ABSTRACT
Trypanosoma cruzi is a parasite transmitted by the feces of triatomines. Many triatomine species are found in Mexico, and various T. cruzi variants have been isolated from these species, each showing very different virulence and cell tropism. The isolates were obtained from Meccus phyllosoma specimens in three localities in the state of Oaxaca, Mexico: Tehuantitla, Vixhana, and Guichivere. The virulence of each isolate was assessed by quantifying parasitemia, survival, and histopathologic findings. The lineage of each isolate was identified using the mini-exon gene. The expression of the tssa gene during infection was detected in the heart, esophagus, gastrocnemius, and brain. Our results show that the maximum post-infection parasitemia was higher for the Tehuantitla isolate. On genotyping, all isolates were identified as T. cruzi I. The amastigotes in the heart and gastrocnemius were verified for all isolates, but in the brain only for Tehuantitla and Vixhana. The tssa expression allowed us to detect T. cruzi isolates, for Tehuantitla, predominantly in the heart. For Vixhana, a higher tssa expression was detected in gastrocnemius, and for Guichivere, it was higher in the esophagus. Results show that virulence, tropism, and tssa expression can vary, even when the isolates are derived from the same vector species, in the same region, and at similar altitudes.
ABSTRACT
BACKGROUND: This study identified Trypanosoma cruzi discrete typing units (DTUs) in maternal and infant specimens collected from two hospitals in Bolivia, using conventional genotyping and DTU-specific serotyping. METHODS: Specimens from 142 mothers were used, including 24 seronegative and 118 seropositive individuals; 29 women transmitted T. cruzi to their infants. Maternal and infant parasite loads were determined by quantitative real-time PCR. Maternal sera were tested with an in-house parasite lysate ELISA and serotyped by a lineage-specific peptide ELISA, targeting the trypomastigote small surface antigen (TSSA). Trypanosoma cruzi genotypes in infected infants were determined by a triple PCR-RFLP assay. RESULTS: All infant specimens were genotyped as TcV. Maternal parasite loads and absorbance values by the lysate ELISA were significantly higher for transmitters compared with non-transmitters. Among seropositive mothers, 65.3% had positive results by the TSSA II/V/VI peptide ELISA. No significant difference in reactivity to TSSA II/V/VI was observed for transmitters compared with non-transmitters (79.3% vs 60.7%, respectively). CONCLUSIONS: Our findings reinforce the difficulty in obtaining sufficient sample numbers and parasite DNA to investigate the interaction between parasite genetics and the risk of congenital transmission and argue for the inclusion of DTU-specific serotyping in prospective studies.
Subject(s)
Chagas Disease , Trypanosoma cruzi , Antigens, Surface , Bolivia/epidemiology , Chagas Disease/epidemiology , Chagas Disease/parasitology , Female , Humans , Male , Prospective Studies , Real-Time Polymerase Chain Reaction , Trypanosoma cruzi/geneticsABSTRACT
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi Assessment of parasitological cure upon treatment with available drugs relies on achieving consistent negative results in conventional parasitological and serological tests, which may take years to assess. Here, we evaluated the use of a recombinant T. cruzi antigen termed trypomastigote small surface antigen (TSSA) as an early serological marker of drug efficacy in T. cruzi-infected children. A cohort of 78 pediatric patients born to T. cruzi-infected mothers was included in this study. Only 39 of the children were infected with T. cruzi, and they were immediately treated with trypanocidal drugs. Serological responses against TSSA were evaluated in infected and noninfected populations during the follow-up period using an in-house enzyme-linked immunosorbent assay (ELISA) and compared to conventional serological methods. Anti-TSSA antibody titers decreased significantly faster than anti-whole parasite antibodies detected by conventional serology both in T. cruzi-infected patients undergoing effective treatment and in those not infected. The differential kinetics allowed a significant reduction in the required follow-up periods to evaluate therapeutic responses or to rule out maternal-fetal transmission. Finally, we present the case of a congenitally infected patient with an atypical course in whom TSSA provided an early marker for T. cruzi infection. In conclusion, we showed that TSSA was efficacious both for rapid assessment of treatment efficiency and for early negative diagnosis in infants at risk of congenital T. cruzi infection. Based upon these findings we propose the inclusion of TSSA for refining the posttherapeutic cure criterion and other diagnostic needs in pediatric Chagas disease.