Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
BMC Med Imaging ; 24(1): 169, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977957

ABSTRACT

BACKGROUND: Information complementarity can be achieved by fusing MR and CT images, and fusion images have abundant soft tissue and bone information, facilitating accurate auxiliary diagnosis and tumor target delineation. PURPOSE: The purpose of this study was to construct high-quality fusion images based on the MR and CT images of intracranial tumors by using the Residual-Residual Network (Res2Net) method. METHODS: This paper proposes an MR and CT image fusion method based on Res2Net. The method comprises three components: feature extractor, fusion layer, and reconstructor. The feature extractor utilizes the Res2Net framework to extract multiscale features from source images. The fusion layer incorporates a fusion strategy based on spatial mean attention, adaptively adjusting fusion weights for feature maps at each position to preserve fine details from the source images. Finally, fused features are input into the feature reconstructor to reconstruct a fused image. RESULTS: Qualitative results indicate that the proposed fusion method exhibits clear boundary contours and accurate localization of tumor regions. Quantitative results show that the method achieves average gradient, spatial frequency, entropy, and visual information fidelity for fusion metrics of 4.6771, 13.2055, 1.8663, and 0.5176, respectively. Comprehensive experimental results demonstrate that the proposed method preserves more texture details and structural information in fused images than advanced fusion algorithms, reducing spectral artifacts and information loss and performing better in terms of visual quality and objective metrics. CONCLUSION: The proposed method effectively combines MR and CT image information, allowing the precise localization of tumor region boundaries, assisting clinicians in clinical diagnosis.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Brain Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Algorithms
2.
Front Oncol ; 14: 1373434, 2024.
Article in English | MEDLINE | ID: mdl-38846971

ABSTRACT

The European Society for Radiotherapy and Oncology-Advisory Committee in Radiation Oncology Practice (ESTRO-ACROP) updated a new target volume delineation guideline for postmastectomy radiotherapy (PMRT) after implant-based reconstruction. This study aimed to evaluate the impact on breast complications with the new guideline compared to the conventional guidelines. In total, 308 patients who underwent PMRT after tissue expander or permanent implant insertion from 2016 to 2021 were included; 184 received PMRT by the new ESTRO-ACROP target delineation (ESTRO-T), and 124 by conventional target delineation (CONV-T). The endpoints were major breast complications (infection, necrosis, dehiscence, capsular contracture, animation deformity, and rupture) requiring re-operation or re-hospitalization and any grade ≥2 breast complications. With a median follow-up of 36.4 months, the cumulative incidence rates of major breast complications at 1, 2, and 3 years were 6.6%, 10.3%, and 12.6% in the ESTRO-T group, and 9.7%, 15.4%, and 16.3% in the CONV-T group; it did not show a significant difference between the groups (p = 0.56). In multivariable analyses, target delineation is not associated with the major complications (sHR = 0.87; p = 0.77). There was no significant difference in any breast complications (3-year incidence, 18.9% vs. 23.3%, respectively; p = 0.56). Symptomatic RT-induced pneumonitis was developed in six (3.2%) and three (2.4%) patients, respectively. One local recurrence occurred in the ESTRO-T group, which was within the ESTRO-target volume. The new ESTRO-ACROP target volume guideline did not demonstrate significant differences in major or any breast complications, although it showed a tendency of reduced complication risks. As the dosimetric benefits of normal organs and comparable oncologic outcomes have been reported, further analyses with long-term follow-up are necessary to evaluate whether it could be connected to better clinical outcomes.

