Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 812-820, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545979

ABSTRACT

Taq DNA polymerase, which was discovered from a thermophilic aquatic bacterium (Thermus aquaticus), is an enzyme that possesses both reverse transcriptase activity and DNA polymerase activity. Colicin E (CE) protein belongs to a class of Escherichia coli toxins that utilize the vitamin receptor BtuB as a transmembrane receptor. Among these toxins, CE2, CE7, CE8, and CE9 are classified as non-specific DNase-type colicins. Taq DNA polymerase consists of a 5'→3' exonuclease domain, a 3'→5' exonuclease domain, and a polymerase domain. Taq DNA polymerase lacking the 5'→3' exonuclease domain (ΔTaq) exhibits higher yield but lower processivity, making it unable to amplify long fragments. In this study, we aimed to enhance the processivity of ΔTaq. To this end, we fused dCE with ΔTaq and observed a significant improvement in the processivity of the resulting dCE-ΔTaq compared to Taq DNA polymerase and dCE-Taq. Furthermore, its reverse transcriptase activity was also higher than that of ΔTaq. The most notable improvement was observed in dCE8-ΔTaq, which not only successfully amplified 8 kb DNA fragments within 1 minute, but also yielded higher results compared to other mutants. In summary, this study successfully enhanced the PCR efficiency and reverse transcription activity of Taq DNA polymerase by fusing ΔTaq DNA polymerase with dCE. This approach provides a novel approach for modifying Taq DNA polymerase and holds potential for the development of improved variants of Taq DNA polymerase.


Subject(s)
Colicins , Taq Polymerase/genetics , Taq Polymerase/chemistry , Taq Polymerase/metabolism , Colicins/genetics , Colicins/metabolism , Escherichia coli/metabolism , DNA , Exonucleases , RNA-Directed DNA Polymerase/metabolism , Thermus/genetics , Thermus/metabolism
2.
Molecules ; 29(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474657

ABSTRACT

DNA polymerases are important enzymes that synthesize DNA molecules and therefore are critical to various scientific fields as essential components of in vitro DNA synthesis reactions, including PCR. Modern diagnostics, molecular biology, and genetic engineering require DNA polymerases with improved performance. This study aimed to obtain and characterize a new CL7-Taq fusion DNA polymerase, in which the DNA coding sequence of Taq DNA polymerase was fused with that of CL7, a variant of CE7 (Colicin E7 DNase) from Escherichia coli. The resulting novel recombinant open reading frame was cloned and expressed in E. coli. The recombinant CL7-Taq protein exhibited excellent thermostability, extension rate, sensitivity, and resistance to PCR inhibitors. Our results showed that the sensitivity of CL7-Taq DNA polymerase was 100-fold higher than that of wild-type Taq, which required a template concentration of at least 1.8 × 105 nM. Moreover, the extension rate of CL7-Taq was 4 kb/min, which remarkably exceeded the rate of Taq DNA polymerase (2 kb/min). Furthermore, the CL7 fusion protein showed increased resistance to inhibitors of DNA amplification, including lactoferrin, heparin, and blood. Single-cope human genomic targets were readily available from whole blood, and pretreatment to purify the template DNA was not required. Thus, this is a novel enzyme that improved the properties of Taq DNA polymerase, and thus may have wide application in molecular biology and diagnostics.


Subject(s)
Escherichia coli , Nucleic Acid Amplification Techniques , Humans , Taq Polymerase/metabolism , Escherichia coli/metabolism , Polymerase Chain Reaction/methods , DNA/metabolism , Recombinant Proteins/metabolism
3.
J Microbiol Methods ; 219: 106899, 2024 04.
Article in English | MEDLINE | ID: mdl-38360298

