Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.891
Filter
1.
Biomed Pharmacother ; 177: 117037, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959602

ABSTRACT

The inhibition of autophagy is a potential therapeutic strategy to improve the chemosensitivity of triple-negative breast cancer (TNBC). In this study, we demonstrated that a natural terpenoid tanshinone I (TAN) enhanced the effectiveness of paclitaxel (PTX), at least in part, through an autophagy-dependent mechanism against TNBC. In vitro validation demonstrated that the combined therapy resulted in a synergistic decrease in the growth of TNBC cells. The chemosensitizing impact of TAN might be attributed to its inhibition of PTX-induced autophagy in the late phase by obstructing the fusion of autophagosomes and lysosomes, rather than by inhibiting lysosomal function. The findings from KEGG pathway analysis and molecular docking suggested that TAN might impact breast cancer chemoresistance primarily through the PI3K-Akt and MAPK signaling pathways. The non-canonical AKT/p38 MAPK signaling was further validated as the primary mechanism responsible for the inhibition of autophagy by TAN. In vivo study showed that the combined administration of TAN and PTX demonstrated a more significant suppression of tumor growth and autophagic activity compared to PTX monotherapy in the MDA-MB-231 xenograft nude mouse model. The safety evaluation of TAN in a zebrafish model, along with in vitro and in vivo validation, provided experimental and pre-clinical data supporting its potential as a natural adjunctive therapy in TNBC. Overall, this study suggests that the combination of TAN with PTX could provide an effective treatment option for advanced breast cancer, and targeting the AKT/p38 MAPK/late-autophagy signaling axis may be a promising approach for developing therapeutic interventions against TNBC.

2.
Biochem Pharmacol ; 226: 116408, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969297

ABSTRACT

Metastatic recurrence is still a major challenge in breast cancer treatment. Patients with triple negative breast cancer (TNBC) develop early recurrence and relapse more frequently. Due to the lack of specific therapeutic targets, new targeted therapies for TNBC are urgently needed. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway is one of the active pathways involved in chemoresistance and survival of TNBC, being considered as a potential target for TNBC treatment. Our present study identified ticagrelor, an anti-platelet drug, as a pan-PI3K inhibitor with potent inhibitory activity against four isoforms of class I PI3K. At doses normally used in clinic, ticagrelor showed weak cytotoxicity against a panel of breast cancer cells, but significantly inhibited the migration, invasion and the actin cytoskeleton organization of human TNBC MDA-MB-231 and SUM-159PT cells. Mechanistically, ticagrelor effectively inhibited PI3K downstream mTOR complex 1 (mTORC1) and mTORC2 signaling by targeting PI3K and decreased the protein expression of epithelial-mesenchymal transition (EMT) markers. In vivo, ticagrelor significantly suppressed tumor cells lung metastasis in 4T1 tumor bearing BALB/c mice model and experimental lung metastasis model which was established by tail vein injection of GFP-labeled MDA-MB-231 cells. The above data demonstrated that ticagrelor can inhibit the migration and invasion of TNBC both in vitro and in vivo by targeting PI3K, suggesting that ticagrelor, a pan-PI3K inhibitor, might represent a promising therapeutic agent for the treatment of metastatic TNBC.