3.
Clin Transl Radiat Oncol ; 47: 100793, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798749

ABSTRACT

Background and purpose: Chemoradiotherapy followed by brachytherapy is the standard of care for locally advanced cervical cancer (LACC). In this study, we postulate that omitting an iconographical unaffected uterus (+12 mm distance from the tumour) from the treatment volume is safe and that no tumour will be found in the non-targeted uterus (NTU) leading to reduction of high-dose volumes of surrounding organs at risk (OARs). Material and Methods: In this single-arm phase 2 study, two sets of target volumes were delineated: one standard-volume (whole uterus) and an EXIT-volume (exclusion of non-tumour-bearing parts of the uterus with a minimum 12 mm margin from the tumour). All patients underwent chemoradiotherapy targeting the EXIT-volume, followed by completion hysterectomy. In 15 patients, a plan comparison between two treatment plans (PTV vs PTV_EXIT) was performed. The primary endpoint was the pathological absence of tumour involvement in the non-targeted uterus (NTU). Secondary endpoints included dosimetric impact of target volume reduction on OARs, acute and chronic toxicity, overall survival (OS), locoregional recurrence-free survival (LRFS), and progression-free survival (PFS). Results: In all 21 (FIGO stage I: 2; II: 14;III: 3; IV: 2) patients the NTU was pathologically negative. Ssignificant reductions in Dmean in bladder, sigmoid and rectum; V15Gy in sigmoid and rectum, V30Gy in bladder, sigmoid and rectum; V40Gy and V45Gy in bladder, bowel bag, sigmoid and rectum; V50Gy in rectum were achieved. Median follow-up was 54 months (range 7-79 months). Acute toxicity was mainly grade 2 and 5 % grade 3 urinary. The 3y- OS, PFS and LRFS were respectively 76,2%, 64,9% and 81 %. Conclusion: MRI-based exclusion of the non-tumour-bearing parts of the uterus at a minimum distance of 12 mm from the tumour out of the target volume in LACC can be done without risk of residual disease in the NTU, leading to a significant reduction of the volume of surrounding OARS treated to high doses.

4.
EJNMMI Rep ; 8(1): 6, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38748042

ABSTRACT

PURPOSE: To determine the efficacy and safety of target volume determination by 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) for intensity-modulated radiation therapy (IMRT) for locally advanced head and neck squamous cell carcinoma (HNSCC) extending into the oral cavity or oropharynx. METHODS: We prospectively treated 10 consecutive consenting patients with HNSCC using IMRT, with target volumes determined by PET-CT. Gross tumor volume (GTV) and clinical target volume (CTV) at the oral level were determined by two radiation oncologists for CT, magnetic resonance imaging (MRI), and PET-CT. Differences in target volume (GTVPET, GTVCT, GTVMRI, CTVPET, CTVCT, and CTVMRI) for each modality and the interobserver variability of the target volume were evaluated using the Dice similarity coefficient and Hausdorff distance. Clinical outcomes, including acute adverse events (AEs) and local control were evaluated. RESULTS: The mean GTV was smallest for GTVPET, followed by GTVCT and GTVMRI. There was a significant difference between GTVPET and GTVMRI, but not between the other two groups. The interobserver variability of target volume with PET-CT was significantly less than that with CT or MRI for GTV and tended to be less for CTV, but there was no significant difference in CTV between the modalities. Grade ≤ 3 acute dermatitis, mucositis, and dysphagia occurred in 55%, 88%, and 22% of patients, respectively, but no grade 4 AEs were observed. There was no local recurrence at the oral level after a median follow-up period of 37 months (range, 15-55 months). CONCLUSIONS: The results suggest that the target volume determined by PET-CT could safely reduce GTV size and interobserver variability in patients with locally advanced HNSCC extending into the oral cavity or oropharynx undergoing IMRT. Trial registration UMIN, UMIN000033007. Registered 16 jun 2018, https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000037631.

5.
Neuro Oncol ; 26(12 Suppl 2): S76-S87, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38437670

ABSTRACT

Advancements in systemic therapies for patients with metastatic cancer have improved overall survival and, hence, the number of patients living with spinal metastases. As a result, the need for more versatile and personalized treatments for spinal metastases to optimize long-term pain and local control has become increasingly important. Stereotactic body radiation therapy (SBRT) has been developed to meet this need by providing precise and conformal delivery of ablative high-dose-per-fraction radiation in few fractions while minimizing risk of toxicity. Additionally, advances in minimally invasive surgical techniques have also greatly improved care for patients with epidural disease and/or unstable spines, which may then be combined with SBRT for durable local control. In this review, we highlight the indications and controversies of SBRT along with new surgical techniques for the treatment of spinal metastases.


