. After the experiment, the number of white blood cells in blood and the levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α) in the serum were measured. The lung tissue was stained with hematoxylin-eosin(HE). Western blot was employed to determine the protein levels of nuclear factor-κB(NF-κB), Toll-like receptor 4(TLR4), myeloid differentiation protein(MyD88), and mitogen-activated protein kinase(MAPK) in the lung tissue. Real-time PCR was carried out to measure the mRNA levels of TLR4 and MyD88 in the lung tissue. Compared with the normal group, the model group showed increased white blood cells, elevated IL-6 and TNF-α levels(P<0.01), lowered IL-10 level(P<0.01), up-regulated protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK(P<0.01) and mRNA levels of TLR4 and MyD88(P<0.01) in the lung tissue. HE staining showed obvious infiltration of inflammatory cells around the airway and cell disarrangement in the model group. Compared with the model group, Montelukast sodium and high-dose Maxing Shigan Decoction reduced the white blood cells, lowered the IL-6 and TNF-α levels(P<0.01), and elevated the IL-10 level(P<0.01). Moreover, they down-regulated the protein levels of TLR4, MyD88, p-p65/NF-κB p65, p-p38 MAPK/p38 MAPK in the lung tissue(P<0.01) and the mRNA levels of TLR4 and MyD88 in the lung tissue(P<0.01). HE staining showed that Montelukast sodium and high-dose Maxing Shigan Decoction reduced inflammatory cell infiltration and cell disarrangement. The number of white blood cells, the levels of IL-10 and TNF-α in the serum, the protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK, and the mRNA levels of TLR4 and MyD88 in the lung tissue showed no significant differences between the Montelukast sodium group and high-dose Maxing Shigan Decoction group. Maxing Shigan Decoction can inhibit airway inflammation in CVA rats by inhibiting the activation of TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.


Subject(s)
Acetates , Cough-Variant Asthma , Cyclopropanes , NF-kappa B , Quinolines , Sulfides , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Interleukin-10/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ovalbumin , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger
10.
Article in English | MEDLINE | ID: mdl-38684579

ABSTRACT

Bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-Exos) have a variety of biological functions and are extensively involved in the regulation of inflammatory diseases, as well as tissue repair and regeneration. However, the mechanism of action of these compounds in dry eye disease (DED) in mice is still unclear. This study demonstrated that the Treg/Th17 ratio was strongly imbalanced in DED clinical samples. BMSC-Exos can modulate the Treg/Th17 balance, improve the integrity of the corneal epithelial layer, and ameliorate DED progression in mice. Mechanistically, BMSC-Exos dramatically decreased the levels of IL-17 and IL-22; increased the levels of IL-4, IL-10, and TGF-ß1; and increased tear secretion and the number of goblet cells in the conjunctiva in mice, thus alleviating the progression of DED. This effect is achieved by BMSC-Exos through the delivery of miR-21-5p to target and restrain TLR4, thereby restraining the MyD88/NF-κB pathway. Our study showed that the upregulation of miR-21-5p in BMSC-Exos may be a therapeutic target for DED. These findings support new ideas and a basis for treating DED, as well as for further study of the application value of exosomes in alleviating DED.

11.
Biomed Pharmacother ; 174: 116556, 2024 May.
Article in English | MEDLINE | ID: mdl-38636398

ABSTRACT

Skeletal muscle atrophy is a common complication of chronic kidney disease (CKD) that affects the quality of life and prognosis of patients. We aimed to investigate the effects and mechanisms of caffeic acid (CA), a natural phenolic compound, on skeletal muscle atrophy in CKD rats. Male Sprague-Dawley rats underwent 5/6 nephrectomy (NPM) and were treated with CA (20, 40, or 80 mg/kg/day) for 10 weeks. The body and muscle weights, renal function, hemoglobin, and albumin were measured. The histological, molecular, and biochemical changes in skeletal muscles were evaluated using hematoxylin-eosin staining, quantitative real-time PCR, malondialdehyde/catalase/superoxide dismutase/glutathione level detection, and enzyme-linked immunosorbent assay. Western blotting and network pharmacology were applied to identify the potential targets and pathways of CA, CKD, and muscle atrophy. The results showed that CA significantly improved NPM-induced muscle-catabolic effects, reduced the expression of muscle atrophy-related proteins (muscle atrophy F-box and muscle RING finger 1) and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-alpha, and IL-1ß), and attenuated muscle oxidative stress. Network pharmacology revealed that CA modulated the response to oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway and that Toll-like receptor 4 (TLR4) was a key target. In vivo experiment confirmed that CA inhibited the TLR4/myeloid differentiation primary response 88 (MYD88)/NF-kB signaling pathway, reduced muscle iron levels, and restored glutathione peroxidase 4 activity, thereby alleviating ferroptosis and inflammation in skeletal muscles. Thus, CA might be a promising therapeutic agent for preventing and treating skeletal muscle atrophy in CKD by modulating the TLR4/MYD88/NF-κB pathway and ferroptosis.


