Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
FASEB J ; 38(13): e23757, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38965999

ABSTRACT

Hepatic stellate cells (HSCs) are responsible for liver fibrosis accompanied by its activation into myofibroblasts and the abundant production of extracellular matrix. However, the HSC contribution to progression of liver inflammation has been less known. We aimed to elucidate the mechanism in HSCs underlying the inflammatory response and the function of tumor necrosis factor α-related protein A20 (TNFAIP3). We established A20 conditional knockout (KO) mice crossing Twist2-Cre and A20 floxed mice. Using these mice, the effect of A20 was analyzed in mouse liver and HSCs. The human HSC line LX-2 was also used to examine the role and underlying molecular mechanism of A20. In this KO model, A20 was deficient in >80% of HSCs. Spontaneous inflammation with mild fibrosis was found in the liver of the mouse model without any exogenous agents, suggesting that A20 in HSCs suppresses chronic hepatitis. Comprehensive RNA sequence analysis revealed that A20-deficient HSCs exhibited an inflammatory phenotype and abnormally expressed chemokines. A20 suppressed JNK pathway activation in HSCs. Loss of A20 function in LX-2 cells also induced excessive chemokine expression, mimicking A20-deficient HSCs. A20 overexpression suppressed chemokine expression in LX-2. In addition, we identified DCLK1 in the genes regulated by A20. DCLK1 activated the JNK pathway and upregulates chemokine expression. DCLK1 inhibition significantly decreased chemokine induction by A20-silencing, suggesting that A20 controlled chemokine expression in HSCs via the DCLK1-JNK pathway. In conclusion, A20 suppresses chemokine induction dependent on the DCLK1-JNK signaling pathway. These findings demonstrate the therapeutic potential of A20 and the DCLK1-JNK pathway for the regulation of inflammation in chronic hepatitis.


Subject(s)
Chemokines , Hepatic Stellate Cells , MAP Kinase Signaling System , Mice, Knockout , Protein Serine-Threonine Kinases , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Hepatic Stellate Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Mice , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Chemokines/metabolism , Chemokines/genetics , Hepatitis, Chronic/metabolism , Hepatitis, Chronic/pathology , Hepatitis, Chronic/genetics , Doublecortin-Like Kinases , Mice, Inbred C57BL , Cell Line , Male
2.
Proc Natl Acad Sci U S A ; 121(25): e2316551121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865260

ABSTRACT

The NLRP3 inflammasome, a pivotal component of innate immunity, has been implicated in various inflammatory disorders. The ubiquitin-editing enzyme A20 is well known to regulate inflammation and maintain homeostasis. However, the precise molecular mechanisms by which A20 modulates the NLRP3 inflammasome remain poorly understood. Here, our study revealed that macrophages deficient in A20 exhibit increased protein abundance and elevated mRNA level of NIMA-related kinase 7 (NEK7). Importantly, A20 directly binds with NEK7, mediating its K48-linked ubiquitination, thereby targeting NEK7 for proteasomal degradation. Our results demonstrate that A20 enhances the ubiquitination of NEK7 at K189 and K293 ubiquitinated sites, with K189 playing a crucial role in the binding of NEK7 to A20, albeit not significantly influencing the interaction between NEK7 and NLRP3. Furthermore, A20 disrupts the association of NEK7 with the NLRP3 complex, potentially through the OTU domain and/or synergistic effect of ZnF4 and ZnF7 motifs. Significantly, NEK7 deletion markedly attenuates the activation of the NLRP3 inflammasome in A20-deficient conditions, both in vitro and in vivo. This study uncovers a mechanism by which A20 inhibits the NLRP3 inflammasome.


Subject(s)
Inflammasomes , NIMA-Related Kinases , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor alpha-Induced Protein 3 , Ubiquitination , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Animals , Mice , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Humans , Macrophages/metabolism , Macrophages/immunology , HEK293 Cells , Mice, Knockout , Protein Binding
3.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928333

ABSTRACT

A20, the central inhibitor of NFκB, has multiple anti-inflammatory properties, making it an interesting target in kidney autoimmune disease and transplant biology. It has been shown to be able to inhibit inflammatory functions in macrophages, dendritic cells, T cells, and B cells in various ways, leading to less tissue damage and better graft outcomes. In this review, we will discuss the current literature regarding A20 in kidney transplantation and autoimmunity. Future investigations on animal models and in existing immunosuppressive therapies are needed to establish A20 as a therapeutic target in kidney transplantation and autoimmunity. Cell-based therapies, modified viruses or RNA-based therapies could provide a way for A20 to be utilized as a promising mediator of inflammation and tissue damage.


