Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 911
Filter
1.
Cell Rep ; 43(7): 114417, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38980795

ABSTRACT

The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.

2.
Article in English | MEDLINE | ID: mdl-39012319

ABSTRACT

The Mammalian Target of Rapamycin Complex 1 (mTORC1) is a serine threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However recent studies have indicated that mTORC1 may be active towards its canonical substrates, 4EBP1 and S6K, involved in mRNA translation and protein synthesis, and inactive towards TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt Hogg Dube (BHD) and recently, Tuberous Sclerosis Complex (TSC). Furthermore, TFEB and TFE3 hyperactivation in these syndromes, and in translocation Renal Cell Carcinomas (tRCC), drives mTORC1 activity towards the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity towards 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies". Currently, there no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.

3.
J Dermatol Sci ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38969533

ABSTRACT

BACKGROUND: Few reports have confirmed whether exosomes derived from fibroblasts can regulate the process of melanogenesis. We wondered whether exosomes derived from fibroblasts could have a potent regulatory effect on melanogenesis and explored the underlying mechanisms. OBJECTIVE: This study aimed to find the role of fibroblasts in melanocytes and revealed the related mechanisms. METHODS: RT-qPCR, Western blot analysis were conducted to measure the RNA and protein expression level of various related genes. miRNA sequencing, mass spectrum analysis and subsequent bioinformatics analysis were employed to find the underlying targets. Zebrafish were employed to measure the melanin synthesis related process in vivo. Furthermore, electron microscopy, ROS measurement and dual-luciferase reporter assay were adopted to investigate the relationship between these processes. RESULTS: We found that exosomes derived from human primary dermal fibroblasts were internalized by human primary melanocytes and MNT1 cells and that the melanin content and the expression of melanin synthesis-related proteins TYR and MITF was inhibited by exosomes derived from UVB-induced human primary dermal fibroblasts. The miRNA expression profile in secreted exosomes changed significantly, with miR-25-5p identified as capable of regulating TSC2 expression via the CDS region. The miR-25-5p-TSC2 axis could affect the melanin content through subsequent cellular organelle dysfunction, such as mitochondrial dysfunction, endoplasmic reticulum stress and dysregulation of lysosomal cysteine proteases. CONCLUSION: We unveiled a novel regulatory role of fibroblasts in melanocytes, facilitated by the secretion of exosomes. miR-25-5p within exosomes plays a pivotal role in regulating melanogenesis via TSC2-induced cellular organelle dysfunction.

4.
Urol Case Rep ; 54: 102705, 2024 May.
Article in English | MEDLINE | ID: mdl-38827532

ABSTRACT

Tuberous sclerosis complex (TSC) is a genetically inherited disorder distinguished by the development of numerous benign neoplasms across multiple organ systems. Renal angiomyolipoma represents 0.3% of all primary renal tumors and are classified as benign mixed mesenchymal neoplasms. In this report, we reported the clinical presentation of a 28-year-old individual who was received by the department of urology. The patient was admitted presenting with asymptomatic, macroscopic hematuria that had been ongoing for a period of 10 days. Subsequent diagnostic evaluations revealed an association between the presenting urinary condition and tuberous sclerosis complex with a concurrent renal angiomyolipom.

5.
Folia Biol (Praha) ; 70(1): 62-73, 2024.
Article in English | MEDLINE | ID: mdl-38830124

ABSTRACT

Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.


Subject(s)
Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Neoplasms/diagnosis , RNA/genetics , Reproducibility of Results , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , DNA/genetics
6.
Aging (Albany NY) ; 16(11): 9859-9875, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38843390