3.
Sci Rep ; 14(1): 15691, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977697

ABSTRACT

Breast invasive carcinoma (BRCA) is the most malignant and leading cause of death in women. Global efforts are ongoing for improvement in early detection, prevention, and treatment. In this milieu, a comprehensive analysis of RNA-sequencing data of 1097 BRCA samples and 114 normal adjacent tissues is done to identify dysregulated genes in major molecular classes of BRCA in various clinical stages. Significantly enriched pathways in distinct molecular classes of BRCA have been identified. Pathways such as interferon signaling, tryptophan degradation, granulocyte adhesion & diapedesis, and catecholamine biosynthesis were found to be significantly enriched in Estrogen/Progesterone Receptor positive/Human Epidermal Growth Factor Receptor 2 negative, pathways such as RAR activation, adipogenesis, the role of JAK1/2 in interferon signaling, TGF-ß and STAT3 signaling intricated in Estrogen/Progesterone Receptor negative/Human Epidermal Growth Factor Receptor 2 positive and pathways as IL-1/IL-8, TNFR1/TNFR2, TWEAK, and relaxin signaling were found in triple-negative breast cancer. The dysregulated genes were clustered based on their mutation frequency which revealed nine mutated clusters, some of which were well characterized in cancer while others were less characterized. Each cluster was analyzed in detail which led to the identification of NLGN3, MAML2, TTN, SYNE1, ANK2 as candidate genes in BRCA. They are central hubs in the protein-protein-interaction network, indicating their important regulatory roles. Experimentally, the Real-Time Quantitative Reverse Transcription PCR and western blot confirmed our computational predictions in cell lines. Further, immunohistochemistry corroborated the results in ~ 100 tissue samples. We could experimentally show that the NLGN3 & ANK2 have tumor-suppressor roles in BRCA as shown by cell viability assay, transwell migration, colony forming and wound healing assay. The cell viability and migration was found to be significantly reduced in MCF7 and MDA-MB-231 cell lines in which the selected genes were over-expressed as compared to control cell lines. The wound healing assay also demonstrated a significant decrease in wound closure at 12 h and 24 h time intervals in MCF7 & MDA-MB-231 cells. These findings established the tumor suppressor roles of NLGN3 & ANK2 in BRCA. This will have important ramifications for the therapeutics discovery against BRCA.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Regulatory Networks , Signal Transduction , Gene Expression Profiling , Cell Line, Tumor , Neoplasm Invasiveness
4.
Adv Sci (Weinh) ; : e2404628, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981022

ABSTRACT

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. TP53, which has a mutation rate of ≈70%-80% in TNBC patients, plays oncogenic roles when mutated. However, whether circRNAs can exert their effects on TNBC through regulating mutant TP53 has not been well evaluated. In this study, circCFL1, which is highly expressed in TNBC cells and tissues and has prognostic potential is identified. Functionally, circCFL1 promoted the proliferation, metastasis and stemness of TNBC cells. Mechanistically, circCFL1 acted as a scaffold to enhance the interaction between HDAC1 and c-Myc, further promoting the stability of c-Myc via deacetylation-mediated inhibition of K48-linked ubiquitylation. Stably expressed c-Myc further enhanced the expression of mutp53 in TNBC cells with TP53 mutations by directly binding to the promoter of TP53, which promoted the stemness of TNBC cells via activation of the p-AKT/WIP/YAP/TAZ pathway. Moreover, circCFL1 can facilitate the immune escape of TNBC cells by promoting the expression of PD-L1 and suppressing the antitumor immunity of CD8+ T cells. In conclusion, the results revealed that circCFL1 plays an oncogenic role by promoting the HDAC1/c-Myc/mutp53 axis, which can serve as a potential diagnostic biomarker and therapeutic target for TNBC patients with TP53 mutations.

5.
Cancer Innov ; 3(4): e124, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948251

ABSTRACT

Background: Increased glycolytic activity and lactate production are characteristic features of triple-negative breast cancer (TNBC). The aim of this study was to determine whether a subset of lactate-responsive genes (LRGs) could be used to classify TNBC subtypes and predict patient outcomes. Methods: Lactate levels were initially measured in different breast cancer (BC) cell types. Subsequently, MDA-MB-231 cells treated with 2-Deoxy-d-glucose or l-lactate were subjected to RNA sequencing (RNA-seq). The gene set variation analysis algorithm was utilized to calculate the lactate-responsive score, conduct a differential analysis, and establish an association with the extent of immune infiltration. Consensus clustering was then employed to classify TNBC patients. Tumor immune dysfunction and exclusion, cibersort, single-sample gene set enrichment analysis, and EPIC, were used to compare the tumor-infiltrating immune cells between TNBC subtypes and predict the response to immunotherapy. Furthermore, a prognostic model was developed by combining 98 machine learning algorithms, to assess the predictive significance of the LRG signature. The predictive value of immune infiltration and the immunotherapy response was also assessed. Finally, the association between lactate and various anticancer drugs was examined based on expression profile similarity principles. Results: We found that the lactate levels of TNBC cells were significantly higher than those of other BC cell lines. Through RNA-seq, we identified 14 differentially expressed LRGs in TNBC cells under varying lactate levels. Notably, this LRG signature was associated with interleukin-17 signaling pathway dysregulation, suggesting a link between lactate metabolism and immune impairment. Furthermore, the LRG signature was used to categorize TNBC into two distinct subtypes, whereby Subtype A was characterized by immunosuppression, whereas Subtype B was characterized by immune activation. Conclusion: We identified an LRG signature in TNBC, which could be used to predict the prognosis of patients with TNBC and gauge their response to immunotherapy. Our findings may help guide the precision treatment of patients with TNBC.

6.
Sci Rep ; 14(1): 15116, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956424

ABSTRACT

Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.