Subject(s)
Radiosurgery , Spinal Neoplasms , Humans , Spinal Neoplasms/radiotherapy , Standard of Care , Pain
6.
Radiother Oncol ; 192: 110110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272314

ABSTRACT

PURPOSE: One-table treatments with treatment imaging, preparation and delivery occurring at one treatment couch, could increase patients' comfort and throughput for palliative treatments. On regular C-arm linacs, however, cone-beam CT (CBCT) imaging quality is currently insufficient. Therefore, our goal was to assess the suitability of AI-generated CBCT based synthetic CT (sCT) images for target delineation and treatment planning for palliative radiotherapy. MATERIALS AND METHODS: CBCTs and planning CT-scans of 22 female patients with pelvic bone metastasis were included. For each CBCT, a corresponding sCT image was generated by a deep learning model in ADMIRE 3.38.0. Radiation oncologists delineated 23 target volumes (TV) on the sCTs (TVsCT) and scored their delineation confidence. The delineations were transferred to planning CTs and manually adjusted if needed to yield gold standard target volumes (TVclin). TVsCT were geometrically compared to TVclin using Dice coefficient (DC) and Hausdorff Distance (HD). The dosimetric impact of TVsCT inaccuracies was evaluated for VMAT plans with different PTV margins. RESULTS: Radiation oncologists scored the sCT quality as sufficient for 13/23 TVsCT (median: DC = 0.9, HD = 11 mm) and insufficient for 10/23 TVsCT (median: DC = 0.7, HD = 34 mm). For the sufficient category, remaining inaccuracies could be compensated by +1 to +4 mm additional margin to achieve coverage of V95% > 95% and V95% > 98%, respectively in 12/13 TVsCT. CONCLUSION: The evaluated sCT quality allowed for accurate delineation for most targets. sCTs with insufficient quality could be identified accurately upfront. A moderate PTV margin expansion could address remaining delineation inaccuracies. Therefore, these findings support further exploration of CBCT based one-table treatments on C-arm linacs.


Subject(s)
Pelvic Bones , Spiral Cone-Beam Computed Tomography , Humans , Female , Palliative Care , Pelvis , Tomography, X-Ray Computed , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage
7.
Med Phys ; 51(1): 292-305, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37455674

ABSTRACT

BACKGROUND: Cardiac radioablation (CR) is an innovative treatment to ablate cardiac arrythmia sources by radiation therapy. CR target delineation is a challenging task requiring the exploitation of highly different imaging modalities, including cardiac electro-anatomical mapping (EAM). PURPOSE: In this work, a data integration process is proposed to alleviate the tediousness of CR target delineation by generating a fused representation of the heart, including all the information of interest resulting from the analysis and registration of electro-anatomical data, PET scan and planning computed tomography (CT) scan. The proposed process was evaluated by cardiologists during delineation trials. METHODS: The data processing pipeline was composed of the following steps. The cardiac structures of interest were segmented from cardiac CT scans using a deep learning method. The EAM data was registered to the cardiac CT scan using a point cloud based registration method. The PET scan was registered using rigid image registration. The EAM and PET information, as well as the myocardium thickness, were projected on the surface of the 3D mesh of the left ventricle. The target was identified by delineating a path on this surface that was further projected to the thickness of the myocardium to create the target volume. This process was evaluated by comparison with a standard slice-by-slice delineation with mental EAM registration. Four cardiologists delineated targets for three patients using both methods. The variability of target volumes, and the ease of use of the proposed method, were evaluated. RESULTS: All cardiologists reported being more confident and efficient using the proposed method. The inter-clinician variability in delineated target volume was systematically lower with the proposed method (average dice score of 0.62 vs. 0.32 with a classical method). Delineation times were also improved. CONCLUSIONS: A data integration process was proposed and evaluated to fuse images of interest for CR target delineation. It effectively reduces the tediousness of CR target delineation, while improving inter-clinician agreement on target volumes. This study is still to be confirmed by including more clinicians and patient data to the experiments.


Subject(s)
Tachycardia, Ventricular , Tomography, X-Ray Computed , Humans , Workflow , Tomography, X-Ray Computed/methods , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/radiotherapy , Tachycardia, Ventricular/surgery , Positron-Emission Tomography , Myocardium
8.
J Am Coll Radiol ; 21(3): 464-472, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37844655