ABSTRACT

BACKGROUND: Morphine tolerance refers to gradual reduction in response to drug with continuous or repeated use of morphine, requiring higher doses to achieve same effect. METHODS: The morphine tolerance dataset GSE7762 profiles, obtained from gene expression omnibus (GEO) database, were used to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) was applied to explore core modules of DEGs related to morphine tolerance. Core genes were input into Comparative Toxicogenomics Database (CTD). Animal experiments were performed to validate role of Tsc22d3 in morphine tolerance and its relationship with ferroptosis-related pathway. RESULTS: 500 DEGs were identified. DEGs were primarily enriched in negative regulation of brain development, neuronal apoptosis processes, and neurosystem development. Core gene was identified as Tsc22d3. Tsc22d3 gene-associated miRNAs were mmu-miR-196b-5p and mmu-miR-196a-5p. Compared to Non-morphine tolerant group, Tsc22d3 expression was significantly upregulated in Morphine tolerant group. Tsc22d3 expression was upregulated in Morphine tolerant+Tsc22d3_OE, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway showed a more pronounced decrease. As Tsc22d3 expression was downregulated in Morphine tolerant+Tsc22d3_KO, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway exhibited a more pronounced increase. Upregulation of Tsc22d3 in Morphine tolerant+Tsc22d3_OE led to a more pronounced increase in expression of apoptosis proteins (P53, Caspase-3, Bax, SMAC, FAS). The expression of inflammatory factors (IL6, TNF-alpha, CXCL1, CXCL2) showed a more pronounced increase with upregulated Tsc22d3 expression in Morphine tolerant+Tsc22d3_OE. CONCLUSIONS: Tsc22d3 is highly expressed in brain tissue of morphine-tolerant mice, activating ferroptosis pathway, enhancing apoptosis, promoting inflammatory responses in brain cells.


Subject(s)
Drug Tolerance , Ferroptosis , Morphine , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Ferroptosis/drug effects , Ferroptosis/genetics , Morphine/pharmacology , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Drug Tolerance/genetics , Male , MicroRNAs/metabolism , MicroRNAs/genetics , Signal Transduction/drug effects , Mice, Inbred C57BL
7.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892169

ABSTRACT

Eosinophilic solid and cystic renal cell carcinoma (ESC-RCC) is a novel and uncommon type of renal cell carcinoma, which has been recently recognized and introduced as a distinct entity in the WHO 2022 kidney tumor classification. Previously known as "unclassified RCC", followed by "tuberous sclerosis complex (TSC)-associated RCC", ESC-RCC is now a distinct category of kidney tumor, with its own name, with specific clinical manifestations, and a unique morphological, immunohistochemical and molecular profile. Due to its recent introduction and the limited available data, the diagnosis of ESC-RCC is still a complex challenge, and it is probably frequently misdiagnosed. The secret of diagnosing this tumor lies in the pathologists' knowledge, and keeping it up to date through research, thereby limiting the use of outdated nomenclature. The aim of our case-based review is to provide a better understanding of this pathology and to enrich the literature with a new case report, which has some particularities compared to the existing cases.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/diagnosis , Kidney Neoplasms/pathology , Kidney Neoplasms/diagnosis , Eosinophilia/pathology , Eosinophilia/diagnosis , Male
8.
Placenta ; 152: 53-64, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805949

ABSTRACT

INTRODUCTION: The placenta differs greatly among species, and deep extra-villous trophoblast (EVT) invasion is a unique feature of placentation of higher primates including humans. We reported serine protease HtrA4 being found predominantly in human placentas with aberrant expression linked to preeclampsia. However, it remains unclear where HtrA4 is produced in the placenta, how it is expressed in other species, and whether it is essential for human placentation. METHODS: We first compared HtrA4 protein sequences of over 100 species, then scrutinized the key characteristics of HtrA4 in the human, rhesus macaque and mouse, and determined cellular localization in the placenta. We next investigated functional significance of HtrA4 in EVT differentiation using human trophoblast stem cells (TSCs). RESULTS: Across broader species HtrA4 is well conserved only in higher primates. In humans, only the placenta expressed HtrA4, localising to trophoblasts of villous as well as extra-villous lineages. Rhesus macaques produced HtrA4 but again only in placentas, whereas mice showed no abundant HtrA4 expression anywhere including the placenta, yet it was an active protease if produced. The functional importance of HtrA4 in human EVT was demonstrated using TSCs, which expressed low levels of HtrA4 but significantly up-regulated it during EVT differentiation, and knockdown of HtrA4 severely inhibited the differentiation process. DISCUSSION: HtrA4 is expressed in placentas of humans and macaques but not mice; it is critical for human EVT differentiation. Together with previous reports showing HtrA4 is also indispensable for syncytialization, this study further revealed HtrA4 as a functionally important protease for human placentation.