Subject(s)
Autoimmunity , Kidney Transplantation , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Animals , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Graft Rejection/immunology , Graft Rejection/prevention & control
4.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Article in English | MEDLINE | ID: mdl-38720423

ABSTRACT

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Coculture Techniques , Fibroblasts , Lung Diseases, Interstitial , Macrophages, Alveolar , Scleroderma, Systemic , Tumor Necrosis Factor alpha-Induced Protein 3 , Female , Humans , Male , Middle Aged , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Fibroblasts/metabolism , HEK293 Cells , Interleukin-10/metabolism , Interleukin-10/genetics , Lung/metabolism , Lung/pathology , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/etiology , Macrophages, Alveolar/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/complications , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Adult , Aged
5.
Arch Rheumatol ; 39(1): 60-70, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38774701

ABSTRACT

Objectives: The aim of our study was to investigate whether TNFAIP3, PTPN22, and TRAF1-5 single nucleotide polymorphisms (SNPs) are associated with susceptibility, severity, or serological markers in primary Sjögren's syndrome (pSS). Patients and methods: The cases and controls study was conducted between December 2021 and June 2022. TNFAIP3 rs10499194C/T, rs6920220G/A, and rs2230926T/G, PTPN22 rs2476601C/T and rs33996649G/A, and TRAF1-C5 rs10818488G/A polymorphisms were genotyped in 154 female pSS patients (mean age: 45.2±6.8 years) and 313 female control subjects (mean age: 50.3±7.5 years) using the TaqMan® SNP genotyping assay. An association analysis between TNFAIP3, PTPN22, and TRAF1-C5 SNPs and susceptibility, clinical characteristics, and serological markers of pSS was performed. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 SNPs were also evaluated in patients and controls. Results: The genotype and allele frequencies showed no association with susceptibility, severity, or serological markers of pSS. Nevertheless, several interactions between TNFAIP3 and TRAF1-C5 or TNFAIP3, PTPN22, and TRAF1-C5 genotypes were associated with susceptibility to pSS (p<0.01). Conclusion: Individual TNFAIP3, PTPN22, and TRAF1-C5 SNPs are not associated with susceptibility, severity, or serological markers of pSS. However, genetic interactions between TRAF1-C5 and TNFAIP3 or TNFAIP3, PTPN22, and TRAF1-C5 SNPs are risk factors for pSS.

6.
Mol Biol Rep ; 51(1): 545, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642181

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic inflammation. Its pathogenesis involves immunological, genetic, and environmental factors. We investigate the association between Tumor Necrosis Factor α Protein 3 (TNFAIP3), Interleukin 10 (IL10), Tumor Necrosis Factor α (TNF α), and Interleukin 17 F (IL17F) polymorphisms with susceptibility to RA. METHODS AND RESULTS: 191 patients with RA diagnosed according to the American College of Rheumatology (ACR)/ European League Against Rheumatism (EULAR) classification and 190 healthy subjects were recruited. Rheumatoid factor (RF), anti-citrullinated peptide antibodies (ACPA), and C-reactive protein (CRP) were measured. Genotyping of the polymorphisms was performed by real-time PCR. Analysis of the allelic frequencies of TNFAIP3 showed a positive association OR (95% CI) = 1.46 (1.01-2.09); p = 0.04, but failed to meet the criteria of significance after Bonferroni Correction. The genotypic and allelic distribution of the IL10, IL17F, and TNFα showed no significant difference when comparing the RA group with controls. Furthermore, the genotype codominant model shows a moderate positive association in the presence of ACPA (OR (95% CI) = 2.82 (1.22-6.24); p = 0.01. None of the polymorphisms studied was associated with RF and CRP production. CONCLUSION: Our results show that there is a tendency for the AG genotype of IL10-1082 to be associated with the production of ACPA in patients with RA. None of the variants studied were associated with RA susceptibility in Algerians.