Subject(s)
Caspase 9 , Cell Movement , Organoids , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Caspase 9/metabolism , Cell Movement/drug effects , Organoids/drug effects , Organoids/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Neoplasm Metastasis , Epithelial-Mesenchymal Transition/drug effects , Female , Neoplasm Invasiveness , Coculture Techniques , Fibroblasts/metabolism , Fibroblasts/drug effects , MDA-MB-231 Cells
7.
Clin Breast Cancer ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38987035

ABSTRACT

BACKGROUND: It remains unknown whether the tumor stage at initial diagnosis and adjuvant treatments had any impacts on the long-term survival outcomes of patients with triple-negative breast cancer (TNBC) achieving pathologic complete response (pCR) following neoadjuvant chemotherapy (NACT). METHODS: Clinical stage II-III patients with TNBC who achieved pCR after NACT were identified from the Surveillance, Epidemiology, and End Results (SEER) program (SEER cohort) and the National Clinical Research Center for Cancer (Tianjin) in China (TMUCIH cohort). Survival analyses were conducted based on tumor stages and the types of adjuvant treatment received by the patients. The outcomes of interest were overall survival (OS) and breast cancer-specific survival (BCSS). RESULTS: The TMUCIH cohort comprised 178 patients with a median follow-up of 55.5 months. Two and 3 patients experienced BCSS and OS events, respectively. The SEER cohort included 1218 patients with a median follow-up of 65.5 months, where 53 and 78 patients experienced BCSS and OS events, respectively. Patients diagnosed with stage III disease had significantly higher hazards of death compared to stage II disease (OS: hazard ratio [HR], 3.34; 95% confidence interval [CI], 1.84-6.07; P < .001; BCSS: HR, 2.86; 95% CI, 1.38-5.92; P < .001). Adjuvant systemic and radiation therapy did not confer additional benefits to OS and BCSS. CONCLUSION: Tumor stage at initial diagnosis remains an independent predictor of long-term survival outcomes in patients with TNBC achieving pCR after NACT. Postoperative adjuvant chemotherapy and radiation therapy do not appear to provide additional benefit to their long-term prognosis.

8.
Mol Cancer ; 23(1): 142, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987766

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common cancer in women, with triple negative BC (TNBC) accounting for 20% of cases. While early detection and targeted therapies have improved overall life expectancy, TNBC remains resistant to current treatments. Although parity reduces the lifetime risk of developing BC, pregnancy increases the risk of developing TNBC for years after childbirth. Although numerous gene mutations have been associated with BC, no single gene alteration has been identified as a universal driver. RRAS2 is a RAS-related GTPase rarely found mutated in cancer. METHODS: Conditional knock-in mice were generated to overexpress wild type human RRAS2 in mammary epithelial cells. A human sample cohort was analyzed by RT-qPCR to measure RRAS2 transcriptional expression and to determine the frequency of both a single-nucleotide polymorphism (SNP rs8570) in the 3'UTR region of RRAS2 and of genomic DNA amplification in tumoral and non-tumoral human BC samples. RESULTS: Here we show that overexpression of wild-type RRAS2 in mice is sufficient to develop TNBC in 100% of females in a pregnancy-dependent manner. In human BC, wild-type RRAS2 is overexpressed in 68% of tumors across grade, location, and molecular type, surpassing the prevalence of any previously implicated alteration. Still, RRAS2 overexpression is notably higher and more frequent in TNBC and young parous patients. The increased prevalence of the alternate C allele at the SNP position in tumor samples, along with frequent RRAS2 gene amplification in both tumors and blood of BC patients, suggests a cause-and-effect relationship between RRAS2 overexpression and breast cancer. CONCLUSIONS: Higher than normal expression of RRAS2 not bearing activating mutations is a key driver in the majority of breast cancers, especially those of the triple-negative type and those linked to pregnancy.


Subject(s)
Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Animals , Humans , Mice , Pregnancy , Oncogenes , Polymorphism, Single Nucleotide , Postpartum Period/genetics , Mutation , Gene Expression Regulation, Neoplastic , Gene Knock-In Techniques , ras Proteins/genetics , ras Proteins/metabolism , Mice, Transgenic , Disease Models, Animal , Membrane Proteins , Monomeric GTP-Binding Proteins
9.
Clin Transl Med ; 14(7): e1753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967349

ABSTRACT

BACKGROUND: Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS: We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION: Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS: YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.