Subject(s)
Cell Differentiation , Macaca mulatta , Serine Endopeptidases , Trophoblasts , Animals , Trophoblasts/metabolism , Humans , Female , Pregnancy , Cell Differentiation/physiology , Mice , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Placenta/metabolism , Placentation/physiology , Serine Proteases
9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731914

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer deaths globally. While ethnic differences in driver gene mutations have been documented, the South American population remains understudied at the genomic level, despite facing a rising burden of CRC. We analyzed tumors of 40 Chilean CRC patients (Chp) using next-generation sequencing and compared them to data from mainly Caucasian cohorts (TCGA and MSK-IMPACT). We identified 388 mutations in 96 out of 135 genes, with TP53 (45%), KRAS (30%), PIK3CA (22.5%), ATM (20%), and POLE (20%) being the most frequently mutated. TSC2 mutations were associated with right colon cancer (44.44% in RCRC vs. 6.45% in LCRC, p-value = 0.016), and overall frequency was higher compared to TCGA (p-value = 1.847 × 10-5) and MSK-IMPACT cohorts (p-value = 3.062 × 10-2). Limited sample size restricts definitive conclusions, but our data suggest potential differences in driver mutations for Chilean patients, being that the RTK-RAS oncogenic pathway is less affected and the PI3K pathway is more altered in Chp compared to TCGA (45% vs. 25.56%, respectively). The prevalence of actionable pathways and driver mutations can guide therapeutic choices, but can also impact treatment effectiveness. Thus, these findings warrant further investigation in larger Chilean cohorts to confirm these initial observations. Understanding population-specific driver mutations can guide the development of precision medicine programs for CRC patients.


Subject(s)
Colonic Neoplasms , Mutation , Tuberous Sclerosis Complex 2 Protein , Humans , Chile/epidemiology , Tuberous Sclerosis Complex 2 Protein/genetics , Male , Female , Middle Aged , Colonic Neoplasms/genetics , Colonic Neoplasms/epidemiology , Colonic Neoplasms/pathology , Aged , Adult , High-Throughput Nucleotide Sequencing , Aged, 80 and over , Signal Transduction/genetics
10.
Sci Rep ; 14(1): 12521, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822085

ABSTRACT

Sirtuin1 (SIRT1) activity decreases the tuberous sclerosis complex 2 (TSC2) lysine acetylation status, inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signalling and concomitantly, activating autophagy. This study analyzes the role of TSC2 acetylation levels in its translocation to the lysosome and the mitochondrial turnover in both mouse embryonic fibroblast (MEF) and in mouse insulinoma cells (MIN6) as a model of pancreatic ß cells. Resveratrol (RESV), an activator of SIRT1 activity, promotes TSC2 deacetylation and its translocation to the lysosome, inhibiting mTORC1 activity. An improvement in mitochondrial turnover was also observed in cells treated with RESV, associated with an increase in the fissioned mitochondria, positive autophagic and mitophagic fluxes and an enhancement of mitochondrial biogenesis. This study proves that TSC2 in its deacetylated form is essential for regulating mTORC1 signalling and the maintenance of the mitochondrial quality control, which is involved in the homeostasis of pancreatic beta cells and prevents from several metabolic disorders such as Type 2 Diabetes Mellitus.


Subject(s)
Lysosomes , Mitochondria , Tuberous Sclerosis Complex 2 Protein , Animals , Mice , Acetylation , Autophagy , Cell Line, Tumor , Fibroblasts/metabolism , Insulin-Secreting Cells/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/metabolism , Protein Transport , Resveratrol/pharmacology , Signal Transduction , Sirtuin 1/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics
11.
J Clin Med ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792433

