Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Int J Pharm ; 661: 124447, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39002820

ABSTRACT

None of transitional lipid-based drug delivery systems (LBDDS) includes compositions containing one lipid and one water-soluble surfactant that form stable microemulsions. The conversion of liquid LBDDS to solid LBDDS has been limited by low drug loading. Previously, we have developed drug solid microemulsions containing one lipid and TPGS (a water-soluble surfactant) that achieved high drug loading and remarkably increased oral bioavailability. This study aimed to test if binary lipid systems (BLS), composed of one lipid and one water-soluble surfactant that form stable self-emulsifying microemulsions, is not an exclusive but widely applicable type of LBDDS for other lipids and surfactants and evaluate the influences of chemical structures of lipids and surfactants on microemulsions and solid microemulsions. We systemically identified new BLS by using a library of lipids and surfactants. Propylene glycol diesters and glycerol triesters were favorable for forming stable microemulsions with Tween 80, Cremophor EL, or TPGS. To the best of our knowledge, this is the first report exploring and confirming that the BLS is a new addition to traditional LBDDS, provides a promising option for researchers, and has the potential to increase drug loading to facilitate the development of solid microemulsions.

2.
J Cell Mol Med ; 28(11): e18389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864691

ABSTRACT

Chemotherapy resistance remains a significant challenge in treating ovarian cancer effectively. This study addresses this issue by utilizing a dual drug-loaded nanomicelle system comprising albendazole (ABZ) and paclitaxel (PTX), encapsulated in a novel carrier matrix of D-tocopheryl polyethylene glycol 1000 succinate vitamin E (TPGS), soluplus and folic acid. Our objective was to develop and optimize this nanoparticulate delivery system using solvent evaporation techniques to enhance the therapeutic efficacy against ovarian cancer. The formulation process involved pre-formulation, formulation, optimization, and comprehensive characterization of the micelles. Optimization was conducted through a 32 factorial design, focusing on the effects of polymer ratios on particle size, zeta potential, polydispersity index (PDI) and entrapment efficiency (%EE). The optimal formulation demonstrated improved dilution stability, as indicated by a critical micelle concentration (CMC) of 0.0015 mg/mL for the TPGS-folic acid conjugate (TPGS-FOL). Extensive characterization included differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The release profile exhibited an initial burst followed by sustained release over 90 h. The cytotoxic potential of the formulated micelles was superior to that of the drugs alone, as assessed by MTT assays on SKOV3 ovarian cell lines. Additionally, in vivo studies confirmed the presence of both drugs in plasma and tumour tissues, suggesting effective targeting and penetration. In conclusion, the developed TPGS-Fol-based nanomicelles for co-delivering ABZ and PTX show promising results in overcoming drug resistance, enhancing solubility, sustaining drug release, and improving therapeutic outcomes in ovarian cancer treatment.


Subject(s)
Albendazole , Micelles , Ovarian Neoplasms , Paclitaxel , Female , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/chemistry , Albendazole/chemistry , Albendazole/pharmacology , Albendazole/administration & dosage , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Vitamin E/chemistry , Folic Acid/chemistry , Mice , Drug Liberation , Particle Size , Polyvinyls/chemistry , Polymers/chemistry , Xenograft Model Antitumor Assays
3.
J Med Life ; 17(2): 217-225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38813352

ABSTRACT

Insulin is the cornerstone of treatment in type 1 diabetes mellitus. However, because of its protein structure, insulin has to be administered via injection, and many attempts have been made to create oral formulations, especially using nanoparticles (NPs). The aim of this study was to compare the hypoglycemic effect of insulin-loaded NPs to that of subcutaneous insulin in an in vivo rat model of diabetes. We used biodegradable D-α-tocopherol polyethylene glycol succinate-emulsified, chitosan-capped poly(lactic-co-glycolic acid) NPs loaded with soluble human insulin in a dose of 20 IU/kg body weight, and examined the physical characteristics of NPs in vivo and in vitro. Serum glucose levels were reduced after 6 h, but the difference was not significant compared to subcutaneous insulin; at 12 h and 24 h, insulin levels were significantly higher in rats treated with NPs than in rats treated with subcutaneous insulin. There was no significant difference in serum insulin levels at 12 h and 24 h compared to non-diabetic rats. Our findings suggest that chitosan-based NPs are able to maintain good glycemic control for up to 24 h and can be considered a potential carrier for oral insulin delivery.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Insulin , Nanoparticles , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Insulin/blood , Insulin/administration & dosage , Rats , Administration, Oral , Male , Hyperglycemia/drug therapy , Chitosan/chemistry , Blood Glucose , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Disease Models, Animal , Rats, Sprague-Dawley
4.
Nanomedicine (Lond) ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700294