Subject(s)
Arthritis, Rheumatoid , North African People , Tumor Necrosis Factor-alpha , Humans , Anti-Citrullinated Protein Antibodies , Autoantibodies , C-Reactive Protein/genetics , Interleukin-10 , Interleukin-17/genetics , Tumor Necrosis Factor alpha-Induced Protein 3 , Tumor Necrosis Factor-alpha/genetics
7.
Front Immunol ; 15: 1373745, 2024.
Article in English | MEDLINE | ID: mdl-38680500

ABSTRACT

Background: Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to Trichuris muris infection. Methods: We use the in vivo mouse model A20myel-KO, characterized by the deletion of the potent anti-inflammatory factor A20 (TNFAIP3) specifically in the myeloid cells, the excessive type-1 cytokine production, and the development of spontaneous arthritis. We infect A20myel-KO mice with the gastrointestinal helminth Trichuris muris and we analyzed the innate and adaptive responses. We performed RNA sequencing on sorted myeloid cells to investigate the role of A20 on macrophage polarization and type-2 immunity. Moreover, we assess in A20myel-KO mice the pharmacological inhibition of type-1 cytokine pathways on helminth clearance and the infection with Salmonella typhimurium. Results: We show that proper macrophage polarization is essential for helminth clearance, and we identify A20 as an essential myeloid factor for the induction of type-2 immune responses against Trichuris muris. A20myel-KO mice are characterized by persistent Trichuris muris infection and intestinal inflammation. Myeloid A20 deficiency induces strong classical macrophage polarization which impedes anti-helminth type-2 immune activation; however, it promotes detrimental Th1/Th17 responses. Antibody-mediated neutralization of the type-1 cytokines IFN-γ, IL-18, and IL-12 prevents myeloid-orchestrated Th1 polarization and re-establishes type-2-mediated protective immunity against T. muris in A20myel-KO mice. In contrast, the strong Th1-biased immunity in A20myel-KO mice offers protection against Salmonella typhimurium infection. Conclusions: We hereby identify A20 as a critical myeloid factor for correct macrophage polarization and appropriate adaptive mucosal immunity in response to helminth and enteric bacterial infection.


Subject(s)
Disease Resistance , Macrophage Activation , Macrophages , Trichuriasis , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Mice , Cytokines/metabolism , Cytokines/immunology , Disease Models, Animal , Disease Resistance/genetics , Disease Resistance/immunology , Immunity, Innate , Macrophage Activation/immunology , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Th2 Cells/immunology , Trichuriasis/immunology , Trichuris/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
8.
Nutrients ; 16(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474770

ABSTRACT

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Subject(s)
Flavonoids , Sepsis , Shock, Septic , Mice , Animals , Sirtuin 1/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Shock, Septic/drug therapy , Endotoxins , Cytokines/metabolism , Sepsis/drug therapy , Anti-Inflammatory Agents/therapeutic use
9.
J Clin Immunol ; 44(3): 76, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451381

ABSTRACT

A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.


Subject(s)
Behcet Syndrome , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Germ-Line Mutation , Haploinsufficiency , Immunomodulation , Ubiquitins , Tumor Necrosis Factor alpha-Induced Protein 3/chemistry , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
10.
Hum Immunol ; 85(1): 110736, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042682

ABSTRACT

TNFAIP3 is a classical systemic lupus erythematosus (SLE)-associated risk locus identified by genome-wide association studies (GWASs) and replicated by candidate gene association studies primarily in Caucasians and Asians. However, in Latin American populations, its role on SLE susceptibility is not known. We conducted a case-control study to evaluate whether the TNFAIP3 rs2230926T/G (Phe127Cys) variant is associated with risk of developing SLE in a cohort of Mexican patients. The TNFAIP3 rs2230926T/G variant was analyzed in 561 patients with SLE and 499 control subjects, using TaqMan probes. We found that the G allele was associated with susceptibility to SLE under the allelic (OR 2.09, p = 0.005) and genotypic (OR 2.14, p = 0.004) models. In conclusion, our results show that TNFAIP3 rs2230926T/G is a risk factor for the development of SLE in the Mexican population.