ABSTRACT

Introduction: Tuberous sclerosis complex (TSC) is a genetic disease caused by pathogenetic variants in either the TSC1 or TSC2 genes. Consequently, the mechanistic target of the rapamycin complex 1 (mTORC1) pathway, a regulator of cell growth, metabolism, and survival, becomes inappropriately activated, leading to the development of benign tumors in multiple organs. The role of mTORC1 in lipid metabolism and liver steatosis in TSC patients has not been well-studied, and clinical data on liver involvement in this population are scarce. Methods: We conducted a retrospective, cross-sectional study to compare liver steatosis in TSC patients with age-, sex-, BMI-, and diabetes status-matched controls. Participants with a definite diagnosis of TSC were recruited from the TSC clinic at UZ Brussel. Liver steatosis was quantified using the fat signal fraction from in-phase and out-of-phase MRI, with a threshold of ≥5% defining the presence of steatosis. We also evaluated the prevalence of liver angiomyolipomata in the TSC group and analyzed risk factors for both liver steatosis and angiomyolipomata. Results: The study included 59 TSC patients and 59 matched controls. The mean fat signal fraction was 4.0% in the TSC group and 3.9% in the controls, showing no significant difference (two-tailed Wilcoxon signed ranks test, p = 0.950). Liver steatosis was observed in 15.3% of TSC patients compared to 23.7% of the controls, which was not statistically significant (two-tailed McNemar test, p = 0.267). Liver angiomyolipomata were identified in 13.6% of the TSC cohort. Conclusions: Our study, describing in detail the liver phenotype of TSC patients, did not reveal a significant difference in the prevalence of MRI-assessed liver steatosis in a large cohort of TSC patients compared to a closely matched control group.

12.
BMC Med Genomics ; 17(1): 144, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802873

ABSTRACT

BACKGROUND: Tuberous sclerosis complex (TSC) is a rare, autosomal dominant genetic disease that arises from TSC1 or TSC2 genetic mutations. These genetic mutations can induce the development of benign tumors in any organ system with significant clinical implications in morbidity and mortality. In rare instances, patients with TSC can have malignant tumors, including renal cell carcinoma (RCC) and pancreatic neuroendocrine tumor (PNET). It is considered a hereditary renal cancer syndrome despite the low incidence of RCC in TSC patients. TSC is typically diagnosed in prenatal and pediatric patients and frequently associated with neurocognitive disorders and seizures, which are often experienced early in life. However, penetrance and expressivity of TSC mutations are highly variable. Herein, we present a case report, with associated literature, to highlight that there exist undiagnosed adult patients with less penetrant features, whose clinical presentation may contain non-classical signs and symptoms, who have pathogenic TSC mutations. CASE PRESENTATION: A 31-year-old female with past medical history of leiomyomas status post myomectomy presented to the emergency department for a hemorrhagic adnexal cyst. Imaging incidentally identified a renal mass suspicious for RCC. Out of concern for hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome, the mass was surgically removed and confirmed as RCC. Discussion with medical genetics ascertained a family history of kidney cancer and nephrectomy procedures and a patient history of ungual fibromas on the toes. Genetic testing for hereditary kidney cancer revealed a 5'UTR deletion in the TSC1 gene, leading to a diagnosis of TSC. Following the diagnosis, dermatology found benign skin findings consistent with TSC. About six months after the incidental finding of RCC, a PNET in the pancreatic body/tail was incidentally found on chest CT imaging, which was removed and determined to be a well-differentiated PNET. Later, a brain MRI revealed two small cortical tubers, one in each frontal lobe, that were asymptomatic; the patient's history and family history did not contain seizures or learning delays. The patient presently shows no evidence of recurrence or metastatic disease, and no additional malignant tumors have been identified. CONCLUSIONS: To our knowledge, this is the first report in the literature of a TSC patient without a history of neurocognitive disorders with RCC and PNET, both independently rare occurrences in TSC. The patient had a strong family history of renal disease, including RCC, and had several other clinical manifestations of TSC, including skin and brain findings. The incidental finding and surgical removal of RCC prompted the genetic evaluation and diagnosis of TSC, leading to a comparably late diagnosis for this patient. Reporting the broad spectrum of disease for TSC, including more malignant phenotypes such as the one seen in our patient, can help healthcare providers better identify patients who need genetic evaluation and additional medical care.


Subject(s)
Kidney Neoplasms , Tuberous Sclerosis , Humans , Tuberous Sclerosis/genetics , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnosis , Female , Adult , Kidney Neoplasms/genetics , Kidney Neoplasms/diagnosis , Kidney Neoplasms/complications , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/complications , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Mutation
13.
Am J Physiol Cell Physiol ; 326(6): C1769-C1775, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682238

ABSTRACT

We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.