ABSTRACT

AIMS: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are important causes of bacterial meningitis. In this study, the DNA binding site of the wild type Taq DNA polymerase was modified to produce a mutant enzyme with enhanced DNA affinity and PCR performance. The engineered and the wild type enzymes were integrated into qPCR-based assays for molecular detection of S. pneumoniae, N. meningitidis, H. influenzae, and serogroups and serotypes of these three pathogens. METHODS: Bio-Speedy® Bacterial DNA Isolation Kit (Bioeksen R&D Technologies, Turkiye) and 2× qPCR-Mix for hydrolysis probes (Bioeksen R&D Technologies, Turkiye) and CFX96 Instrument (Biorad Inc., USA) were used for all molecular analyses. Spiked negative clinical specimens were tested using the developed qPCR assays and the culture-based conventional methods for the analytical performance evaluation. RESULTS: All qPCR assays did not produce any positive results for the samples spiked with potential cross-reacting bacteria. Limit of detection (LOD) of the assays containing the mutant enzyme was 1 genome/reaction (10 cfu/mL sample) which is at least 3 times lower than the previously reported LOD levels for DNA amplification based molecular assays. LODs for the spiked serum and cerebrospinal fluid (CSF) samples decreased 2.3-4.7 and 1.2-3.5 times respectively when the mutant enzyme was used instead of the wild type Taq DNA polymerase. CONCLUSIONS: It is possible to enhance analytical sensitivity of qPCR assays targeting the bacterial agents of meningitis by using an engineered Taq DNA polymerase. These qPCR-based assays can be used for direct detection and serogrouping / serotyping of S. pneumoniae, N. meningitidis and H. influenzae at concentrations close to the lower limit of medical decision point.


Subject(s)
Meningitis, Bacterial , Neisseria meningitidis , Humans , Neisseria meningitidis/genetics , Streptococcus pneumoniae/genetics , Taq Polymerase , Haemophilus influenzae/genetics , Meningitis, Bacterial/cerebrospinal fluid , Bacteria/genetics , DNA
4.
Appl Microbiol Biotechnol ; 107(21): 6507-6525, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37658164

ABSTRACT

Engineering Taq DNA polymerase (TaqPol) for improved activity, stability and sensitivity was critical for its wide applications. Multiple sequence alignment (MSA) has been widely used in engineering enzymes for improved properties. Here, we first designed TaqPol mutations based on MSA of 2756 sequences from both thermophilic and non-thermophilic organisms. Two double mutations were generated including a variant H676F/R677G showing a decrease in both activity and stability, and a variant Y686R/E687K showing an improved activity, but a decreased stability. Mutations targeted on coevolutionary residues of Arg677 and Tyr686 were then applied to rescue stability or activity loss of the double mutants, which achieved a partial success. Sequence analysis revealed that the two mutations are abundant in non-thermophilic sequences but not in thermophilic homologues. Then, a small-scale MSA containing sequences from only thermophilic organisms was applied to predict 13 single variants and two of them, E507Q and E734N showed a simultaneous increase in both stability and activity, even in sensitivity. A customized MSA was hence more effective in engineering a thermophilic enzyme and could be used in engineering other enzymes. Molecular dynamics simulations revealed the impact of mutations on the protein dynamics and interactions between TaqPol and substrates. KEY POINTS: • The pool of sequence for alignment is critical to engineering Taq DNA polymerase. • The variants with low properties can be rescued by mutations in coevolving network. • Improving binding with DNA can improve DNA polymerase stability and activity.

5.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511160

ABSTRACT

Taq DNA polymerases have played an important role in molecular biology for several years and are frequently used for polymerase chain reaction (PCR); hence, there is an increasing interest in developing a convenient method for preparing Taq DNA polymerase for routine use in laboratories. We developed a method using Escherichia coli (E. coli) that expresses thermostable Taq DNA polymerase directly in the PCR without purification. The Taq gene was transformed into E. coli and expressed. After overnight incubation and washing, E. coli-expressing Taq DNA polymerase (EcoliTaq) was used as the DNA polymerase without purification. EcoliTaq showed activity comparable to that of commercial DNA polymerase and remained stable for 3 months. With a high-pH buffer containing 2% Tween 20 and 0.4 M trehalose, EcoliTaq facilitated direct PCR amplification from anticoagulated whole blood samples. EcoliTaq exhibited good performance in allele-specific PCR using both purified DNA and whole blood samples. Furthermore, it proved to be useful as a DNA polymerase in hot-start PCR by effectively minimizing non-specific amplification. We developed a simple and cost-effective direct and hot-start PCR method in which EcoliTaq was used directly as a PCR enzyme, thus eliminating the laborious and time-consuming steps of polymerase purification.