ABSTRACT

Aim: To investigate the pemetrexed encapsulated polymeric mixed micelles (PMMs) against breast cancer treatment. Methods: We meticulously optimized the formulation and conducted extensive characterizations, including photon correlation spectroscopy for micellization, advanced analytical techniques and in vitro cell line assessments. Results: The PMM exhibited favorable characteristics, with a spherical morphology, hydrodynamic particle size of 19.58 ± 0.89 nm, polydispersity index of 0.245 ± 0.1, and a surface charge of -9.70 ± 0.61 mV. Encapsulation efficiency and drug payload reached 96.16 ± 0.37% and 4.5 ± 0.32%, respectively. Cytotoxicity analysis indicated superior efficacy of the PMM over the drug solution. Conclusion: The PMM formulation exhibited controlled release of the drug, and demonstrated enhanced cytotoxicity against breast cancer cells, highlighting its therapeutic promise.

5.
Mol Pharm ; 21(6): 2699-2712, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38747900

ABSTRACT

This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.


Subject(s)
Deoxycytidine , Gemcitabine , Nanoparticles , Pancreatic Neoplasms , Phospholipids , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Deoxycytidine/pharmacokinetics , Deoxycytidine/administration & dosage , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Nanoparticles/chemistry , Animals , Humans , Cell Line, Tumor , Phospholipids/chemistry , Mice , Particle Size , Apoptosis/drug effects , Drug Carriers/chemistry , Lipids/chemistry , Drug Liberation , Male , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Drug Stability , Rats , Liposomes
6.
J Pharm Sci ; 113(7): 1823-1835, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608726

ABSTRACT

Osteoporosis is a disease that causes low bone mass and deterioration of bone microarchitecture. Puerarin is a natural isoflavone compound that has been shown to possess anti-inflammatory, antioxidant and ameliorative effects on osteoporosis with less adverse reactions. However, its fast metabolism and low oral bioavailability limit its application. This study aimed to prepare d-α-tocopherol polyethylene glycol 1000 succinate (TPGS)- modified Puerarin Long Circulating Liposomes (TPGS-Puerarin-liposomes), in order to improve the oral bioavailability of puerarin, before evaluation of its pharmacological activity in vitro and in vivo. We employed film dispersion method to develop TPGS-Puerarin-liposomes before appropriate characterizations. Afterwards, we utilized in vivo imaging, pharmacokinetic analysis and in vitro drug release testing to further evaluate the in vivo and in vitro delivery efficiency. In addition, we established a castrated osteoporosis rat model to observe the changes in femur tissue structure and bone micromorphology via hematoxylin-eosin (HE) staining and Micro Computed Tomography (Micro CT). Besides, levels of oxidative stress and inflammatory indicators, as well as expression of wnt/ß-catenin pathway-related proteins were detected. In terms of physiochemical properties, the respective mean particle size (PS) and zeta potential (ZP) of TPGS-Puerarin-liposomes were 76.63±0.59 nm and -25.54±0.11 mV. The liposomal formulation exhibited encapsulation efficiency (EE) of 95.08±0.25% and drug loading (DL) of 7.84±0.07%, along with excellent storage stability. Compared with free drugs, the TPGS-Puerarin-liposomes demonstrated a sustained release effect and could increase blood concentration of puerarin in rats, thereby significantly improving its bioavailability. Also, in vivo studies have confirmed potential of the liposomes to promote bone tissue targeting and accumulation of puerarin, coupled with significant improvement of the osteoporotic status. Besides, the liposomes could also reduce levels of oxidative stress and inflammatory factors in serum and bone tissue. Additionally, we discovered that TPGS-Puerarin-liposomes increased Wnt, ß-catenin and T-cell factor (TCF) expressions at protein level in the wnt/ß-catenin signaling pathway. This study has demonstrated the potential of TPGS-Puerarin-liposomes for treatment of osteoporosis.


