Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
1.
Front Microbiol ; 15: 1424868, 2024.
Article in English | MEDLINE | ID: mdl-38962128

ABSTRACT

As a common foodborne pathogen, infection with L. monocytogenes poses a significant threat to human life and health. The objective of this study was to employ comparative genomics to unveil the biodiversity and evolutionary characteristics of L. monocytogenes strains from different regions, screening for potential target genes and mining novel target genes, thus providing significant reference value for the specific molecular detection and therapeutic targets of L. monocytogenes strains. Pan-genomic analysis revealed that L. monocytogenes from different regions have open genomes, providing a solid genetic basis for adaptation to different environments. These strains contain numerous virulence genes that contribute to their high pathogenicity. They also exhibit relatively high resistance to phosphonic acid, glycopeptide, lincosamide, and peptide antibiotics. The results of mobile genetic elements indicate that, despite being located in different geographical locations, there is a certain degree of similarity in bacterial genome evolution and adaptation to specific environmental pressures. The potential target genes identified through pan-genomics are primarily associated with the fundamental life activities and infection invasion of L. monocytogenes, including known targets such as inlB, which can be utilized for molecular detection and therapeutic purposes. After screening a large number of potential target genes, we further screened them using hub gene selection methods to mining novel target genes. The present study employed eight different hub gene screening methods, ultimately identifying ten highly connected hub genes (bglF_1, davD, menE_1, tilS, dapX, iolC, gshAB, cysG, trpA, and hisC), which play crucial roles in the pathogenesis of L. monocytogenes. The results of pan-genomic analysis showed that L. monocytogenes from different regions exhibit high similarity in bacterial genome evolution. The PCR results demonstrated the excellent specificity of the bglF_1 and davD genes for L. monocytogenes. Therefore, the bglF_1 and davD genes hold promise as specific molecular detection and therapeutic targets for L. monocytogenes strains from different regions.

2.
J Plant Physiol ; 301: 154313, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38991233

ABSTRACT

Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.

3.
Adv Exp Med Biol ; 1459: 3-29, 2024.
Article in English | MEDLINE | ID: mdl-39017837

ABSTRACT

MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Proto-Oncogene Proteins c-myb , Humans , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Animals , Protein Processing, Post-Translational , Epigenesis, Genetic , Gene Expression Regulation
4.
Comput Biol Med ; 179: 108888, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39047507

ABSTRACT

There are no tools to identify driver nodes of large-scale networks in approach of competition-based controllability. This study proposed a novel method for this computation of large-scale networks. It implemented the method in a new Cytoscape plug-in app called Drivergene.net. Experiments of the software on large-scale biomolecular networks have shown outstanding speed and computing power. Interestingly, 86.67% of the top 10 driver nodes found on these networks are anticancer drug target genes that reside mostly at the innermost K-cores of the networks. Finally, compared method with those of five other researchers and confirmed that the proposed method outperforms the other methods on identification of anticancer drug target genes. Taken together, Drivergene.net is a reliable tool that efficiently detects not only drug target genes from biomolecular networks but also driver nodes of large-scale complex networks. Drivergene.net with a user manual and example datasets are available https://github.com/tinhpd/Drivergene.git.

5.
Front Cell Neurosci ; 18: 1399742, 2024.
Article in English | MEDLINE | ID: mdl-39049823

ABSTRACT

Huntington's disease (HD) is caused by an expansion of CAG trinucleotide repeat in the HTT gene; the exact pathogenesis of HD currently remains unclear. One of the promising directions in the study of HDs is to determine the molecular mechanism underlying the development and role of microRNAs (miRNAs). This study aimed to identify the profile of miRNAs in an HD human cell line model as diagnostic biomarkers for HD. To study HD, the human SH-SY5Y HD cell model is based on the expression of two different forms: pEGFP-Q23 and pEGFP-Q74 of HTT. The expression of Htt protein was confirmed using aggregation assays combined with immunofluorescence and Western blotting methods. miRNA levels were measured in SH-SY5Y neuronal cell model samples stably expressing Q23 and Q74 using the extraction-free HTG EdgeSeq protocol. A total of 2083 miRNAs were detected, and 354 (top 18 miRNAs) miRNAs were significantly differentially expressed (DE) (p < 0.05) in Q23 and Q74 cell lines. A majority of the miRNAs were downregulated in the HD cell model. Moreover, we revealed that six DE miRNAs target seven genes (ATN1, GEMIN4, EFNA5, CSMD2, CREBBP, ATXN1, and B3GNT) that play important roles in neurodegenerative disorders and showed significant expression differences in mutant Htt (Q74) when compared to wild-type Htt (Q23) using RT-qPCR (p < 0.05 and 0.01). We demonstrated the most important DE miRNA-mRNA profiles, interaction binding sites, and their related pathways in HD using experimental and bioinformatics methods. This will allow the development of novel diagnostic strategies and provide alternative therapeutic routes for treating HD.