Subject(s)
DNA , Escherichia coli , Taq Polymerase , Escherichia coli/metabolism , Polymerase Chain Reaction/methods , DNA Replication
6.
Chembiochem ; 24(14): e202200572, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37253903

ABSTRACT

Controlling PCR fidelity is an important issue for molecular biology and high-fidelity PCR is essential for gene cloning. In general, fidelity control is achieved by protein engineering of polymerases. In contrast, only a few studies have reported controlling fidelity using chemically modified nucleotide substrates. In this report, we synthesized nucleotide substrates possessing a modification on Pγ and evaluated the effect of this modification on PCR fidelity. One of the substrates, nucleotide tetraphosphate, caused a modest decrease in Taq DNA polymerase activity and the effect on PCR fidelity was dependent on the type of mutation. The use of deoxyadenosine tetraphosphate enhanced the A : T→G : C mutation dramatically, which is common when using Taq polymerase. Conversely, deoxyguanosine tetraphosphate (dG4P) suppressed this mutation but increased the G : C→A : T mutation during PCR. Using an excess amount of dG4P suppressed both mutations successfully and total fidelity was improved.


Subject(s)
Nucleic Acid Amplification Techniques , Phosphates , Taq Polymerase/genetics , Taq Polymerase/metabolism , Polymerase Chain Reaction , Mutation , Nucleotides
7.
Front Bioeng Biotechnol ; 11: 1180542, 2023.
Article in English | MEDLINE | ID: mdl-37180044

ABSTRACT

Because of its non-template addition feature, Taq DNA polymerase can catalyze one or more extra nucleotides onto the 3' terminus of PCR products. An extra peak is observed at DYS391 locus after the PCR products stored for 4 days at 4°C. To explore the formation mechanism of this artifact, PCR primers and amplicon sequences of Y-STR loci are analyzed, furthermore, PCR products storage conditions and termination of PCR are discussed. The extra peak is a + 2 addition product, which we call excessive addition split peak (EASP). The most significant difference between EASP and the incomplete addition of adenine product is that the size of EASP is about one base larger than the true allele, and the EASP locates on the right side of the real allelic peak. The EASP cannot be eliminated by increasing loading mixture volume and conducting heat denaturation prior to electrophoresis injection. However, the EASP is not observed when the PCR is terminated with ethylenediaminetetraacetic acid or formamide. These findings suggest that formation of EASP is a result of 3' end non-template extension by Taq DNA polymerase, rather than being the result of DNA fragment secondary structure produced under a suboptimal electrophoresis condition. In addition, the EASP formation is affected by the primer sequences and the storage conditions of PCR products.

8.
Gene ; 764: 145095, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32866587

ABSTRACT

As a standard molecular biology technique, PCR uses DNA polymerase to detect, amplify and manipulate DNA targets. Due to its effect of exponential amplification, PCR can achieve high sensitivity required for detecting targets of low abundance. Therefore, it has become the method of choice for the majority of nucleic acid-based tests. In PCR reactions, DNA templates are first unwound into single strands, followed by a quick temperature drop when transient intramolecular secondary structures may form first within the single-stranded templates due to reaction kinetics. In this study, we showed that the adverse effects of stem-loop structures on PCR performance were directly correlated with their thermal stability. Moreover, fractions of intermediate PCR products of templates with stable stem-loop structures were significantly shorter than those without. It was further demonstrated that when encountering the duplex region of such a structure during the PCR extension step, the endonuclease activity of Taq DNA polymerase mediated by its 5'-3' exonuclease activity could digest template strand, resulting in stem-loop structure unwinding and subsequent completion of replication to produce truncated products. This work thus provided some new mechanistic insights into the complex nature of PCR assays, a frequently encountered but neglected aspect of this widely used technique.