Subject(s)
Isoflavones , Liposomes , Osteoporosis , Rats, Sprague-Dawley , Vitamin E , Animals , Isoflavones/administration & dosage , Isoflavones/pharmacokinetics , Isoflavones/pharmacology , Isoflavones/chemistry , Osteoporosis/drug therapy , Rats , Vitamin E/chemistry , Vitamin E/administration & dosage , Male , Biological Availability , Drug Liberation , Oxidative Stress/drug effects , Polyethylene Glycols/chemistry , Femur/drug effects , Femur/metabolism , Antioxidants/pharmacokinetics , Antioxidants/administration & dosage , Antioxidants/pharmacology , Administration, Oral , X-Ray Microtomography
7.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675374

ABSTRACT

Supercritical anti-solvent fluidized bed (SAS-FB) coating technology has the advantages of reducing particle size, preventing high surface energy particle aggregation, improving the dissolution performance and bioavailability of insoluble drugs. The poor solubility of Biopharmaceutics Classification System (BCS) class IV drugs poses challenges in achieving optimal bioavailability. Numerous anti-cancer drugs including paclitaxel (PTX) belong to the BCS class IV, hindering their therapeutic efficacy. To address this concern, our study explored SAS-FB technology to coat PTX with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) onto lactose. Under our optimized conditions, we achieved a PTX coating efficiency of 96.8%. Further characterization confirmed the crystalline state of PTX in the lactose surface coating by scanning electron microscopy and X-ray powder diffraction. Dissolution studies indicated that SAS-FB processed samples release over 95% of the drug within 1 min. Moreover, cell transmembrane transport assays demonstrated that SAS-FB processed PTX samples co-coated with TPGS had an enhanced PTX internalization into cells and a higher permeability coefficient compared to those without TPGS. Finally, compared to unprocessed PTX, SAS-FB (TPGS) and SAS-FB processed samples showed a 2.66- and 1.49-fold increase in oral bioavailability in vivo, respectively. Our study highlights the efficacy of SAS-FB co-coating for PTX and TPGS as a promising strategy to overcome bioavailability challenges inherent in BCS class IV drugs. Our approach holds broader implications for enhancing the performance of similarly classified medications.

8.
Transl Cancer Res ; 13(3): 1458-1478, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38617524

ABSTRACT

Background: Tubulin polyglutamylase complex subunit 2 (TPGS2) is an element of the neuronal polyglutamylase complex that plays a role in the post-translational addition of glutamate residues to C-terminal tubulin tails. Recent research has shown that TPGS2 is associated with some tumors, but the roles of TPGS2 in tumor immunity remain unclear. Methods: The research data were mainly sourced from The Cancer Genome Atlas. The data were analyzed to identify potential correlations between TPGS2 expression and survival, gene alterations, the tumor mutational burden (TMB), microsatellite instability (MSI), immune infiltration, and various immune-related genes across various cancers. The Wilcoxon rank-sum test was used to identify the significance. A log-rank test and univariate Cox regression analysis were performed to assess the survival state of the patients. Spearman's correlation coefficients were used to show the correlations. Results: TPGS2 exhibited abnormal expression patterns in most types of cancers, and has promising prognostic potential in adrenocortical carcinoma and liver hepatocellular carcinoma. Further, TPGS2 expression was significantly correlated with molecular and immune subtypes. Moreover, the single-cell analyses showed that the expression of TPGS2 was associated with the cell cycle, metastasis, invasion, inflammation, and DNA damage. In addition, the immune cell infiltration analysis and gene-set enrichment analysis demonstrated that a variety of immune cells and immune processes were associated with TPGS2 expression in various cancers. Further, immune regulators, including immunoinhibitors, immunostimulators, the major histocompatibility complex, chemokines, and chemokine receptors, were correlated with TPGS2 expression in different cancer types. Finally, the TMB and MSI, which have been identified as powerful predictors of immunotherapy, were shown to be correlated with the expression of TPGS2 across human cancers. Conclusions: TPGS2 is aberrantly expressed in most cancer tissues and might be associated with immune cell infiltration in the tumor microenvironment. TPGS2 could serve not only as a biomarker for predicting clinical outcomes, but also as a promising biomarker for evaluating and developing new approaches to immunotherapy in many types of cancers, especially colon adenocarcinoma and stomach adenocarcinoma.