ABSTRACT

PURPOSE/OBJECTIVE(S): Accurate target delineation (ie, contouring) is essential for radiation treatment planning and radiotherapy efficacy. As a result, improving the quality of target delineation is an important goal in the education of radiation oncology residents. The purpose of this study was to track the concordance of radiation oncology residents' contours with those of faculty physicians over the course of 1 year to assess for patterns. MATERIALS/METHODS: Residents in postgraduate year (PGY) levels 2 to 4 were asked to contour target volumes that were then compared to the finalized, faculty physician-approved contours. Concordance between resident and faculty physician contours was determined by calculating the Jaccard concordance index (JCI), ranging from 0, meaning no agreement, to 1, meaning complete agreement. Multivariate mixed-effect models were used to assess the association of JCI to the fixed effect of PGY level and its interactions with cancer type and other baseline characteristics. Post hoc means of JCI were compared between PGY levels after accounting for multiple comparisons using Tukey's method. RESULTS: In total, 958 structures from 314 patients collected during the 2020-2021 academic year were studied. The mean JCI was 0.77, 0.75, and 0.61 for the PGY-4, PGY-3, and PGY-2 levels, respectively. The JCI score for PGY-2 was found to be lower than those for PGY-3 and PGY-4, respectively (all P < .001). No statistically significant difference of JCI score was found between the PGY-3 and PGY-4 levels. The average JCI score was lowest (0.51) for primary head and/or neck cancers, and it was highest (0.80) for gynecologic cancers. CONCLUSIONS: Tracking and comparing the concordance of resident contours with faculty physician contours is an intriguing method of assessing resident performance in contouring and target delineation and could potentially serve as a quantitative metric, which is lacking currently, in radiation oncology resident evaluation. However, additional study is necessary before this technique can be incorporated into residency assessments.


Subject(s)
Internship and Residency , Radiation Oncology , Humans , Female , Prospective Studies , Faculty , Educational Status
9.
Radiat Oncol ; 18(1): 190, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974274

ABSTRACT

BACKGROUND: Previous researches have demonstrated that adaptive replanning during intensity-modulated radiation therapy (IMRT) could enhance the prognosis of patients with nasopharyngeal carcinoma (NPC). However, the delineation of replanning target volumes remains unclear. This study aimed to evaluate the feasibility of reducing target volumes through adaptive replanning during IMRT by analyzing long-term survival outcomes and failure patterns of locoregional recurrence in NPC. METHODS: This study enrolled consecutive NPC patients who received IMRT at our hospital between August 2011 and April 2018. Patients with initially diagnosed, histologically verified, non-metastatic nasopharyngeal cancer were eligible for participation in this study. The location and extent of locoregional recurrences were transferred to pretreatment planning computed tomography for dosimetry analysis. RESULTS: Among 274 patients, 100 (36.5%) received IMRT without replanning and 174 (63.5%) received IMRT with replanning. Five-year rates of locoregional recurrence-free survival (LRFS) were 90.1% (95%CI, 84.8% to 95.4%) and 80.8% (95%CI, 72.0% to 89.6%) for patients with and without replanning, P = 0.045. There were 17 locoregional recurrences in 15 patients among patients with replanning, of which 1 (5.9%) was out-field and 16 (94.1%) were in-field. Among patients without replanning, 19 patients developed locoregional recurrences, of which 1 (5.3%) was out-field, 2 (10.5%) were marginal, and 16 (84.2%) were in-field. CONCLUSIONS: In-field failure inside the high dose area was the most common locoregional recurrent pattern for non-metastatic NPC. Adapting the target volumes and modifying the radiation dose prescribed to the area of tumor reduction during IMRT was feasible and would not cause additional recurrence in the shrunken area.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Nasopharyngeal Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Neoplasm Recurrence, Local/radiotherapy , China/epidemiology
10.
Front Oncol ; 13: 1244488, 2023.
Article in English | MEDLINE | ID: mdl-37941555

ABSTRACT

Ultra-high dose rate radiotherapy (FLASH-RT) is an external beam radiotherapy strategy that uses an extremely high dose rate (≥40 Gy/s). Compared with conventional dose rate radiotherapy (≤0.1 Gy/s), the main advantage of FLASH-RT is that it can reduce damage of organs at risk surrounding the cancer and retain the anti-tumor effect. An important feature of FLASH-RT is that an extremely high dose rate leads to an extremely short treatment time; therefore, in clinical applications, the steps of radiotherapy may need to be adjusted. In this review, we discuss the selection of indications, simulations, target delineation, selection of radiotherapy technologies, and treatment plan evaluation for FLASH-RT to provide a theoretical basis for future research.