Subject(s)
DNA/metabolism , Endonucleases/metabolism , Polymerase Chain Reaction , Taq Polymerase/metabolism , DNA/chemistry , DNA/genetics , DNA/isolation & purification , DNA Primers/genetics , Nucleic Acid Conformation , Sequence Analysis, DNA , Templates, Genetic
9.
Arch Microbiol ; 202(6): 1449-1458, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32189018

ABSTRACT

Polymerases are enzymes that synthesize long chains or polymers of nucleic acids including DNA or RNA from nucleotides. They assemble nucleic acids by copying a DNA or RNA template strand using base-pairing interactions. One of the polymerase enzymes, Taq DNA polymerase, originally isolated from Thermus aquaticus (Taq) is a widely used enzyme in molecular biology so far. The thermostable properties of this enzyme have contributed majorly to the specificity, automation, and efficacy of the polymerase chain reaction (PCR), making it a powerful tool for today's molecular biology researches across the globe. The purification of Taq DNA polymerase from the native host results in low yield, more labor and time consumption. Therefore, many studies have been previously conducted to obtain this enzyme using alternative hosts. So far, all the existing methodologies are more laborious, time-consuming and require heavy expense. We used a novel approach to purify the enzyme with relatively high efficiency, yield and minimum time consumption using Escherichia coli (E. coli) as an alternative host. We cloned a 2500 base pair Taq DNA polymerase gene into pGEX-4T-1 vector, containing a GST-tag, downstream of tac promoter and overexpressed it using isopropyl ß-d-1-thiogalactopyranoside (IPTG) as an inducer. The enzyme was efficiently purified using novel chromatography approaches and was used in routine PCR assays in our laboratory. Our findings suggest a novel approach to facilitate the availability of polymerases for molecular and diagnostic studies. In the future, it may be used for the purification of other recombinant peptides or proteins used in structural biology and proteomics-based researches.


Subject(s)
Cloning, Molecular/methods , Escherichia coli/enzymology , Taq Polymerase/genetics , Taq Polymerase/metabolism , Base Sequence , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression/genetics , Nucleotides , Polymerase Chain Reaction/methods , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Taq Polymerase/chemistry
10.
Electron. j. biotechnol ; 44: 6-13, Mar. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087627

ABSTRACT

BACKGROUND: Hot start can greatly improve specificity, sensitivity and yield of PCR. Non-specific amplification can occur in PCR when reaction mixture is prepared at room temperature, because Taq DNA polymerase is active and the primers can hybridize non-specifically. Hot start Taq DNA polymerases remain inactive at room temperature and are activated after heating at 95°C preventing non-specific amplification. Monoclonal antibodies against Taq DNA polymerase is the first line of reagents used for turn on regular Taq DNA polymerase into Hot start one. The goal of this research was to produce and evaluate Hot Start antibodies derived from chicken eggs. RESULTS: We performed affinity purification of yolk immunoglobulin (IgY) and obtained polyclonal Hot Start antibodies. The yield of specific antibodies was 0.36 mg per egg or 0.2% of total yolk antibodies. The protocol for real time measurement and Hot start IgY activity assessment was developed. We found that Hot start IgY can reversibly block Taq DNA polymerase activity at 50°C and have no negative impact neither on the Taq DNA polymerase activity after denaturation nor on the reverse transcriptase. We estimated that 1.0 µg of Hot start IgY effectively blocks 5 U activity of Taq DNA polymerase. CONCLUSIONS: Egg derived Hot Start polyclonal antibodies are the cheapest source of Hot start antibodies, from one immune egg we can isolate 0.36 mg IgY, this quantity is enough for producing 1800 U activity of Hot start Taq DNA Polymerase.