9.
ACS Appl Mater Interfaces ; 16(15): 18285-18299, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38574184

ABSTRACT

Changes in diet culture and modern lifestyle contributed to a higher incidence of gastrointestinal-related diseases, including gastritis, implicated in the pathogenesis of gastric cancer. This observation raised concerns regarding exposure to di(2-ethylhexyl) phthalate (DEHP), which is linked to adverse health effects, including reproductive and developmental problems, inflammatory response, and invasive adenocarcinoma. Research on the direct link between DEHP and gastric cancer is ongoing, and further studies are required to establish a conclusive association. In our study, extremely low concentrations of DEHP exerted significant effects on cell migration by promoting the epithelial-mesenchymal transition in gastric cancer cells. This effect was mediated by the modulation of the PI3K/AKT/mTOR and Smad2 signaling pathways. To address the DEHP challenges, our initial design of TPGS-conjugated fucoidan, delivered via pH-responsive nanoparticles, successfully demonstrated binding to the P-selectin protein. This achievement has not only enhanced the antigastric tumor efficacy but has also led to a significant reduction in the expression of malignant proteins associated with the condition. These findings underscore the promising clinical therapeutic potential of our approach.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Stomach Neoplasms , Humans , Plasticizers , Phosphatidylinositol 3-Kinases
10.
Int J Pharm ; 656: 124118, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615806

ABSTRACT

Fungal infections of cornea are important causes of blindness especially in developing nations with tropical climate. However, the challenges associated with current treatments are responsible for poor outcome. Natamycin is the only FDA-approved antifungal drug to treat fungal keratitis, but unfortunately due to its poor water solubility, it is available as suspension. The marketed suspension (5% Natamycin) has rapid precorneal clearance, poor corneal permeability, a higher frequency of administration, and corneal irritation due to undissolved suspended drug particles. In our study, we developed clear and stable natamycin-loaded nanomicelles (1% Natcel) to overcome the above challenges. We demonstrated that 1% Natcel could permeate the cornea better than 5% suspension. The developed 1% Natcel was able to provide sustained release for up to 24 h. Further, it was found to be biocompatible and also improved the mean residence time (MRT) than 5% suspension in tears. Therefore, the developed 1% Natcel could be a potential alternative treatment for fungal keratitis.


Subject(s)
Antifungal Agents , Cornea , Drug Liberation , Eye Infections, Fungal , Keratitis , Micelles , Nanoparticles , Natamycin , Natamycin/administration & dosage , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Keratitis/drug therapy , Keratitis/microbiology , Animals , Cornea/microbiology , Cornea/metabolism , Cornea/drug effects , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Rabbits , Solubility , Delayed-Action Preparations , Tears/metabolism
11.
Int J Pharm ; 657: 124141, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38677392

ABSTRACT

TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) polymeric micelles show interesting properties for ocular administration thanks to their solubilization capability, nanometric size and tissue penetration ability. However, micelles formulations are generally characterized by low viscosity, poor adhesion and very short retention time at the administration site. Therefore, the idea behind this work is the preparation and characterization of a crosslinked film based on xanthan gum that contains TPGS micelles and is capable of controlling their release. The system was loaded with melatonin and cyclosporin A, neuroprotective compounds to be delivered to the posterior eye segment. Citric acid and heating at different times and temperatures were exploited as crosslinking approach, giving the possibility to tune swelling, micelles release and drug release. The biocompatibility of the platform was confirmed by HET-CAM assay. Ex vivo studies on isolated porcine ocular tissues, conducted using Franz cells and two-photon microscopy, demonstrated the potential of the xanthan gum-based platform and enlightened micelles penetration mechanism. Finally, the sterilization step was approached, and a process to simultaneously crosslink and sterilize the platform was developed.


Subject(s)
Administration, Ophthalmic , Delayed-Action Preparations , Drug Liberation , Micelles , Neuroprotective Agents , Polysaccharides, Bacterial , Vitamin E , Polysaccharides, Bacterial/chemistry , Animals , Swine , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Vitamin E/chemistry , Vitamin E/administration & dosage , Delayed-Action Preparations/chemistry , Cyclosporine/administration & dosage , Cyclosporine/chemistry , Melatonin/administration & dosage , Melatonin/chemistry , Melatonin/pharmacology , Melatonin/pharmacokinetics , Sterilization , Cross-Linking Reagents/chemistry , Drug Carriers/chemistry , Eye/drug effects , Eye/metabolism , Drug Delivery Systems/methods
12.
Int J Pharm ; 657: 124109, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38626846