Subject(s)
Genome-Wide Association Study , Lupus Erythematosus, Systemic , Humans , Case-Control Studies , Latin America , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , DNA-Binding Proteins/genetics , Lupus Erythematosus, Systemic/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
11.
Arch Gerontol Geriatr ; 117: 105274, 2024 02.
Article in English | MEDLINE | ID: mdl-37995648

ABSTRACT

BACKGROUND: The aging inflammatory microenvironment surrounding Leydig cells is linked to reduced testosterone levels in males. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) acts as a critical anti-inflammatory factor in various aging-related diseases. This study aims to investigate the protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. METHODS: Bioinformatics analysis examined TNFAIP3 expression differences in aging rat testes and validated the findings in aging mouse testes. In vitro models of inflammation were established using two Leydig cell lines, with tumor necrosis factor alpha (TNF-α) as the inflammatory factor. Lentiviral transduction was utilized to manipulate TNFAIP3 expression in these cell lines. Transcriptomic sequencing identified differentially expressed genes in TNFAIP3-overexpressing cells. RESULTS: Bioinformatics analysis and validation experiments revealed increased inflammatory signaling and elevated TNFAIP3 expression in aging rat and mouse testes. TNFAIP3 knockdown worsened testosterone synthesis inhibition and apoptosis in cells, while TNFAIP3 overexpression reversed these effects. Transcriptome analysis identified alterations in the P38MAPK pathway following TNFAIP3 overexpression. TNFAIP3 knockdown enhanced TNF-induced P38MAPK signaling, whereas its overexpression attenuated this effect. TNFAIP3 was found to regulate testosterone synthesis by upregulating CEBPB expression. CONCLUSIONS: TNFAIP3 exhibits inhibitory effects on apoptosis and promotes testosterone production in Leydig cells. The protective influence of TNFAIP3 on Leydig cells within an inflammatory microenvironment is likely mediated through by inhibiting the P38MAPK pathway and upregulating CEBPB expression.


Subject(s)
Leydig Cells , Testosterone , Animals , Humans , Male , Mice , Rats , Aging/physiology , Leydig Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
12.
J Invest Dermatol ; 144(6): 1282-1294.e8, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38128752

ABSTRACT

A20 haploinsufficiency is an autoinflammatory disease caused by defective inactivation of the NF-κB pathway. We conducted a systematic literature review of articles reporting patients with TNFAIP3 sequence variants from 2016 to August 2023 following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Data from 177 patients from 65 articles were retrieved (108 women). The principal features were mucosal ulcers (n = 129); fever (n = 93) followed by gastrointestinal (n = 81); skin features (n = 76); autoimmunity (n = 61), including thyroiditis (n = 25) and lupus (n = 16); and joint involvements (n = 54). Five patients had died at the time of publication. In 54 of 63 patients, CRP was significantly elevated during flares, with a median of 51 mg/l. The most commonly used treatment included corticosteroids and nonsteroidal anti-inflammatory drugs (n = 32), TNF blockers (n = 29), colchicine (n = 28), and methotrexate (n = 14). TNFAIP3 variants impacted the ovarian tumor domain in 92 cases and a Zinc finger domain in 68 cases. Geographic origin, reported sex, and variant type significantly impacted phenotype. A better understanding of the wide A20 haploinsufficiency phenotype could facilitate the diagnosis process. Much remains to be elucidated about pathogenesis and treatment to improve outcome in patients with A20 haploinsufficiency.


Subject(s)
Haploinsufficiency , Tumor Necrosis Factor alpha-Induced Protein 3 , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Humans , Haploinsufficiency/genetics , Female , Male , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/drug therapy
13.
Rev Med Interne ; 2023 Dec 29.
Article in French | MEDLINE | ID: mdl-38160098

ABSTRACT

A20 Haploinsufficiency (HA20) is a monogenic autoinflammatory disease associated with an autosomal dominant mutation in the TNFAIP3 gene. It induces a defect in the inactivation of the pro-inflammatory NF-κB pathway. Less than 200 cases have been described worldwide. The clinical picture of the disease is essentially based on the association of recurrent fever and/or biologic inflammatory syndrome, aphtosis, often bipolar, and cutaneous folliculitis. However, the clinical spectrum of HA20 is very broad, including gastrointestinal (mainly colonic ulceration), articular, cutaneous, pericardial and lymph node involvement, as well as frequent association with organ-specific or non-specific autoimmune manifestations and/or autoantibodies, including antinuclear antibodies and anti-dsDNA. As a result, the diagnosis of a number of systemic or organic disorders, most notably Behçet's disease, Crohn's disease, and sometimes even systemic lupus, has been corrected to HA20 by molecular research for a heterozygous mutation with functional deficiency of TNFAIP3. Although the first signs of the disease often appear in the first years of life, the diagnosis is often made in adulthood and requires the involvement of both paediatric and adult physicians. Treatment for HA20 is not codified and relies on conventional or biological immunomodulators and immunosuppressants adapted to the patient's symptomatology. This review highlights the enormous diagnostic challenges in this autoinflammatory disease.