Subject(s)
Egg Yolk/metabolism , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Temperature , Immunoglobulins/isolation & purification , Immunoglobulins/biosynthesis , Immunoglobulins/immunology , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Taq Polymerase , Egg Yolk/immunology , Antibodies, Monoclonal/isolation & purification
11.
Front Bioeng Biotechnol ; 8: 553474, 2020.
Article in English | MEDLINE | ID: mdl-33520948

ABSTRACT

A change of an aspartic acid to asparagine of Taq (Thermus aquaticus) DNA polymerase is a gain of function mutation that supports faster PCR: the extension times for PCR amplification can be 2-3 times shorter. Surprising results from negative controls led to the discovery of strand-displacement ability and reverse transcriptase activity of Taq D732N DNA polymerase. We demonstrate that the mutant enzyme can, by itself, catalyze RT-PCR, and RT-LAMP assays. Residue 732 is on the surface of the enzyme, not near the active site.

12.
J Microbiol Methods ; 160: 36-41, 2019 05.
Article in English | MEDLINE | ID: mdl-30904556

ABSTRACT

In the course of developing an assay to identify genes responsible for antibiotic resistance in gram-negative bacteria, it has been found that standard (not DNA-free) Taq DNA polymerases were contaminated with blaTEM gene fragments that varied in length and quantities. The complete blaTEM gene sequence was either absent or was detected in infinitesimal amounts. We developed an approach to avoid false-positive findings caused by contaminating blaTEM gene sequences in conventional polymerases. The method is based on selection of a target sequence to be detected within the blaTEM gene in such a way that the chosen sequence is amplified with primers incapable of amplifying contaminating DNA sequences of the polymerase.


Subject(s)
DNA Contamination , DNA, Bacterial/genetics , Polymerase Chain Reaction/methods , Taq Polymerase/analysis , DNA Primers/chemistry , Escherichia coli/genetics , False Positive Reactions
13.
Methods Mol Biol ; 1956: 61-75, 2019.
Article in English | MEDLINE | ID: mdl-30779030

ABSTRACT

Normal and malignant B cells carry rearranged immunoglobulin (Ig) variable region genes, which due to their practically limitless diversity represent ideal clonal markers for these cells. We describe here an approach to isolate single cells from frozen tissue sections by microdissection using a laser-based method. From the isolated cells, rearranged IgH and Igκ genes are amplified in a semi-nested PCR approach, using a collection of V gene subgroup-specific primers recognizing nearly all V genes together with primers for the J genes. By sequence analysis of V region genes from distinct cells, the clonal relationship of the B lineage cells can unequivocally be determined and related to the histological distribution of the cells. The approach is also useful to determine V, D, and J gene usage. Moreover, the presence and pattern of somatic Ig V gene mutations give valuable insight into the stage of differentiation of the B cells.


Subject(s)
Gene Rearrangement, B-Lymphocyte, Heavy Chain , Hodgkin Disease/genetics , Immunoglobulin Variable Region/genetics , Laser Capture Microdissection/methods , Lymphoma, B-Cell/genetics , Polymerase Chain Reaction/methods , Single-Cell Analysis/methods , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Genes, Immunoglobulin , Hodgkin Disease/pathology , Humans , Lymphoma, B-Cell/pathology
14.
Oncol Lett ; 17(2): 1883-1888, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30675251