ABSTRACT

Breast cancer continues to pose a substantial global health challenge, emphasizing the critical need for the advancement of novel therapeutic approaches. Key players in the regulation of apoptosis, a fundamental process in cell death, are the B-cell lymphoma 2 (Bcl-2) family proteins, namely Bcl-2 and Bax. These proteins have garnered attention as highly promising targets for the treatment of breast cancer. Targeting the overexpressed anti-apoptotic Bcl-2 protein in breast cancer, Gefitinib (GEF), an EGFR (Epidermal Growth Factor Receptor) inhibitor, emerges as a potential solution. This study focuses on designing Gefitinib-loaded polymeric mixed micelles (GPMM) using poloxamer 407 and TPGS (D-alpha tocopherol PEG1000 succinate) for breast cancer therapy. In silico analyses unveil strong interactions between GEF- Bcl-2 and TPGS-Pgp-2 receptors, indicating efficacy against breast cancer. Molecular dynamics simulations offer insights into GEF and TPGS interactions within the micelles. Formulation optimization via Design of Experiment ensures particle size and entrapment efficiency within acceptable ranges. Characterization tools such as zeta sizer, ATR-FTIR, XRD, TEM, AFM, NMR, TGA, and DSC confirms particle size, structure, functional groups, and thermodynamic events. The optimized micelles exhibit a particle size of 22.34 ± 0.18 nm, PDI of 0.038 ± 0.009, and zeta potential of -0.772 ± 0.12 mV. HPLC determines 95.67 ± 0.34% entrapment efficiency and 1.05 ± 0.12% drug loading capacity. In-vitro studies with MDA-MB-231 cell lines demonstrate enhanced cytotoxicity of GPMM compared to free GEF, suggesting its potential in breast cancer therapy. Cell cycle analysis reveals apoptosis induction through key apoptotic proteins. Western blot results confirm GPMM's ability to trigger apoptosis in MDA-MB-231 cells by activating caspase-3, Bax, Bcl-2, and Parp. In conclusion, these polymeric mixed micelles show promise in selectively targeting cancer cells, warranting future in-vivo studies for optimized clinical application against breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Gefitinib , Micelles , Poloxamer , Vitamin E , Humans , Poloxamer/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Vitamin E/chemistry , Female , Gefitinib/administration & dosage , Gefitinib/pharmacology , Gefitinib/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Molecular Dynamics Simulation , Cell Line, Tumor , Drug Carriers/chemistry , Computer Simulation , Particle Size , Cell Survival/drug effects , Animals , Proto-Oncogene Proteins c-bcl-2/metabolism , Polyethylene Glycols/chemistry , Drug Liberation , Apoptosis/drug effects
13.
Pharmaceutics ; 16(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38543270

ABSTRACT

A bottom-up approach was investigated to produce long-acting injectable (LAI) suspension-based formulations to overcome specific limitations of top-down manufacturing methods by tailoring drug characteristics while making the methods more sustainable and cost-efficient. A Secoya microfluidic crystallization technology-based continuous liquid antisolvent crystallization (SCT-CLASC) process was optimized and afterward compared to an earlier developed microchannel reactor-based continuous liquid antisolvent crystallization (MCR-CLASC) setup, using itraconazole (ITZ) as the model drug. After operating parameter optimization and downstream processing (i.e., concentrating the suspensions), stable microsuspensions were generated with a final solid loading of 300 mg ITZ/g suspension. The optimized post-precipitation feed suspension consisted of 40 mg ITZ/g suspension with a drug-to-excipient ratio of 53:1. Compared to the MCR-CLASC setup, where the post-precipitation feed suspensions contained 10 mg ITZ/g suspension and had a drug-to-excipient ratio of 2:1, a higher drug concentration and lower excipient use were successfully achieved to produce LAI microsuspensions using the SCT-CLASC setup. To ensure stability during drug crystallization and storage, the suspensions' quality was monitored for particle size distribution (PSD), solid-state form, and particle morphology. The PSD of the ITZ crystals in suspension was maintained within the target range of 1-10 µm, while the crystals displayed an elongated plate-shaped morphology and the solid state was confirmed to be form I, which is the most thermodynamically stable form of ITZ. In conclusion, this work lays the foundation for the SCT-CLASC process as an energy-efficient, robust, and reproducible bottom-up approach for the manufacture of LAI microsuspensions using ITZ at an industrial scale.