11.
Adv Exp Med Biol ; 1416: 95-106, 2023.
Article in English | MEDLINE | ID: mdl-37432622

ABSTRACT

Meningiomas are the most common primary intracranial brain tumor, and have a heterogeneous biology and an unmet need for targeted treatment options. Existing treatments for meningiomas are limited to surgery, radiotherapy, or a combination of these depending on clinical and histopathological features. Treatment recommendations for meningioma patients take into consideration radiologic features, tumor size and location, and medical comorbidities, all of which may influence the ability to undergo complete resection. Ultimately, outcomes for meningioma patients are dictated by extent of resection and histopathologic factors, such as World Health Organization (WHO) grade and proliferation index. Radiotherapy is a critical component of meningioma treatment as either a definitive intervention using stereotactic radiosurgery or external beam radiotherapy, or in the adjuvant setting for residual disease or for adverse pathologic factors, such as high WHO grade. In this chapter, we provide a comprehensive review of radiotherapy treatment modalities, therapeutic considerations, radiation planning, and clinical outcomes for meningioma patients.


Subject(s)
Meningeal Neoplasms , Meningioma , Radiosurgery , Humans , Meningioma/radiotherapy , Adjuvants, Immunologic , Neoplasm, Residual , Meningeal Neoplasms/radiotherapy
12.
Radiother Oncol ; 186: 109802, 2023 09.
Article in English | MEDLINE | ID: mdl-37423477

ABSTRACT

PURPOSE: No specific irradiation guidelines have been proposed for parotid lymph node (PLN) metastasis in patients with nasopharyngeal carcinoma (NPC). This study aimed to explore the dose prescription and target delineation for PLN metastasis in patients with NPC. METHODS: With the NPC database from a big-data platform, 10,685 patients with primarily diagnosed, non-distant metastatic, histologically proven NPC and treated with intensity modulated radiotherapy (IMRT) at our center from 2008 to 2019 were reviewed and those with PLN metastasis were enrolled in this study. Dosimetry parameters were collected from the dose-volume histograms (DVH). The primary endpoint was overall survival (OS). Least absolute shrinkage and selection operator regression (LASSO) was operated for variable selection. Multivariate Cox regression analysis was applied to identify the independent prognostic factors. RESULTS: PLN metastases were identified in 275/10685 (2.5%) patients. Of 367 positive PLN, 199 were in superficial intra-parotid, followed by 70 in deep intra-parotid, 54 in subparotid and 44 in subcutaneous pre-auricular. Better survival outcome was observed in PLN-radical IMRT group, compared with PLN-sparing group. In 190 patients received PLN-radical IMRT, multivariate analysis revealed that D95% of level VIII > 55 Gy was an independent beneficial prognostic factor for overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and parotid relapse-free survival (PRFS). CONCLUSION: Based on the distribution pattern of PLN metastasis in NPC and the result of dose-finding study, involving the ipsilateral level VIII into low-risk clinical target volume (CTV2) is recommended for NPC with PLN metastasis.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Lymphatic Metastasis/radiotherapy , Lymphatic Metastasis/pathology , Carcinoma/radiotherapy , Carcinoma/pathology , Neoplasm Recurrence, Local/pathology , Lymph Nodes/pathology , Retrospective Studies , Prognosis , Neoplasm Staging
13.
Front Oncol ; 13: 1108587, 2023.
Article in English | MEDLINE | ID: mdl-37287919