ABSTRACT

The mitochondrial DNA (mtDNA) displacement loop (D-loop) is often altered in various cancer types, including with regard to simple sequence repeat number variation (SSRNV), which includes the C-tract and CA-tract. However, because of mitochondrial heteroplasmy and slippage errors by the Taq DNA polymerase used in polymerase chain reaction (PCR) analysis, it is difficult to precisely evaluate mtDNA D-loop SSRNV experimentally. In this study, to precisely determine cancer-specific variants in mtDNA SSRNV, various microscopic portions of cancerous tissues and normal control tissues were obtained from a patient with breast cancer, followed by laser-capture microdissection of formalin-fixed paraffin-embedded specimens. Regions containing (CA)7 repeats (positions 514-523) and (C)8 repeats (positions 303-315) of the mitochondria DNA D-loop were amplified and sequenced. Variant signals of mtDNA SSRs of (CA)7 and (C)8 were observed in normal and cancerous tissues, with the content of minor alleles (CA)6 and (C)7/(C)9 differing among samples. These results were confirmed by PCR using various primers and proofreading DNA polymerases. PCR of genomic SSRs of (CA)7 in the NAALD2 gene and (C)8 in the BMP6 gene showed a simple repeat in all samples that was different from the observed mtDNA SSRNV. The present study suggests a reliable procedure for determining cancer-specific variants in mtDNA SSRNV: Using a proofreading DNA polymerase for PCR, the background of slippage by PCR is determined by PCR of the same genomic sequence as the target. Due to the varied heteroplasmy level of mtDNA SSRNV among normal tissues, the second background of polymorphic variations should be determined by several normal tissue DNA as PCR templates. Finally, the cancer-specific variant, including its variation frequency, is determined by subtracting the two background signals from the variant signals in cancer. However, care must be taken, as normal heteroplasmy drifts observed in mtDNA SSRNV may complicate such estimations.

15.
Mitochondrial DNA B Resour ; 5(1): 108-112, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-33366444

ABSTRACT

Here we investigated the consequences of PCR amplification errors in the identification of intraindividual mtDNA variation. The bumblebee Bombus morio was chosen as model for the COI gene amplification tests with two DNA polymerases (Taq and Q5) presenting different error rates. The amplifications using Taq resulted in a significant increase of singleton haplotypes per individual in comparison to Q5. The sequence characteristics indicated that Taq resulted haplotypes are mostly due to amplification errors. Studies focusing on intraindividual variability should address special attention to the DNA polymerase fidelity to avoid overestimation of heteroplasmic haplotypes.

16.
BMC Res Notes ; 11(1): 132, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29448951

ABSTRACT

OBJECTIVES: In a recent publication, we reported the successful use of tetra primer-amplification refractory mutation system based polymerase chain reaction (T-ARMS-PCR) for genotyping of rs445709131-SNP responsible for the bovine leukocyte adhesion deficiency (BLAD) in cattle. The SNP is characterized by higher GC content of the surrounding region, hence, the previous protocol utilized dimethyl sulfoxide as PCR enhancer. Here, the reaction cocktail was modified with the use of thermostable strand displacement polymerase (SD polymerase) instead of commonly used Taq DNA Polymerase. The amplification efficiency, reaction sensitivity, specificity, and need of PCR enhancer in reactions containing SD polymerase and Taq polymerase were compared. RESULTS: T-ARMS-PCR assay is influenced by multiple factors for the correct genotyping necessitating extensive optimization at the initial stages. The described modification enabled generation of all amplicons by 25 cycles whereas the assay with Taq polymerase needed a minimum of 35 cycles. The modified assay amplified all amplicons at a wider range of annealing temperature (50-60 °C), without the addition of dimethyl sulfoxide. The replacement of Taq polymerase with SD polymerase may be beneficial in the T-ARMS assay for development of user-friendly, faster assay which is less affected by the reaction and cyclic conditions.