14.
Recent Adv Drug Deliv Formul ; 18(1): 61-76, 2024.
Article in English | MEDLINE | ID: mdl-38362679

ABSTRACT

PURPOSE: The primary objective of this study was to optimize formulation variables and investigate the in vitro characteristics of fluticasone propionate (FP)-loaded mixed polymeric micelles, which were composed of depolymerized chitosan-stearic acid copolymer (DC-SA) in combination with either tocopheryl polyethylene glycol succinate or dipalmitoylphosphatidylcholine for pulmonary drug delivery. METHODS: A D-optimal design was employed for the optimization procedure, considering lipid/ polymer ratio, polymer concentration, drug/ polymer ratio, and lipid type as independent variables. Dependent variables included particle size, polydispersion index, zeta potential, drug encapsulation efficiency, and loading efficiency of the polymeric micelles. Additionally, the nebulization efficacy and cell viability of the optimal FP-loaded DC-SA micellar formulations were evaluated. RESULTS: The mixed polymeric micelles were successfully prepared with properties falling within the desired ranges, resulting in four optimized formulations. The release of FP from the optimal systems exhibited a sustained release profile over 72 hours, with 70% of the drug still retained within the core of the micelles. The nebulization efficiency of these optimal formulations reached up to 63%, and the fine particle fraction (FPF) ranged from 41% to 48%. Cellular viability assays demonstrated that FP-loaded DC-SA polymeric micelles exhibited lower cytotoxicity than the free drug but were slightly more cytotoxic than empty mixed micelles. CONCLUSION: In conclusion, this study suggests that DC-SA/ lipid mixed micelles have the potential to serve as effective carriers for nebulizing poorly soluble FP.


Subject(s)
Cell Survival , Chitosan , Fluticasone , Micelles , Stearic Acids , Chitosan/chemistry , Stearic Acids/chemistry , Humans , Fluticasone/administration & dosage , Fluticasone/pharmacology , Fluticasone/chemistry , Cell Survival/drug effects , Particle Size , Administration, Inhalation , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Nebulizers and Vaporizers , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacology , Bronchodilator Agents/chemistry
15.
Int J Pharm ; 653: 123875, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38316316

ABSTRACT

Impairment of the skin's structural integrity initially results in acute wounds which can become chronic if timely wound closure is not achieved. Chronic wounds (CWs) affect more than 1% of the global population with increasing cases of this condition due to the ageing population. Current wound management relies on debridement, hyperbaric oxygen, antibiotics, and wound dressings, which lack early intervention and specificity. Herein, antibiotics-free retinol-based micellar formulations (RMF) were made and their wound healing efficacy were investigated in vitro. Five different formulations with retinol contents of 0.3% and 1% against a placebo were topically applied to an organotypic full-thickness skin wound model (FT-SWM, MatTek®) with a 3 mm punch wound, and maintained in an incubator for 6 days. The histological analysis of the FT-SWM was conducted at depths of 60 µm and 80 µm. It was found that all the micellar retinol formulations accelerated wound bed contraction, with 0.3% RMF demonstrating the highest efficacy. At the depths of 60 µm and 80 µm, the 0.3% RMF exhibited inner wound diameter contraction of 58% and 77%, respectively, in comparison to the placebo showing 15% and 8%. The RMF significantly accelerated wound healing and can thus be a potential early intervention for speedy wound recovery. It should be pointed out that these results were obtained based on a small sample size and a large sample size will be explored to further validate the results.


Subject(s)
Micelles , Vitamin A , Anti-Bacterial Agents , Bandages , Oxygen , Skin/pathology , Wound Healing , Animals
16.
Heliyon ; 10(3): e25172, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333874

ABSTRACT

In this study, Enzalutamide (ENZ) loaded Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles coated with polysarcosine and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared using a three-step modified nanoprecipitation method combined with self-assembly. A three-factor, three-level Box-Behnken design was implemented with Design-Expert® software to evaluate the impact of three independent variables on particle size, zeta potential, and percent entrapment efficiency through a numeric optimization approach. The results were corroborated with ANOVA analysis, regression equations, and response surface plots. Field emission scanning electron microscopy and transmission electron microscope images revealed nanosized, spherical polymeric nanoparticles (NPs) with a size distribution ranging from 178.9 ± 2.3 to 212.8 ± 0.7 nm, a zeta potential of 12.6 ± 0.8 mV, and entrapment efficiency of 71.2 ± 0.7 %. The latter increased with higher polymer concentration. Increased polymer concentration and homogenization speed also enhanced drug entrapment efficiency. In vitro drug release was 85 ± 22.5 %, following the Higuchi model (R2 = 0.98) and Fickian diffusion (n < 0.5). In vitro cytotoxicity assessments, including Mitochondrial Membrane Potential Estimation, Apoptosis analysis, cell cycle analysis, Reactive oxygen species estimation, Wound healing assay, DNA fragmentation assay, and IC50 evaluation with Sulforhodamine B assay, indicated low toxicity and high efficacy of polymeric nanoparticles compared to the drug alone. In vivo studies demonstrated biocompatibility and target specificity. The findings suggest that TPGS surface-scaffolded polysarcosine-based polymer nanoparticles of ENZ could be a promising and safe delivery system with sustained release for colorectal cancer treatment, yielding improved therapeutic outcomes.