Subject(s)
Caffeic Acids , Muscular Atrophy , Myeloid Differentiation Factor 88 , Renal Insufficiency, Chronic , Signal Transduction , Animals , Male , Rats , Caffeic Acids/pharmacology , Cytokines/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Myeloid Differentiation Factor 88/metabolism , Nephrectomy/adverse effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
12.
PeerJ ; 12: e17106, 2024.
Article in English | MEDLINE | ID: mdl-38646478

ABSTRACT

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.


Subject(s)
Asthma , Calgranulin A , Calgranulin B , Disease Models, Animal , Glycolysis , Macrophages , Mice, Inbred BALB C , Animals , Male , Mice , Asthma/genetics , Asthma/immunology , Asthma/pathology , Calgranulin A/metabolism , Calgranulin A/genetics , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ovalbumin , Signal Transduction/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics
13.
Food Sci Nutr ; 12(3): 2068-2080, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455195

ABSTRACT

Studies suggest that mangiferin (MAF) has good therapeutic effects on chronic bronchitis and hepatitis. Also, it is one of the antiviral ingredients in Anemarrhena asphodeloides Bunge. However, its effect on the LPS-induced inflammation and intestinal flora during sepsis remains unclear yet. In the present study, LPS-stimulated inflammation RAW264.7 cells and LPS-induced sepsis mice were used to evaluate the efficacy of MAF in vitro and in vivo. 16S rDNA sequencing was performed to analyze the characteristics of intestinal flora of the sepsis mice. It has been demonstrated that MAF (12.5 and 25 µg/mL) significantly inhibited protein expressions of TLR4, MyD88, NF-κB, and TNF-α in the LPS-treated cells and reduced the supernatant TNF-α and IL-6 levels. In vivo, MAF (20 mg/kg) markedly protected the sepsis mice and reduced the serum TNF-α and IL-6 levels. Also, MAF significantly downregulated the protein expressions of TLR4, NF-κB, and MyD88 in the livers. Importantly, MAF significantly attenuated the pathological injuries of the livers and small intestines. Further, MAF significantly increased proportion of Bacteroidota and decreased the proportions of Firmicutes, Desulfobacterota, Actinobacteriota, and Proteobacteria at phylum level, and it markedly reduced the proportions of Escherichia-Shigella, Pseudoalteromonas, Staphylococcus at genus level. Moreover, MAF affects some metabolism-related pathways such as citrate cycle (TCA cycle), lipoic acid metabolism, oxidative phosphorylation, bacterial chemotaxis, fatty acid biosynthesis, and peptidoglycan biosynthesis of the intestinal flora. Thus, it can be concluded that MAF as a treatment reduces the inflammatory responses in vitro and in vivo by inhibiting the TLR4/ MyD88/NF-κB pathway, and corrects intestinal flora imbalance during sepsis to some degree.

14.
Article in English | MEDLINE | ID: mdl-38489082

ABSTRACT

Edaravone dexborneol (ED) is a novel neuroprotective compound that consists of two active ingredients, edaravone and ( +)-borneol in a 4:1 ratio, which has been shown the anti-inflammatory properties in animal models of ischemic stroke, cerebral hemorrhage, and autoimmune encephalomyelitis. However, the effect of ED on the polarization of microglia in neuroinflammation has not been elucidated. This study was to investigate the effects of ED on the polarization of microglia induced by lipopolysaccharide (LPS) and potential mechanisms. BV-2 microglial cells were incubated with ED (100, 200, and 400 µM) for 2 h, followed by lipopolysaccharide (LPS, 1 µg/ml) for 12 h. The researchers used the Griess method, western blot, immunocytochemistry, and subcellular fractionation to assess the effects and potential mechanisms of ED on neuroinflammatory reactions. The expression of ROS and the activities of antioxidant enzymes (SOD, GPx, and CAT) in LPS-induced BV-2 cells were also measured using the DCFH-DA fluorescent probe and colorimetric methods, respectively. It was observed that ED significantly declined the levels of TLR4/NF-κB pathway-associated proteins (TLR4, MyD88, p65, p-p65, IκBα, p-IκBα, IKKß, p-IKKß) and therefore inhibited LPS-induced production of NO, IL-1ß, and TNF-α. Moreover, ED markedly downregulated the M1 marker (iNOS) and upregulated the M2 marker (Arginase-1, Ym-1). In addition, ED also reduced ROS generation and enhanced GPx activity. ED induced the polarization of LPS-stimulated microglia from M1 to M2 against inflammation by negatively regulating the TLR4/MyD88/NF-κB signaling pathway. Additionally, ED performed antioxidative function by depleting the intracellular excessive ROS caused by LPS through the enhancement of the enzymatic activity of GPx. ED may be a potential agent to attenuate neuroinflammation via regulating the polarization of microglia.