Subject(s)
Cattle Diseases/genetics , Genotyping Techniques/methods , Leukocyte-Adhesion Deficiency Syndrome/genetics , Polymerase Chain Reaction/methods , Taq Polymerase , Animals , Cattle , Genotyping Techniques/standards , Polymerase Chain Reaction/standards , Polymorphism, Single Nucleotide
17.
Methods Mol Biol ; 1606: 193-203, 2017.
Article in English | MEDLINE | ID: mdl-28502002

ABSTRACT

Polymerase chain reaction (PCR) enables the amplification of a specific sequence of deoxyribonucleic acid (DNA) through the process of three main steps: template DNA denaturation, annealing of the primers to complementary sequences, and primer extension to synthesize DNA strands. By using this method, the target sequence will be copied and amplified at an exponential rate. PCR provides a qualitative method for identifying DNA from fresh or dried cells/body fluids, formalin-fixed archival tissue specimens, and ancient specimens.Herein we describe basic information for performing successful PCR experiments using the amplification of a human Alu insertion on the PV92 gene locus on chromosome 16 as an example method.


Subject(s)
Genotyping Techniques/methods , Polymerase Chain Reaction/methods , Polymorphism, Genetic , Alu Elements , Chromosomes, Human, Pair 16 , Humans
18.
Methods Mol Biol ; 1620: 65-74, 2017.
Article in English | MEDLINE | ID: mdl-28540699

ABSTRACT

Polymerase chain reaction (PCR) is an oft-used preparatory technique in amplifying specific DNA regions for downstream analysis. The size of an amplicon was initially limited by errors in nucleotide polymerization and template deterioration during thermal cycling. A variant of PCR, designated long-range PCR, was devised to counter these drawbacks and enable the amplification of large fragments exceeding a few kb. In this chapter we describe a protocol for long-range PCR, which we have adopted to obtain products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples.


Subject(s)
DNA/genetics , Genome, Human/genetics , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , DNA Primers , Humans
19.
Colloids Surf B Biointerfaces ; 153: 69-76, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28219840

ABSTRACT

The combination of nanoparticles with the polymerase chain reaction (PCR) can have benefits such as easier sample handling or higher sensitivity, but also drawbacks such as loss of colloidal stability or inhibition of the PCR. The present work systematically investigates the interaction of magnetic iron oxide nanoparticles (MIONs) with the PCR in terms of colloidal stability and potential PCR inhibition due to interaction between the PCR components and the nanoparticle surface. Several types of MIONs with and without surface functionalisation by sodium citrate, dextran and 3-aminopropyl-triethoxysilane (APTES) were prepared and characterised by Transmission Electron Microscopy (TEM), dynamic light scattering (DLS) and Fourier Transform Infrared (FT-IR) spectroscopy. Colloidal stability in the presence of the PCR components was investigated both at room temperature and under PCR thermo-cycling. Dextran-stabilized MIONs show the best colloidal stability in the PCR mix at both room and elevated temperatures. Citrate- and APTES-stabilised as well as uncoated MIONs show a comparable PCR inhibition near the concentration 0.1mgml-1 while the inhibition of dextran stabilized MIONs became apparent near 0.5mgml-1. It was demonstrated that the PCR could be effectively carried out even in the presence of elevated concentration of MIONs up to 2mgml-1 by choosing the right coating approach and supplementing the reaction mix by critical components, Taq DNA polymerase and Mg2+ ions.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Polymerase Chain Reaction , Citrates/chemistry , Colloids/chemistry , Dextrans/chemistry , Particle Size , Propylamines/chemistry , Silanes/chemistry , Sodium Citrate , Surface Properties , Temperature
20.
Data Brief ; 9: 81-4, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27656666

ABSTRACT

Polymerase chain reaction (PCR) technique is widely used in many experimental conditions, and Taq DNA polymerase is critical in PCR process. In this article, the Taq DNA polymerase expression plasmid is reconstructed and the protein product is obtained by rapid purification, ("Rapid purification of high-activity Taq DNA polymerase" (Pluthero, 1993 [1]), "Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli" (Desai and Pfaffle, 1995 [2])). Here we present the production data from protein expression and provide the analysis results of the production from two different vectors. Meanwhile, the purification data is also provided to show the purity of the protein product.

SELECTION OF CITATIONS
SEARCH DETAIL
...