14.
Vaccine ; 41(42): 6391-6400, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37699782

ABSTRACT

Oral cholera vaccine is one of the key interventions used in our fight to end the longest pandemic of our time, cholera. The immune response conferred by the currently available cholera vaccines, as measured by serum antibody levels, is variable amongst its recipients. We undertook a genome wide association study (GWAS) on antibody response to the cholera vaccine; globally, the first GWAS on cholera vaccine response. We identified three clusters of bi-allelic SNPs, in high within-cluster linkage disequilibrium that were moderately (p < 5 × 10-6) associated with antibody response to the cholera vaccine and mapped to chromosomal regions 4p14, 4p16.1 and 6q23.3. Intronic SNPs of TBC1D1 comprised the cluster on 4p14, intronic SNPs of TBC1D14 comprised that on 4p16.1 and SNPs upstream of TNFAIP3 formed the cluster on 6q23.3. SNPs within and around these clusters have been implicated in immune cell function and immunological aspects of autoimmune or infectious diseases (e.g., diseases caused by Helicobacter pylori and malarial parasite). 6q23.3 is a prominent region harbouring many loci associated with immune related diseases, including multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus, as well as IL2 and INFα response to a smallpox vaccine. The gene clusters identified in this study play roles in vesicle-mediated pathway, autophagy and NF-κB signaling. No significant effect of O blood group on antibody response to the cholera vaccine was observed in this study.


Subject(s)
Cholera Vaccines , Cholera , Humans , Antibody Formation , Genome-Wide Association Study , Cholera/prevention & control , Genomics , Antibodies, Bacterial , Administration, Oral
15.
Int J Mol Sci ; 24(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629049

ABSTRACT

Macrophages play a crucial role in the development and control of inflammation. Understanding the mechanisms balancing macrophage inflammatory activity is important to develop new strategies for treating inflammation-related diseases. TNF-α-induced protein 3 (TNFAIP3, A20) is a negative regulator of intracellular inflammatory cascades; its deficiency induces hyper-inflammatory reactions. Whether A20 overexpression can dampen macrophage inflammatory response remains unclear. Here, we generated human-induced pluripotent stem cells with tetracycline-inducible A20 expression and differentiated them into macrophages (A20-iMacs). A20-iMacs displayed morphology, phenotype, and phagocytic activity typical of macrophages, and they displayed upregulated A20 expression in response to doxycycline. A20 overexpression dampened the A20-iMac response to TNF-α, as shown by a decreased expression of IL1B and IL6 mRNA. A dynamic analysis of A20 expression following the generation of A20-iMacs and control iMacs showed that the expression declined in iMacs and that iMacs expressed a lower molecular weight form of the A20 protein (~70 kDa) compared with less differentiated cells (~90 kDa). A low-level expression of A20 and the predominance of a low-molecular-weight A20 form were also characteristic of monocyte-derived macrophages. The study for the first time developed a model for generating macrophages with an inducible expression of a target gene and identified the peculiarities of A20 expression in macrophages that likely underlie macrophage preparedness for inflammatory reactivity. It also suggested the possibility of mitigating inflammatory macrophage responses via A20 overexpression.


Subject(s)
Induced Pluripotent Stem Cells , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Macrophages , Inflammation
16.
Cell Immunol ; 391-392: 104753, 2023.
Article in English | MEDLINE | ID: mdl-37535999

ABSTRACT

Loss-of-function of protein A20, encoded by TNFAIP3, leads to an early-onset haploinsufficiency of A20 (HA20). This study reports one Chinese child with HA20 and explores the genetic etiology of TNFAIP3 variant. The patient exhibited transient recurrent episodes of fever, intermittent signs of arthritis, gastrointestinal symptoms and multiple colonic ulcers. Laboratory tests revealed elevated inflammatory indicators and mild to moderate anemia. Genetic analysis identified a heterozygous de novo variant in his TNFAIP3 gene (c.740C>T, p. P247L), which had never been reported before. The novel missense variation was validated to be pathogenic through causing insufficient expression of A20, over-activation of NF-κB signaling pathway and elevated levels of proinflammatory cytokines in response to stimulation by lipopolysaccharide. A combination of oral corticosteroids, TNF-α inhibitors and thalidomide freed him from symptoms and abnormal inflammatory indicators. Furthermore, continual improvement of the patient's condition was observed during a follow-up period of five months. We demonstrate a case with a de novo missense variant resulting in a loss-of-function of TNFAIP3, which expands the clinical spectrum of HA20. Cytokine antagonists and immunosuppressants may be effective drugs.