Subject(s)
Epigenesis, Genetic , Triple Negative Breast Neoplasms , Y-Box-Binding Protein 1 , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Female , Epigenesis, Genetic/genetics , Animals , Disease Progression , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Histones/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Lysine/analogs & derivatives
10.
Chem Biol Interact ; 398: 111113, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38908813

ABSTRACT

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, for which targeted therapy regimens are lacking. The traditional Chinese medicine Menispermum dauricum DC (M. dauricum) and its compounds have been reported to have antitumor activity against various cancers; however, their anti-TNBC activity is unknown. In this work, dauricine and N-desmethyldauricine from M. dauricum were separated and identified to have anti-TNBC via a multi-component bioactivity and structure-guided method. The cell counting kit 8 assay showed that dauricine and N-desmethyldauricine inhibited the proliferation of four tested TNBC cell lines, with half maximal inhibitory concentration values ranging from 5.01 µM to 13.16 µM. Further research suggested that N-desmethyldauricine induced cell apoptosis, arrested cell cycle progression in the G0/G1 phase, and inhibited cell migration. Western blot analysis revealed that the proapoptotic protein cleaved-poly-ADP-ribose polymerase 1 was upregulated, and the G0/G1 phase-related proteins cyclin-dependent kinase 2 and cyclin D1 and the migration-related protein matrix metallopeptidase 9 were downregulated. Furthermore, N-desmethyldauricine decreased the protein expression of p65, an important subunit of nuclear factor kappa-beta (NF-κB). Moreover, an antiproliferation assay of three-dimensional (3D) tumor spheroids showed that N-desmethyldauricine diminished cell‒cell adhesion and suppressed the growth of TNBC 3D spheroids. Taken together, these findings indicate that N-desmethyldauricine inhibited the proliferation of TNBC cells and decreased the expression of p65 in the NF-κB pathway.


Subject(s)
Apoptosis , Benzylisoquinolines , Cell Proliferation , Down-Regulation , Menispermum , NF-kappa B , Signal Transduction , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Benzylisoquinolines/pharmacology , Benzylisoquinolines/chemistry , Apoptosis/drug effects , Down-Regulation/drug effects , Menispermum/chemistry , Cell Movement/drug effects , Female , Cyclin D1/metabolism , Tetrahydroisoquinolines
11.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38904203

ABSTRACT

Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple­negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate­activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI­402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell­cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI­402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen­activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI­402257 and AICAR monotherapy in the MDA­MB­231 xenograft model. The present study suggested that the combination of CFI­402257 and AICAR is a promising therapeutic strategy for TNBC.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Apoptosis , Autophagy , Cell Cycle Proteins , Protein Serine-Threonine Kinases , Ribonucleotides , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Female , Animals , Mice , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Ribonucleotides/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Apoptosis/drug effects , Autophagy/drug effects , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Proliferation/drug effects , Signal Transduction/drug effects , Drug Synergism , Biphenyl Compounds , Pyrones , Thiophenes
12.
Cancer Cell Int ; 24(1): 222, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937761

ABSTRACT

Triple negative breast cancer (TNBC) is a type of cancer that lacks receptor expression and has complex molecular mechanisms. Recent evidence shows that the ubiquitin-protease system is closely related to TNBC. In this study, we obtain a key ubiquitination regulatory substrate-ABI2 protein by bioinformatics methods, which is also closely related to the survival and prognosis of TNBC. Further, through a series of experiments, we demonstrated that ABI2 expressed at a low level in TNBC tumors, and it has the ability to control cell cycle and inhibit TNBC cell migration, invasion and proliferation. Molecular mechanism studies proved E3 ligase CBLC could increase the ubiquitination degradation of ABI2 protein. Meanwhile, RNA-seq and IP experiments indicated that ABI2, acting as a crucial factor of tumor suppression, can significantly inhibit PI3K/Akt signaling pathway via the interaction with Rho GTPase RAC1. Finally, based on TNBC drug target ABI2, we screened and found that FDA-approved drug Colistimethate sodium(CS) has significant potential in suppressing the proliferation of TNBC cells and inducing cell apoptosis, making it a promising candidate for impeding the progression of TNBC.