15.
Toxicol Appl Pharmacol ; 484: 116880, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447874

ABSTRACT

Gastric ulcer (GU) is a serious upper gastrointestinal tract disorder that affects people worldwide. The drugs now available for GU treatment have a high rate of relapses and drug interactions, as well as mild to severe side effects. As a result, new natural therapeutic medications for treating GU with fewer negative side effects are desperately needed. Because of quercetin's (QCT) diverse pharmacological effects and unique structural features, we decided to semi-synthesize new QCT derivatives and test them for antiulcer activity. Docking assays were performed on the synthesized compounds to determine their affinity for TLR-4/MD-2, MyD88/TIR, and NF-κB domains, an important inflammatory pathway involved in GU development and progression. Mice were given oral famotidine (40 mg/kg/day), QCT, QCT pentamethyl (QPM), or QCT pentaacetyl (QPA) (50 mg/kg/day) for 5 days before GU induction by a single intraperitoneal injection of indomethacin (INDO; 18 mg/kg). QPM and QPA have a stronger binding affinity for TLR-4/MD-2, MyD88/TIR and NF-κB domains than QCT. In comparison, they demonstrated the greatest reduction in ulcer score and index, gastric MDA and nitric oxide (NO) contents, MyD88 and NF-κB expressions, and gastric TLR-4 immunostaining. They also enhanced the levels of GSH, CAT, COX-1, and COX-2 in the gastric mucosa, as well as HO-1 and Nrf2 expression, with histological regression in gastric mucosal lesions, with QPA-treated mice demonstrating the best GU healing. QPA is safe against all of the target organs and adverse pathways studied, with good ADME properties. However, further in vitro experiments are necessary to demonstrate the inhibitory effects of QPM and QPA on the protein targets of interest. In addition, preclinical research on its bioavailability and safety is essential before clinical management can be undertaken. Overall, the new QPA derivative could one day serve as the basis for a new class of potential antiulcer drugs.


Subject(s)
Indomethacin , Stomach Ulcer , Humans , Mice , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Quercetin/pharmacology , Quercetin/therapeutic use , Molecular Docking Simulation , Ulcer/metabolism , Ulcer/pathology , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology
16.
Biochem Biophys Res Commun ; 705: 149756, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38460440

ABSTRACT

Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.


Subject(s)
Myocardial Infarction , Stilbenes , Rats , Animals , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Resveratrol/pharmacology , Stilbenes/pharmacology , Stilbenes/therapeutic use , Lipopolysaccharides/pharmacology , Ligands , Molecular Docking Simulation , Rats, Wistar , Myocardial Infarction/drug therapy , Diet
17.
Carbohydr Polym ; 334: 122030, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553228

ABSTRACT

According to traditional Chinese medicine theory, Ganoderma lucidum (G. lucidum) presents certain effects for nourishing nerves and calming the mind. G. lucidum polysaccharides (GLPs) have various biological activities; however, the structural characterization and the structure-activity relationship in anti-neuroinflammation of GLPs needs to be further investigated. In this work, the crude polysaccharide GL70 exhibited a remarkable impact on enhancing the spatial learning and memory function, as well as reducing the anxiety symptoms of the lipopolysaccharide (LPS)-induced rat model of Alzheimer's disease (AD). A galactoglucomannan (GLP70-1-2) was isolated from GL70, and characterized by monosaccharide composition, partial acid hydrolysis, methylation, and NMR analysis. The backbone of GLP70-1-2 was →6)-α-D-glcp-(1 â†’ 6)-ß-D-galp-(1 â†’ [6)-ß-D-manp-(1]3 â†’ 4)-α-D-Glcp-(1 â†’ 6)-α-D-glcp-(1 â†’ 2)-ß-D-galp-(1 â†’ [4)-α-D-glcp-(1 â†’ 6)-ß-D-manp-(1 â†’ 2)-ß-D-galp-(1]2 â†’ 6)-ß-D-glcp-(1 â†’ 6)-ß-D-glcp-(1→ with two side chains attached to O-4 of →6)-ß-D-galp-(1→ and O-3 of →6)-ß-D-glcp-(1→, respectively. In addition, GLP70-1-2 exhibited remarkable efficacy in decreasing the level of pro-inflammatory factors in LPS-activated BV2 cells through the TLR4/MyD88/NF-κB pathway. Collectively, GLP70-1-2 exhibited significant anti-neuroinflammatory activity and may have the potential for developing as a drug for AD.