Subject(s)
Haploinsufficiency , Tumor Necrosis Factor Inhibitors , Humans , Male , Child , NF-kappa B/genetics , Mutation, Missense , Immunosuppression Therapy , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
17.
Asian Pac J Cancer Prev ; 24(7): 2485-2491, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37505783

ABSTRACT

BACKGROUND: Activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic active B-cell receptor signaling and a constitutive activation of the NF-KB pathway. MYD88 L265P mutation occurs as a driving force of NF-KB overactivity in ABC-DLBCL. Nonetheless, in cases of DLBCL, the MYD88 L265P mutation has not yet been investigated in association with the tumour necrosis factor alpha induced protein3 (TNFAIP3) mutation. OBJECTIVE: To investigate the frequency of MYD88 and TNFAIP3 mutations in DLBCL and their association to the clinico-hematological profile. MATERIAL AND METHODS: We used real-time polymerase chain reaction in order to search for MYD88 L265P and TNFAIP3 mutations in 100 DLBCL patients. RESULTS: MYD88 L265P In 20% of cases, the CT heterozygous genotype was discovered.  CT heterozygous genotype was more common in ABC type, stage IV, greater IPI groups, extra-nodal infiltration, and BM infiltration. It was also linked to a shorter OS. TNFAIP3 mutation GA heterozygous genotype was detected in 18% of the patients, with ABC-DLBCL subtype accounting for 77.8%. The GA heterozygous genotype was usually related with stage IV, extranodal infiltration, and a reduced life expectancy. CONCLUSION: MYD88 L265P and to lesser extent TNFAIP3 mutations are major mutations in ABC- DLBCL and may be predictive factors for poor OS in ABC- DLBCL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Myeloid Differentiation Factor 88 , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Egypt/epidemiology , Lymphoma, Large B-Cell, Diffuse/epidemiology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Mutation , Myeloid Differentiation Factor 88/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Prevalence , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
18.
Front Pediatr ; 11: 1132596, 2023.
Article in English | MEDLINE | ID: mdl-37388287

ABSTRACT

Haploinsufficiency of A20 was first described in 2016 as a new autoinflammatory disease that clinically presents as early-onset Behcet's disease. After the publication of the first 16 cases, more patients were diagnosed and described in the literature. The spectrum of clinical presentation has expanded. In this short report, we present a patient with a novel mutation in the TNFAIP3 gene. The clinical presentation included signs of an autoinflammatory disease with recurrent fever, abdominal pain, diarrhea, respiratory tract infections, and elevated inflammatory parameters. We will emphasize the importance of genetic testing, especially in patients with various clinical signs that do not fit a single autoinflammatory disease.