Subject(s)
Muscle, Skeletal , Protein Transport , TOR Serine-Threonine Kinases , Whey Proteins , Humans , Whey Proteins/metabolism , Whey Proteins/pharmacology , Whey Proteins/administration & dosage , Male , TOR Serine-Threonine Kinases/metabolism , Young Adult , Adult , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Protein Transport/drug effects , Double-Blind Method , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/metabolism , Postprandial Period , Ketones/metabolism , Muscle Proteins/metabolism
14.
Phytochem Anal ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659229

ABSTRACT

INTRODUCTION: Trillium govanianum Wall. ex D.Don is a folk medicinal herb rich in structurally diverse steroidal saponins. The annual demand for this herb in India is about 200-500 metric tons, highlighting the need for a thorough quality assessment. OBJECTIVE: The objective of this study is to develop an easy and reliable ultrahigh-performance liquid chromatography-evaporative light scattering detector (UHPLC-ELSD)-based quality assessment method with 14 specialised metabolites of T. govanianum and identify the potential targets of this herb using network pharmacology. MATERIAL AND METHODS: A UHPLC-ELSD method was developed and validated with 14 markers of T. govanianum. The developed method and natural deep eutectic solvent (NADES)-assisted extraction were utilised for the recovery enhancement study of targeted specialised metabolites from rhizome samples (collected from five geographically distinct areas). In addition, the network pharmacology approach was performed for these 14 markers to predict the plausible biological targets of T. govanianum. RESULT: The developed method showed good linearity (r2: 0.940-0.998), limit of detection (LOD) (2.4-9.0 µg), limit of quantification (LOQ) (7.92-29.7 µg), precision (intra-day relative standard deviations [RSDs] 0.77%-1.96% and inter-day RSDs 2.19-4.97%), and accuracy (83.24%-118.90%). NADES sample TG-1* showed the highest recovery (yield: 167.66 ± 4.39 mg/g of dry weight) of total saponin content (TSC) as compared to its hydroethanolic extract (yield: 103.95 ± 5.36 mg/g of dry weight). Sample TG-1* was the most favourable (yield: 167.66 ± 4.39 mg/g) in terms of TSC as compared to other analysed samples (32.68 ± 1.04-88.22 ± 6.79 mg/g). Govanoside D (yield: 3.43-28.06 mg/g), 22ß-hydroxyprotodioscin (yield: 3.22-114.79 mg/g), and dioscin (yield: 1.07-20.82 mg/g) were quantified as the major metabolites. Furthermore, network pharmacology analysis of targeted 14 markers indicated that these molecules could be possible therapeutic agents for managing neuralgia, diabetes mellitus, and hyperalgesia. CONCLUSION: The current study represents the first report for the simultaneous quantification and a network pharmacology-based analysis of 14 chemical marker compounds isolated from T. govanianum.

15.
Front Oncol ; 14: 1274953, 2024.
Article in English | MEDLINE | ID: mdl-38590655

ABSTRACT

Background: Angiomyolipoma with epithelial cysts (AMLEC) is an extremely rare subtype of kidney angiomyolipoma that contains epithelial-lined cysts. The most distinctive immunohistochemical feature of AMLEC is its immunoreactivity with melanocytic markers. AMLEC also has a distinct histological structure, which aids in its pathological diagnosis. To date 27 cases of AMLEC have been reported in 11 case series. However, the molecular biology underlying the pathogenesis of AMLEC remains unexplored. Case report: A 30-year-old female was diagnosed with AMLEC and underwent partial nephrectomy. Histologically, the cross-section of cystic tissue revealed a multilocular appearance, with some cysts containing thrombus-like material, and the wall thickness was approximately 0.2 ~ 0.3 cm. Additionally, the compact subepithelial cellular stroma showed strong and diffuse nuclear labeling for estrogen receptor, progesterone receptor, and CD10, as well as HMB45 and Melan A, which are markers of melanocytic differentiation. Furthermore, using a DNA targeted sequencing panel with next-generation sequencing, we identified a nonsense mutation in TSC Complex Subunit 2 (TSC2) gene, resulting in the formation of a premature termination codon. Moreover, the mutated genes found to be enriched in the PI3K-AKT pathway. The patient in this case had a favorable postoperative follow-up at 3 months. Conclusion: To the best of our knowledge, this study represents the first analysis of genotype mutations in AMLEC, providing valuable insights for future clinical practice. These findings have significant potential in guiding the understanding and management of AMLEC, paving the way for further research and advancements in the field.