17.
Int J Pharm ; 653: 123866, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38286194

ABSTRACT

This study was focused on one particular case of hot-melt coating with trilaurin - a solid medium-chain monoacid triglyceride. The challenge of using trilaurin as coating agent in melting-based processes is linked to its relatively low melting profile: 15.6 °C (Tm,α), 35.1 °C ( [Formula: see text] ) and 45.7 °C (Tm,ß). From a process perspective, the only possibility to generate products coated with formulations composed of trilaurin is by setting thermal operational conditions above Tm,α. From a material perspective, this processing possibility depends principally on trilaurin crystallisation which was investigated via a set of analytical techniques including turbidimetry, calorimetry, hot-melt goniometry, and polarised light microscopy. A highly soluble drug model substrate (sodium chloride crystals) was coated with three selected trilaurin-based formulations: (i) trilaurin, (ii) trilaurin plus talc, and (iii) trilaurin plus vitamin E TPGS and talc. Coated salt crystals were then analysed to investigate processing performance, coating quality, stability and release properties under digestion effect. The results show that firstly, talc addition promotes nucleation and crystal growth and, as a consequence, it facilitates the manufacture of trilaurin-based formulations. Secondly, the formulation of a solid triglyceride and a hydrophilic surfactant could potentially cause release instability, but formula (iii) was found to be stabilised by a mechanism whereby trilaurin crystallization enhanced in the presence of talc immobilised vitamin E TPGS in its crystal lattice. Thirdly, talc addition did not significantly influence trilaurin digestion which endows products with an immediate release in lipolytic conditions instead of an extended liberation in pure water. Nor did the addition of one or two additives alter the extent of trilaurin digestion under the conditions studied. These important findings relate to product manufacturability, stability, and release properties. A good understanding of material properties (e.g. crystallisation, polymorphism, digestibility) is essential for melt-processing, lipid coating stabilising and modulation of release profile of solid lipid-coated product, as demonstrated in this case study with trilaurin.


Subject(s)
Talc , Vitamin E , Vitamin E/chemistry , Triglycerides , Solubility
18.
Pharmaceutics ; 16(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38258086

ABSTRACT

The aim of this study was to explore the efficacy and safety of TGFß1 siRNA lipid nanoparticles (LNPs) modified with different PEG derivatives (PEG5000 cholesterol, abbreviated as CE; tocopherol polyethylene glycol 1000 succinate, abbreviated as TPGS) in the treatment of paclitaxel-resistant non-small-cell lung cancer. Three kinds of TGFß1 siRNA LNPs were prepared via microfluidics technology, using different PEG derivatives and dosages (CE1.5, CE2.5, TPGS2.5) as variables. Their particle size, zeta potential, contents, and encapsulation efficiencies were determined. The inhibition of TGFß1 mRNA and protein expression and the effects of the three kinds of LNPs on the proliferation of paclitaxel-resistant non-small-cell lung cancer cells (A549/T cell) were characterized. The distributions of the three siRNA LNPs in nude mice bearing A549/T tumors, especially at the tumor site, were observed using in vivo mouse imaging technology, and their corresponding efficacies were evaluated. The average particle size of the three kinds of TGFß1 siRNA LNPs was about 70-80 nm, and they were capable of charge flipping. All three siRNA LNPs could effectively inhibit the expression of TGFß1 mRNA and protein in A549/T cells and inhibit the proliferation of A549/T cells in vitro. The results of in vivo mice imaging showed that the three kinds of siRNA LNPs, when labeled with cypate, retain strong fluorescence in the tumor at 24 h. The pharmacodynamic results, such as for relative tumor volumes and tumor inhibition rates, reveal that TGFß1 siRNA LNPs modified with CE1.5, CE2.5, or TPGS2.5 can be used to effectively treat paclitaxel-resistant lung adenocarcinoma. The histopathological results showed that the three kinds of LNPs have a certain toxicity but are relatively safe compared to common forms of chemotherapy such as cabazitaxel. TGFß1 siRNA LNPs modified with CE1.5, CE2.5, and TPGS2.5 can inhibit TGFß1 mRNA and protein expression in A549/T cells in vitro and can accumulate and play a role in the tumor tissue of nude mice, features that can be exploited for treating paclitaxel-resistant lung adenocarcinoma.