19.
Front Endocrinol (Lausanne) ; 14: 1131437, 2023.
Article in English | MEDLINE | ID: mdl-37324276

ABSTRACT

Background: Haploinsufficiency of A20 (HA20) is a monogenic autosomal-dominant genetic autoinflammatory disease caused by loss of function mutations in the TNFAIP3 gene. The predominant autoimmune phenotype associated with HA20 varies significantly, presenting with fever, recurrent oral and genital ulcers, skin rash, gastrointestinal and musculoskeletal symptoms, and other clinical manifestations, all of which indicate an early-onset of autoinflammatory disorder. Genetic linkage between TNFAIP3 and T1DM was reported in GWAS studies. However, only a few cases of HA20 combined with T1DM have been reported. Case description: A 39-year-old man with a history of type 1 diabetes mellitus since 19 years was admitted to the Department of Endocrinology and Metabolism, First Affiliated Hospital of China Medical University. He also suffered from recurring and minor mouth ulcers since early childhood. His laboratory evaluation results revealed reduced islet function, normal lipid profile, HbA1c of 7%, elevated glutamate decarboxylase antibodies, elevated hepatic transaminases, and elevated thyroid-related antibodies with normal thyroid function. Notably, the patient was diagnosed in adolescence and never had ketoacidosis, the islets were functioning despite the long disease duration, his abnormal liver function could not be reasonably explained, and he had early onset Behcet's-like disease symptom. Hence, although he was on routine follow-up for diabetes, we communicated with him and obtained consent for genetic testing. Whole-exome sequencing revealed a novel c.1467_1468delinsAT heterozygous mutation in the gene TNFAIP3, which is located in exon 7, resulting in a stop-gained type mutation p.Q490*. With good but mild fluctuating glycemic control, the patient received intensive insulin therapy with long-acting and short-acting insulin. The liver function was improved by using ursodeoxycholic acid 0.75 mg/d during the follow-up. Conclusion: We report a novel pathogenic mutation in TNFAIP3 that results in HA20 in a patient with T1DM. In addition, we analyzed the clinical feathers of such patients and summarized the cases of five patients with HA20 co-presented with T1DM. When T1DM co-occurs with autoimmune diseases or other clinical manifestations, such as oral and/or genital ulcers and chronic liver damage, the possibility of an HA20 must be considered. Early and definitive diagnosis of HA20 in such patients may inhibit the progression of late-onset autoimmune diseases, including T1DM.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Male , Humans , Child, Preschool , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Haploinsufficiency , Autoimmune Diseases/complications , Autoimmune Diseases/genetics , Autoimmune Diseases/diagnosis , Mutation , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
20.
Diabetologia ; 66(8): 1516-1531, 2023 08.
Article in English | MEDLINE | ID: mdl-37311878

ABSTRACT

AIMS/HYPOTHESIS: NF-κB activation unites metabolic and inflammatory responses in many diseases yet less is known about the role that NF-κB plays in normal metabolism. In this study we investigated how RELA impacts the beta cell transcriptional landscape and provides network control over glucoregulation. METHODS: We generated novel mouse lines harbouring beta cell-specific deletion of either the Rela gene, encoding the canonical NF-κB transcription factor p65 (ßp65KO mice), or the Ikbkg gene, encoding the NF-κB essential modulator NEMO (ßNEMOKO mice), as well as ßA20Tg mice that carry beta cell-specific and forced transgenic expression of the NF-κB-negative regulator gene Tnfaip3, which encodes the A20 protein. Mouse studies were complemented by bioinformatics analysis of human islet chromatin accessibility (assay for transposase-accessible chromatin with sequencing [ATAC-seq]), promoter capture Hi-C (pcHi-C) and p65 binding (chromatin immunoprecipitation-sequencing [ChIP-seq]) data to investigate genome-wide control of the human beta cell metabolic programme. RESULTS: Rela deficiency resulted in complete loss of stimulus-dependent inflammatory gene upregulation, consistent with its known role in governing inflammation. However, Rela deletion also rendered mice glucose intolerant because of functional loss of insulin secretion. Glucose intolerance was intrinsic to beta cells as ßp65KO islets failed to secrete insulin ex vivo in response to a glucose challenge and were unable to restore metabolic control when transplanted into secondary chemical-induced hyperglycaemic recipients. Maintenance of glucose tolerance required Rela but was independent of classical NF-κB inflammatory cascades, as blocking NF-κB signalling in vivo by beta cell knockout of Ikbkg (NEMO), or beta cell overexpression of Tnfaip3 (A20), did not cause severe glucose intolerance. Thus, basal p65 activity has an essential and islet-intrinsic role in maintaining normal glucose homeostasis. Genome-wide bioinformatic mapping revealed the presence of p65 binding sites in the promoter regions of specific metabolic genes and in the majority of islet enhancer hubs (~70% of ~1300 hubs), which are responsible for shaping beta cell type-specific gene expression programmes. Indeed, the islet-specific metabolic genes Slc2a2, Capn9 and Pfkm identified within the large network of islet enhancer hub genes showed dysregulated expression in ßp65KO islets. CONCLUSIONS/INTERPRETATION: These data demonstrate an unappreciated role for RELA as a regulator of islet-specific transcriptional programmes necessary for the maintenance of healthy glucose metabolism. These findings have clinical implications for the use of anti-inflammatories, which influence NF-κB activation and are associated with diabetes.


Subject(s)
Glucose Intolerance , Transcription Factor RelA , Animals , Humans , Mice , Chromatin , Glucose , NF-kappa B/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...