16.
Respirology ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654512

ABSTRACT

BACKGROUND AND OBJECTIVE: Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease associated with the functional tumour suppressor genes TSC1 and TSC2 and causes structural destruction in the lungs, which could potentially increase the risk of lung cancer. However, this relationship remains unclear because of the rarity of the disease. METHODS: We investigated the relative risk of developing lung cancer among patients diagnosed with LAM between 2001 and 2022 at a single high-volume centre in Japan, using data from the Japanese Cancer Registry as the reference population. Next-generation sequencing (NGS) was performed in cases where tumour samples were available. RESULTS: Among 642 patients diagnosed with LAM (sporadic LAM, n = 557; tuberous sclerosis complex-LAM, n = 80; unclassified, n = 5), 13 (2.2%) were diagnosed with lung cancer during a median follow-up period of 5.13 years. All patients were female, 61.5% were never smokers, and the median age at lung cancer diagnosis was 53 years. Eight patients developed lung cancer after LAM diagnosis. The estimated incidence of lung cancer was 301.4 cases per 100,000 person-years, and the standardized incidence ratio was 13.6 (95% confidence interval, 6.2-21.0; p = 0.0008). Actionable genetic alterations were identified in 38.5% of the patients (EGFR: 3, ALK: 1 and ERBB2: 1). No findings suggested loss of TSC gene function in the two patients analysed by NGS. CONCLUSION: Our study revealed that patients diagnosed with LAM had a significantly increased risk of lung cancer. Further research is warranted to clarify the carcinogenesis of lung cancer in patients with LAM.

17.
Front Oncol ; 14: 1357980, 2024.
Article in English | MEDLINE | ID: mdl-38601768

ABSTRACT

Background: Patients with platinum-resistant recurrent high grade serous ovarian carcinoma have poor outcomes and limited treatment options. Case presentation: We present a case of a 48-year-old woman with platinum-resistant high grade serous ovarian carcinoma harboring the pathogenic TSC2 R611Q variant with concomitant single copy loss of TSC2 (suggesting biallelic TSC2 inactivation) identified in targeted tumor sequencing. The patient was treated with the mTOR inhibitor everolimus, with an excellent response by imaging and a marked decrease in CA125; she remained on everolimus for 19 months until she developed progressive disease. Conclusions: While mTOR inhibition is frequently used in tumors associated with tuberous sclerosis complex (TSC), such as lymphangioleiomyomatosis and malignant perivascular epithelioid cell tumors, this is the first case of a patient with ovarian cancer harboring TSC1/2 mutations who responded to mTOR inhibition. This case highlights the utility of targeted DNA sequencing in the management of ovarian carcinoma and demonstrates the value of tumor-agnostic targeted therapies.

18.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38603796

ABSTRACT

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Subject(s)
Diapause , Nutrients , Animals , Female , Mice , Blastocyst/metabolism , Diapause/physiology , Embryonic Development/physiology
19.
Dev Cell ; 59(8): 941-960, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653193

ABSTRACT

In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.


Subject(s)
Cell Differentiation , Cell Lineage , Trophoblasts , Trophoblasts/cytology , Trophoblasts/metabolism , Animals , Humans , Mice , Female , Pregnancy , Ectoderm/metabolism , Ectoderm/cytology , Embryonic Development , Cellular Reprogramming
20.
Radiol Case Rep ; 19(6): 2566-2573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38596180

ABSTRACT

Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that primarily affects the central nervous system and various body organs. This case series describes the case history of 2 siblings from the same parents who were diagnosed with TSC. Case 1 is a 13-year-old girl with bilateral renal AML (angiomyolipoma), multiple fat nodules in the liver, and subependymal nodules with tubers revealed in the brain magnetic resonance imaging (MRI). Case 2 is her brother, a 6-year-old boy, who presented with manifestations of subependymal giant cell astrocytoma (SEGA) and renal AML. TSC must be managed with early diagnosis and intervention due to the risk of hamartoma enlargement. These 2 cases found in siblings underline the varied clinical presentations of TSC and the complexities faced by families with TSC. Early diagnosis is important to avoid TSC-related complications because, as time goes by, the disease will impact the patient's quality of life and increase morbidity and mortality. This case series also highlights the advantages of dermatological screening for the early detection of TSC, family screening, the need for multiple imaging modalities and counseling of family members with TSC, as well as the need for ongoing follow-up of this rare disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...