ABSTRACT

Purpose: Radiotherapy is one of the most important treatments for high-grade glioma (HGG), but the best way to delineate the target areas for radiotherapy remains controversial, so our aim was to compare the dosimetric differences in radiation treatment plans generated based on the European Organization for Research and Treatment of Cancer (EORTC) and National Research Group (NRG) consensus to provide evidence for optimal target delineation for HGG. Methods: We prospectively enrolled 13 patients with a confirmed HGG from our hospital and assessed dosimetric differences in radiotherapy treatment plans generated according to the EORTC and NRG-2019 guidelines. For each patient, two treatment plans were generated. Dosimetric parameters were compared by dose-volume histograms for each plan. Results: The median volume for planning target volume (PTV) of EORTC plans, PTV1 of NRG-2019 plans, and PTV2 of NRG-2019 plans were 336.6 cm3 (range, 161.1-511.5 cm3), 365.3 cm3 (range, 123.4-535.0 cm3), and 263.2 cm3 (range, 116.8-497.7 cm3), respectively. Both treatment plans were found to have similar efficiency and evaluated as acceptable for patient treatment. Both treatment plans showed well conformal index and homogeneity index and were not statistically significantly different (P = 0.397 and P = 0.427, respectively). There was no significant difference in the volume percent of brain irradiated to 30, 46, and 60 Gy according to different target delineations (P = 0.397, P = 0.590, and P = 0.739, respectively). These two plans also showed no significant differences in the doses to the brain stem, optic chiasm, left and right optic nerves, left and right lens, left and right eyes, pituitary, and left and right temporal lobes (P = 0.858, P = 0.858, P = 0.701 and P = 0.794, P = 0.701 and P = 0.427, P = 0.489 and P = 0.898, P = 0.626, and P = 0.942 and P = 0.161, respectively). Conclusion: The NRG-2019 project did not increase the dose of organs at risk (OARs) radiation. This is a significant finding that further lays the groundwork for the application of the NRG-2019 consensus in the treatment of patients with HGGs. Clinical trial registration: The effect of radiotherapy target area and glial fibrillary acidic protein (GFAP) on the prognosis of high-grade glioma and its mechanism, number ChiCTR2100046667. Registered 26 May 2021.

14.
Radiat Oncol ; 18(1): 76, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158943

ABSTRACT

BACKGROUND: In this study, we propose the deep learning model-based framework to automatically delineate nasopharynx gross tumor volume (GTVnx) in MRI images. METHODS: MRI images from 200 patients were collected for training-validation and testing set. Three popular deep learning models (FCN, U-Net, Deeplabv3) are proposed to automatically delineate GTVnx. FCN was the first and simplest fully convolutional model. U-Net was proposed specifically for medical image segmentation. In Deeplabv3, the proposed Atrous Spatial Pyramid Pooling (ASPP) block, and fully connected Conditional Random Field(CRF) may improve the detection of the small scattered distributed tumor parts due to its different scale of spatial pyramid layers. The three models are compared under same fair criteria, except the learning rate set for the U-Net. Two widely applied evaluation standards, mIoU and mPA, are employed for the detection result evaluation. RESULTS: The extensive experiments show that the results of FCN and Deeplabv3 are promising as the benchmark of automatic nasopharyngeal cancer detection. Deeplabv3 performs best with the detection of mIoU 0.8529 ± 0.0017 and mPA 0.9103 ± 0.0039. FCN performs slightly worse in term of detection accuracy. However, both consume similar GPU memory and training time. U-Net performs obviously worst in both detection accuracy and memory consumption. Thus U-Net is not suggested for automatic GTVnx delineation. CONCLUSIONS: The proposed framework for automatic target delineation of GTVnx in nasopharynx bring us the desirable and promising results, which could not only be labor-saving, but also make the contour evaluation more objective. This preliminary results provide us with clear directions for further study.


Subject(s)
Deep Learning , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/radiotherapy , Tumor Burden , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/radiotherapy , Magnetic Resonance Imaging , Nasopharynx/diagnostic imaging
15.
Technol Cancer Res Treat ; 22: 15330338231169592, 2023.
Article in English | MEDLINE | ID: mdl-37098688

ABSTRACT

BACKGROUND: To investigate the differences between physicians in target delineation in intensity-modulated radiation therapy for nasopharyngeal carcinoma as well as their impact on target dose coverage. METHODS: Ninety-nine in-hospital patients were randomly selected for retrospective analysis, and the target volumes were delineated by 2 physicians. The target volumes were integrated with the original plans, and the differential parameters, including the Dice similarity coefficient (DSC), Hausdorff distance (HD), and Jaccard similarity coefficient (JSC) were recorded. The dose-volume parameters to evaluate target dose coverage were analyzed by superimposing the same original plan to the 2 sets of images on which the target volumes were contoured by the 2 physicians. The significance of differences in target volumes and dose coverage were evaluated using statistical analysis. RESULTS: The target dose coverage for different sets of target volumes showed statistically significant differences, while the similarity metrics to evaluate geometric target volume differences did not. More specifically, for PGTVnx, the median DSC, JSC, and HD were 0.85, 0.74, and 11.73, respectively; for PCTV1, the median values were 0.87, 0.77, and 11.78, respectively; for PCTV2, the median values were 0.90, 0.82, and 16.12, respectively. For patients in stages T3-4, DSC, and JSC were reduced but HD was increased compared to those in stages T1-2. Dosimetric analysis indicated that, for the target volumes, significant differences between the 2 physicians were found in D95, D99, and V100 for all the target volumes (ie, PGTVnx, PCTV1, and PCTV2) across the whole group of patients, as well as in patients with disease stages T3-4 and T1-2. CONCLUSIONS: The target volumes delineated by the 2 physicians had a high similarity, but the maximal distances between the outer contours of the 2 sets were significantly different. In patients with advanced T stages, significant differences in dose distributions were found, stemming from the deviations of target delineation.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/etiology , Observer Variation , Retrospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Nasopharyngeal Neoplasms/radiotherapy
16.
Clin Transl Radiat Oncol ; 40: 100615, 2023 May.
Article in English | MEDLINE | ID: mdl-36968577