Subject(s)
Reishi , Rats , Animals , Reishi/chemistry , Lipopolysaccharides/toxicity , Mannans/chemistry , Polysaccharides/chemistry
18.
J Invest Dermatol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38447867

ABSTRACT

Rosacea is a chronic inflammatory skin disorder characterized by immune response-dependent erythema and pustules. S100A9, a proinflammatory alarmin, has been associated with various inflammation-related diseases. However, the specific role of S100A9 in rosacea remains unexplored. Therefore, our objective was to unravel the role of S100A9 in the pathogenesis of rosacea and its underlying molecular mechanisms. In this study, we show that expression levels of S100A9 were elevated in both the lesions and serum of patients with papulopustular rosacea as well as in lesions of the LL37-induced rosacea-like mouse model. Moreover, the upregulation of S100A9 was correlated with clinical severity and levels of inflammatory cytokines. In addition, we demonstrated that S100A9 promoted the production of proinflammatory factors in HaCaT cells by activating toll-like receptor 4/MyD88/NF-κB signaling pathways. Notably, inhibition of S100A9 suppressed the progression of rosacea-like dermatitis and inflammatory responses in the LL37-induced rosacea-like mouse model through toll-like receptor 4/MyD88/NF-κB signaling pathways. In conclusion, this study illustrated that S100A9 participates in the pathogenesis of rosacea by upregulating toll-like receptor 4/MyD88/NF-κB signaling pathways, thereby promoting rosacea-associated skin inflammation. These results not only expand our understanding of the potential role of S100A9 in the development of rosacea but also offer greater insight toward targeted therapies.

19.
Phytomedicine ; 128: 155530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493723

ABSTRACT

BACKGROUND: Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN: This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS: NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION: In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Myeloid Differentiation Factor 88 , NF-kappa B , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Animals , Myeloid Differentiation Factor 88/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , Ginsenosides/pharmacology , Gastrointestinal Microbiome/drug effects , Signal Transduction/drug effects , Male , Rats, Sprague-Dawley , Brain-Gut Axis/drug effects , Panax notoginseng/chemistry , Rats , Infarction, Middle Cerebral Artery/drug therapy , Disease Models, Animal , Ischemic Stroke/drug therapy , Brain Ischemia/drug therapy
20.
Antioxidants (Basel) ; 13(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38539827

ABSTRACT

Gardenia jasminoides Ellis is abundant in crocin and has a longstanding historical usage both as a dietary and natural ethnic medicine. Enhanced studies have increasingly revealed the intricate interplay between glycolipid metabolism and gut microbiota, wherein their imbalance is regarded as a pivotal indicator of metabolic disorders. Currently, the precise molecular mechanism of the crude extract of crocin from Gardenia jasminoides Ellis (GC) targeting gut microbiota to regulate glycolipid metabolism disorder is still unclear. Firstly, we explored the effect of GC on digestive enzymes (α-amylase and α-glucosidase) in vitro. Secondly, we investigated the effect of GC on the physical and chemical parameters of high-fat diet (HFD) rats, such as body weight change, fasting blood glucose and lipid levels, and liver oxidative stress and injury. Then, 16S rDNA sequencing was used to analyze the effects of GC on the composition and structure of gut microbiota. Finally, the impact of GC on the TLR4/Myd88/NF-κB signaling pathway in the intestine was assessed by Western Blotting. In the present study, GC was found to exhibit a hypoglycemic effect in vitro, by inhibition of digestive enzymes. In animal experiments, we observed that GC significantly reduced fasting blood glucose, TC, and TG levels while increasing HDL-C levels. Additionally, GC demonstrated hepatoprotective properties by enhancing liver antioxidative capacity through the upregulation of SOD, CAT, and GSH-Px, while reducing ROS. 16S rDNA sequencing results showed that GC had a significant effect on the gut microbiota of HFD rats, mainly by reducing the ratio of Firmicutes/Bateroidota, and significantly affected the genera related to glycolipid metabolism, such as Akkermansia, Ligilactobacillus, Lactobacillus, Bacteroides, Prevotellaceae, etc. The Western Blotting results demonstrated that GC effectively downregulated the protein expressions of TLR4, Myd88, and NF-κB in the intestine of HFD rats, indicating that GC could target the TLR4/Myd88/NF-κB pathway to interfere with glycolipid metabolism disorder. Correlation analysis revealed that GC could target the Akkermansia-TLR4/Myd88/NF-κB pathway axis which attenuates glycolipid metabolism disorder. Therefore, this study establishes the foundation for GC as a novel therapeutic agent for glycolipid metabolism disorder chemoprevention, and it introduces a novel methodology for harnessing the potential of natural botanical extracts in the prevention and treatment of metabolic syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...