13.
Life (Basel) ; 14(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38929666

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is associated with high recurrence rates, a high incidence of distant metastases and poor overall survival. The aim of this study was to investigate the role of PD-L1, EGFR and AR expression in TNBC promotion and progression. To that end, we analyzed the immunohistochemical expression of these genes in 125 TNBC patients and their relation to clinicopathological parameters and survival. An elevated expression of PD-L1 was significantly correlated with higher tumor and nuclear grade, while a low expression was correlated with loco-regional recurrence without any influence on survival. Contrary to this, the expression of AR showed a positive impact on the DFI and a negative association with tumor grade. Furthermore, PD-L1 and AR demonstrated simultaneous expression, and further co-expression analysis revealed that a positive expression of PD-L1/AR notably correlates with tumor and nuclear grade and has a significant impact on a longer DFI and OS, while a negative PD-L1/AR expression is significantly associated with metastases. Therefore, our results suggest that positive PD-L1/AR expression is beneficial for TNBC patients. In addition, an elevated expression of EGFR contributes to metastases and a worse DFI and OS. In conclusion, we think that low PD-L1/low AR/high EGFR expression followed by high Ki67 expression constitutes a 'high risk' profile of TNBC.

14.
Mol Pharm ; 21(7): 3577-3590, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38857525

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by high malignancy and limited treatment options. Given the pressing need for more effective treatments for TNBC, this study aimed to develop platelet membrane (PM)-camouflaged silver metal-organic framework nanoparticles (PM@MOF-Ag NPs), a biomimetic nanodrug. PM@MOF-Ag NP construction involved the utilization of 2-methylimidazole and silver nitrate to prepare silver metal-organic framework (MOF-Ag) NPs. The PM@MOF-Ag NPs, due to their camouflage, possess excellent blood compatibility, immune escape ability, and a strong affinity for 4T1 tumor cells. This enhances their circulation time in vivo and promotes the aggregation of PM@MOF-Ag NPs at the 4T1 tumor site. Importantly, PM@MOF-Ag NPs demonstrated promising antitumor activity in vitro and in vivo. We further revealed that PM@MOF-Ag NPs induced tumor cell death by overproducing reactive oxygen species and promoting cell apoptosis. Moreover, PM@MOF-Ag NPs enhanced apoptosis by upregulating the ratios of Bax/Bcl-2 and cleaved caspase3/pro-caspase3. Notably, PM@MOF-Ag NPs exhibited no significant organ toxicity, whereas the administration of MOF-Ag NPs resulted in liver inflammation compared to the control group.


Subject(s)
Apoptosis , Metal Nanoparticles , Metal-Organic Frameworks , Reactive Oxygen Species , Silver , Triple Negative Breast Neoplasms , Metal-Organic Frameworks/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Female , Silver/chemistry , Mice , Apoptosis/drug effects , Cell Line, Tumor , Metal Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Humans , Mice, Inbred BALB C , Blood Platelets/drug effects , Blood Platelets/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetics/methods , Xenograft Model Antitumor Assays , Nanoparticles/chemistry
15.
Cell Oncol (Dordr) ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888849

ABSTRACT

PURPOSE: Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients. METHODS: Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo. RESULTS: We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC. CONCLUSIONS: In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.

16.
Future Oncol ; : 1-21, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922307

ABSTRACT

Patients with early-stage triple-negative breast cancer (TNBC) with residual invasive disease after neoadjuvant therapy have a high risk of recurrence even with neoadjuvant and adjuvant treatment with pembrolizumab. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate with a topoisomerase I inhibitor payload, improved progression-free survival (PFS) and overall survival (OS) versus chemotherapy in patients with pre-treated metastatic TNBC. Moreover, preclinical data suggest that topoisomerase I inhibitors may enhance the effects of immune checkpoint inhibitors through activation of the cGAS-STING pathway. Here we describe the international randomized phase III AFT-65/ASCENT-05/OptimICE-RD trial, which evaluates the efficacy and safety of sacituzumab govitecan plus pembrolizumab versus treatment of physician's choice (pembrolizumab ± capecitabine) among patients with early-stage TNBC with residual invasive disease after neoadjuvant therapy.Clinical Trial Registration: NCT05633654 (ClinicalTrials.gov)Other Study ID Number(s): Gilead Study ID: GS-US-595-6184Registration date: 1 December 2022Study start date: 12 December 2022Recruitment status: Recruiting.