ABSTRACT

Aims: The introduction of on-line magnetic resonance image-guided radiotherapy (MRIgRT) has led to an improvement in the therapeutic workflow of radiotherapy treatments thanks to the better visualization of therapy volumes assured by the higher soft tissue contrast. Magnetic Resonance contrast agents (MRCA) could improve the target delineation in on-line MRIgRT planning as well as reduce inter-observer variability and enable innovative treatment optimization protocols. The aim of this survey is to investigate the utilization of MRCA among centres that clinically implemented on-line MRIgRT technology. Methods: In September 2021, we conducted an online survey consisting of a sixteen-question questionnaire that was distributed to the all the hospitals around the world equipped with MR Linacs. The questionnaire was developed by two Italian 0.35 T and 1.5 T MR-Linac centres and was validated by four other collaborating centres, using a Delphi consensus methodology. Results: The survey was distributed to 52 centres and 43 centres completed it (82.7%). Among these centres, 23 institutions (53.5%) used the 0.35T MR-Linac system, while the remaining 20 (46.5%) used the 1.5T MR-Linac system.According to results obtained, 25 (58%) of the centres implemented the use of MRCA for on-line MRIgRT. Gadoxetate (Eovist®; Primovist®) was reported to be the most used MRCA (80%) and liver the most common site of application (58%). Over 70% of responders agreed/strongly agreed to the need for international guidelines. Conclusions: The use of MRCA in clinical practice presents several pitfalls and future research will be necessary to understand the actual advantage derived from the use of MRCA in clinical practice, their toxicity profiles and better define the need of formulating guidelines for standardising the use of MRCA in MRIgRT workflow.

17.
Phys Med Biol ; 68(9)2023 04 17.
Article in English | MEDLINE | ID: mdl-36963118

ABSTRACT

Objective.Delineating and planning with respect to regions suspected to contain microscopic tumor cells is an inherently uncertain task in radiotherapy. The recently proposedclinical target distribution(CTD) is an alternative to the conventionalclinical target volume(CTV), with initial promise. Previously, using the CTD in planning has primarily been evaluated in comparison to a conventionally defined CTV. We propose to compare the CTD approach against CTV margins of various sizes, dependent on the threshold at which the tumor infiltration probability is considered relevant.Approach.First, a theoretical framework is presented, concerned with optimizing the trade-off between the probability of sufficient target coverage and the penalties associated with high dose. From this framework we derive conventional CTV-based planning and contrast it with the CTD approach. The approaches are contextualized further by comparison with established methods for managing geometric uncertainties. Second, for both one- and three-dimensional phantoms, we compare a set of CTD plans created by varying the target objective function weight against a set of plans created by varying both the target weight and the CTV margin size.Main results.The results show that CTD-based planning gives slightly inefficient trade-offs between the evaluation criteria for a case in which near-minimum target dose is the highest priority. However, in a case when sparing a proximal organ at risk is critical, the CTD is better at maintaining sufficiently high dose toward the center of the target.Significance.We conclude that CTD-based planning is a computationally efficient method for planning with respect to delineation uncertainties, but that the inevitable effects on the dose distribution should not be disregarded.