19.
Curr Drug Deliv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38204255

ABSTRACT

BACKGROUND: Adding a suitable surfactant can enhance the transdermal permeability of transethosomes while also leveraging its functionality as a functional material. In this study, transethosomes were prepared using D-α-tocopherol acid polyethylene glycol succinate (TPGS) as edge activators for transdermal delivery of curcumin (Cur). METHODS: The TPGS-mediated curcumin-loaded transethosomes (Cur@TES) were prepared and formulated optimally, and the optimized formulations were characterized for their morphology, particle size, entrapment efficiency (EE) and drug loading (DL). The stability and deformability of Cur@TES were investigated, while the transdermal delivery of Cur@TES was investigated through in vitro transdermal assays and fluorescence imaging. A mouse ear swelling model was performed to determine the anti-inflammatory effect of Cur@TES. RESULTS: Cur@TES appeared round or elliptical in shape. The particle size, EE and DL for the optimized formulation were observed as 131.2 ± 7.2 nm, 97.68 ± 2.26%, and 6.58 ± 0.62%, respectively. X-ray diffraction analysis confirmed the formation of disordered structures in the inner core of the vesicles. Moreover, Cur@TES system demonstrated better stability and deformability compared to the curcumin-loaded ethosomes (Cur@ES). In-vitro transdermal experiments demonstrated that Cur@TES significantly increased the amount of drug retained in the skin (P<0.05). Fluorescence imaging confirmed that the skin distribution were distinctly enhanced with the delivery by TPGS mediated transethosomes. In addition, Cur@TES showed a significant inhibitory effect on Inflammatory swelling in the mouse ear-swelling model. CONCLUSION: TPGS-mediated transethosomes exhibit significant transdermal advantages and enhanced anti-inflammatory effects, providing a new perspective for the transdermal delivery of curcumin.

20.
Discov Nano ; 19(1): 5, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175319

ABSTRACT

Etravirine (ERVN) is a potential NNRTI (non-nucleoside reverse transcriptase inhibitor) in treating HIV infection. It possesses extremely low oral bioavailability. The present research aims to optimize the formulation and characterization of TPGS-enriched ERVN-loaded lipid-based nanocarriers (NLCs) for HIV-infected patients. The formulation, ERVN-TPGS-NLCs, was optimized by central composite rotational design using a modified-solvent emulsification process. Various characterization parameters of NLCs were evaluated, including globule size of 121.56 ± 2.174 nm, PDI of 0.172 ± 0.042, the zeta potential of - 7.32 ± 0.021 mV, %EE of 94.42 ± 8.65% of ERVN and %DL was 8.94 ± 0.759% of ERVN and spherical shape was revealed by TEM. PXRD was also performed to identify the crystallinity of the sample. In-vitro drug release showed % a cumulative drug release of 83.72 ± 8.35% at pH 1.2 and 90.61 ± 9.11% at pH 6.8, respectively, whereas the % cumulative drug release from drug suspension (ERVN-S) was found to be 21.13 ± 2.01% at pH 1.2 and 24.84 ± 2.51 at pH 6.8 at the end of 48 h. Further, the intestinal permeation study and confocal microscope showed approximately three-fold and two-fold increased permeation in ERVN-TPGS-NLCs and ERVN-NLCs across the gut sac compared to ERVN-S. Hemolysis compatibility and lipolysis studies were performed to predict the in-vivo fate of the formulation. The pharmacokinetic study revealed a 3.13-fold increment in the relative bioavailability, which agrees with the ex-vivo studies, and lymphatic uptake was validated by using cycloheximide along with designed formulation, which showed the impact of lymphatic uptake in AUC. This study ensures that ERVN-TPGS-NLCs take lymphatic uptake to minimize the first-pass metabolism followed by improved oral bioavailability of ERVN. Thus, the enhanced bioavailability of ERVN can reduce the high dose of ERVN to minimize the adverse effects related to dose-related burden.

SELECTION OF CITATIONS
SEARCH DETAIL
...