AFT-65/ASCENT-05/OptimICE-RD is an ongoing clinical trial that is testing a new treatment combination for patients with stage II or III triple-negative breast cancer (TNBC). Stage II­III means the cancer is confined to the breast and/or nearby lymph nodes and can be surgically removed. However, there remains a risk that the cancer could recur after surgery. To reduce this risk, patients with stage II­III TNBC receive anti-cancer medication before and after surgery. For some patients, receipt of anti-cancer medication before surgery produces a pathologic complete response (pCR), meaning there is no observable cancer left behind at surgery. Patients with a pCR have a lower risk of recurrence than patients with residual disease.The AFT-65/ASCENT-05/OptimICE-RD trial includes people with stage II-III TNBC who have residual cancer after completing their course of pre-surgery anti-cancer medication. All participants have any remaining cancer in their breast and/or lymph nodes removed surgically, after which they are randomly assigned to receive one of two treatments. The experimental therapy consists of pembrolizumab along with a medication called sacituzumab govitecan, which kills cancer cells directly and may strengthen the anti-cancer immune response. Pembrolizumab strengthens the anti-cancer immune response, so the hypothesis of this trial is that the two medications will be more effective together. The control therapy consists of pembrolizumab, alone or in combination with a chemotherapy medication called capecitabine, which is the current standard of care. To study the effectiveness of each treatment, the researchers are following up with all participants to learn if and when their breast cancer returns.

17.
Cell Rep Med ; 5(6): 101595, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838676

ABSTRACT

Luminal androgen receptor (LAR)-enriched triple-negative breast cancer (TNBC) is a distinct subtype. The efficacy of AR inhibitors and the relevant biomarkers in neoadjuvant therapy (NAT) are yet to be determined. We tested the combination of the AR inhibitor enzalutamide (120 mg daily by mouth) and paclitaxel (80 mg/m2 weekly intravenously) (ZT) for 12 weeks as NAT for LAR-enriched TNBC. Eligibility criteria included a percentage of cells expressing nuclear AR by immunohistochemistry (iAR) of at least 10% and a reduction in sonographic volume of less than 70% after four cycles of doxorubicin and cyclophosphamide. Twenty-four patients were enrolled. Ten achieved a pathologic complete response or residual cancer burden-I. ZT was safe, with no unexpected side effects. An iAR of at least 70% had a positive predictive value of 0.92 and a negative predictive value of 0.97 in predicting LAR-enriched TNBC according to RNA-based assays. Our data support future trials of AR blockade in early-stage LAR-enriched TNBC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzamides , Neoadjuvant Therapy , Nitriles , Paclitaxel , Phenylthiohydantoin , Receptors, Androgen , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Phenylthiohydantoin/therapeutic use , Phenylthiohydantoin/pharmacology , Nitriles/therapeutic use , Benzamides/therapeutic use , Female , Receptors, Androgen/metabolism , Middle Aged , Neoadjuvant Therapy/methods , Paclitaxel/therapeutic use , Paclitaxel/pharmacology , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
18.
Crit Rev Oncol Hematol ; 201: 104417, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901639

ABSTRACT

Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.

19.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38847271

ABSTRACT

Subsequently to the publication of the article, an interested reader drew to the authors' attention that, in Fig. 2A on p. 5, the 'Control  (24 h)' and 'MTH­3 (1 µM; 24 h)' data panels contained partially overlapping data, such that they appeared to have been derived from the same original source. The authors have examined their original data, and realized that this error arose inadvertently as a consequence of having compiled this figure incorrectly. The revised version of Fig. 2, featuring the data from one of the repeated experiments in Fig. 2A, is shown below. The revised data shown for this figure do not affect the overall conclusions reported in the paper. The authors apologize to the Editor of Oncology Reports and to the readership for any inconvenience caused. [Oncology Reports 46: 133, 2021; DOI: 10.3892/or.2021.8084].

20.
Cancer Lett ; 597: 217008, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38849012

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear. Immunoblotting was performed to determine SFXN1 expression levels. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry were used to identify the downstream targets of SFXN1. Mechanistic studies of SFXN1 and cellular inhibitor of PP2A (CIP2A) were performed using immunoblotting, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Functional experiments were used to investigate the role of SFXN1 in TNBC cells. SFXN1 was significantly overexpressed in TNBC tumor tissues and was associated with unfavorable outcomes in patients with TNBC. Functional experiments demonstrated that SFXN1 promoted TNBC growth and metastasis in vitro and in vivo. Mechanistic studies revealed that SFXN1 promoted TNBC progression by inhibiting the autophagy receptor TOLLIP (toll interacting protein)-mediated autophagic degradation of CIP2A. The pro-tumorigenic effect of SFXN1 overexpression was partially prevented by lapatinib-mediated inhibition of the CIP2A/PP2A/p-AKT pathway. These findings may provide a new targeted therapy for patients with TNBC.

SELECTION OF CITATIONS
SEARCH DETAIL
...