Subject(s)
Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Neoplasms/radiotherapy , Probability , Radiotherapy, Intensity-Modulated/methods
18.
J Appl Clin Med Phys ; 24(7): e13956, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36917640

ABSTRACT

PURPOSE: Target delineation for radiation therapy is a time-consuming and complex task. Autocontouring gross tumor volumes (GTVs) has been shown to increase efficiency. However, there is limited literature on post-operative target delineation, particularly for CT-based studies. To this end, we trained a CT-based autocontouring model to contour the post-operative GTV of pediatric patients with medulloblastoma. METHODS: One hundred four retrospective pediatric CT scans were used to train a GTV auto-contouring model. Eighty patients were then preselected for contour visibility, continuity, and location to train an additional model. Each GTV was manually annotated with a visibility score based on the number of slices with a visible GTV (1 = < 25%, 2 = 25-50%, 3 = > 50-75%, and 4 = > 75-100%). Contrast and the contrast-to-noise ratio (CNR) were calculated for the GTV contour with respect to a cropped background image. Both models were tested on the original and pre-selected testing sets. The resulting surface and overlap metrics were calculated comparing the clinical and autocontoured GTVs and the corresponding clinical target volumes (CTVs). RESULTS: Eighty patients were pre-selected to have a continuous GTV within the posterior fossa. Of these, 7, 41, 21, and 11 were visibly scored as 4, 3, 2, and 1, respectively. The contrast and CNR removed an additional 11 and 20 patients from the dataset, respectively. The Dice similarity coefficients (DSC) were 0.61 ± 0.29 and 0.67 ± 0.22 on the models without pre-selected training data and 0.55 ± 13.01 and 0.83 ± 0.17 on the models with pre-selected data, respectively. The DSC on the CTV expansions were 0.90 ± 0.13. CONCLUSION: We successfully automatically contoured continuous GTVs within the posterior fossa on scans that had contrast > ± 10 HU. CT-Based auto-contouring algorithms have potential to positively impact centers with limited MRI access.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Medulloblastoma/diagnostic imaging , Medulloblastoma/radiotherapy , Medulloblastoma/surgery , Retrospective Studies , Algorithms , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/surgery , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods
19.
Radiother Oncol ; 181: 109435, 2023 04.
Article in English | MEDLINE | ID: mdl-36529439

ABSTRACT

PURPOSE: To analyze recurrence patterns in patients with glioblastoma (GBM) after standard chemoradiation according to different target volume delineation strategies. METHODS AND MATERIALS: Two hundred seven patients with GBM who recurred after standard chemoradiation were evaluated. According to ESTRO target volume delineation guideline, the CTV was generated by adding a 2-cm margin to the GTV, defined as the resection cavity plus residual tumor. Patterns of failure were analyzed using dose-volume histogram. Recurrent lesions were defined as in-field, marginal, or distant if > 80 %, 20-80 %, or < 20 % of the intersecting volume was included in the 95 % isodose line.For each patient, a theoretical plan consisting of reduced 1-cm GTV-to-CTV margin was created to compare patterns of failure and radiation doses to normal brain. RESULTS: Median overall survival and progression-free survival times were 15.3 months and 7.8 months, respectively, from the date of surgery. Recurrences were in-field in 180, marginal in 5, and distant in 22 patients. According to MGMT promoter methylation, distant recurrences occurred in 18.6 % of methylated and 6 % of unmethylated tumors (p = 0.0046). Following replanning with 1-cm reduced margin, dosimetric analysis showed similar patterns of failure. Recurrences were in-field, marginal, and distant in 177, 3, and 27 plans, respectively, although radiation doses to the healthy brain and hippocampi were significantly lower compared with standard target delineation (p = 0.0001). CONCLUSION: Current provide the rationale for evaluating GTV-to-CTV margin reduction in future clinical trials with the aim of limiting the cognitive sequelae of GBM irradiation while maintaining survival benefits of standard chemoradiation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Feasibility Studies , Brain Neoplasms/pathology , Chemoradiotherapy , Brain/pathology , Neoplasm Recurrence, Local/pathology
20.
Cancers (Basel) ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497254

ABSTRACT

Radiotherapy is the primary treatment modality for nasopharyngeal carcinoma (NPC). Successful curative treatment requires optimal radiotherapy planning and precise beam delivery that maximizes locoregional control while minimizing treatment-related side effects. In this article, we highlight considerations in target delineation, radiation dose, and the adoption of technological advances with the aim of optimizing the benefits of radiotherapy in NPC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...