6.
Mol Divers ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026118

ABSTRACT

The miRNA binds to AGO's seed region, prompting the exploration of small molecules that can offset miRNA repression of target mRNA. This miRNA-181c-5p was found to be upregulated in the chronic traumatic encephalopathy, a prevalent neurodegenerative disease in contact sports and military personals. The research aimed to identify compounds that disrupt the AGO-assisted loop formation between miRNA-181c-5p and ATM, consequently repressing the translation of ATM. Target genes from commonly three databases (DIANA-microT-CDS, miRDB, RNA22 and TargetScan) were subjected to functional annotation and clustering analysis using DAVID bioinformatics tool. Haddock server were employed to make miRNA-181c-5p:ATM-AGO complex. A total of 2594 small molecules were screened using Glide XP based on their highest binding affinity towards the complex, through a three-phase docking approach. The top 5 compounds (DB00674-Galantamine, DB00371-Meprobamate, DB00694-Daunorubicin, DB00837-Progabide, and DB00851-Dacarbazine) were further analyzed for stability in the miRNA-181c-5p:ATM-AGO-ligand complex interaction using GROMACS (version 2023.2). Hence, these findings suggest that these molecules hold potential for facilitating AGO-assisted repression of ATM gene translation.

7.
World Allergy Organ J ; 17(7): 100927, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39040085

ABSTRACT

Background: Allergic rhinitis (AR) is a pervasive global health issue, and currently, there is a scarcity of targeted drug therapies available. This study aims to identify potential druggable target genes for AR using Mendelian randomization (MR) analysis. Methods: MR analysis was conducted to assess the causal effect of expression quantitative trait loci (eQTL) in the blood on AR. Data on AR were collected from 2 datasets: FinnGen(R9) (11,009 cases and 359,149 controls) and UK Biobank (25,486 cases and 87,097 controls). Colocalization analysis was utilized to assess the common causal genetic variations between the identified drug target genes and AR. We also employed available genome-wide association studies (GWAS) data to gauge the impact of druggable genes on AR biomarkers and other allergic diseases. Results: This study employs MR to analyze the relationship between 3410 druggable genes and AR. After Bonferroni correction, 10 genes were found to be significantly associated with AR risk (P < 0.05/3410). Colocalization analysis revealed a significant causal relationship between the expression variation of CFL1 and EFEMP2 genes and AR, sharing direct causal variants (colocalization probability PP.H3 + PP.H4 > 0.8), highlighting their importance as potential therapeutic targets for AR. The CFL1 gene showed a causal link with levels of thymic stromal lymphopoietin (TSLP), eosinophil count, and interleukin-13 (IL-13) (P = 0.016, 7.45E-16, 0.00091, respectively). EFEMP2 was also causally related to eosinophil count, IL-13, and interleukin-17 (IL-17) (P = 0.00012, 0.00091, 0.032, respectively). PheWAS analysis revealed significant associations of CFL1 with asthma, whereas EFEMP2 showed associations with both asthma and eczema. Protein-Protein Interaction (PPI) network analysis further unveiled the direct interactions of EFEMP2 and CFL1 with proteins related to immune regulation and inflammatory responses, with 77.64% of the network consisting of direct bindings, indicating their key roles in modulating AR-related immune and inflammatory responses. Notably, there was an 8.01% significant correlation between immune-related pathways and genes involved in inflammatory responses. Conclusion: These genes present notable associations with AR biomarkers and other autoimmune diseases, offering valuable targets for developing new AR therapies.

8.
Saudi Pharm J ; 32(8): 102137, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39040871

ABSTRACT

The concept of the vitamin D response index was developed based on vitamin D intervention studies conducted with Finnish cohorts. In this study, we challenged the concept by performing a single vitamin D3 bolus (80,000 IU) intervention with a cohort of 100 native Saudis. The change of serum levels of the proinflammatory cytokines interleukin 6, interleukin 8 and tumor necrosis factor measured directly before intervention in comparison to samples taken one and thirty days after vitamin D3 supplementation were used as biomarkers for distinguishing low, mid and high responders. Interestingly, we identified 39 % of the study participants as low responders. In contrast, when we used in a subset of 37 study participants whole blood expression changes of seven well-known vitamin D target genes one and thirty days after supplementation as alternative biomarkers, only 9 persons (24 %) were identified as low responders. In conclusion, in Saudi Arabia the rate of low vitamin D responders is equal or even higher than that in Finland. Therefore, similar to Nordic countries also in Saudi Arabia appropriate vitamin D3 supplementation is essential, in order to fulfill the needs of low responders.

9.
Curr Opin Plant Biol ; 81: 102569, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833828

ABSTRACT

Epigenetic modifications are inheritable, reversible changes that control gene expression without altering the DNA sequence itself. Recent advances in epigenetic and sequencing technologies have revealed key regulatory regions in genes with multiple epigenetic changes. However, causal associations between epigenetic changes and physiological events have rarely been examined. Epigenome editing enables alterations to the epigenome without changing the underlying DNA sequence. Modifying epigenetic information in plants has important implications for causality assessment of the epigenome. Here, we briefly review tools for selectively interrogating the epigenome. We highlight promising research on site-specific DNA methylation and histone modifications and propose future research directions to more deeply investigate epigenetic regulation, including cause-and-effect relationships between epigenetic modifications and the development/environmental responses of Arabidopsis thaliana.

10.
J Headache Pain ; 25(1): 100, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867170

ABSTRACT

BACKGROUND: Currently, the treatment and prevention of migraine remain highly challenging. Mendelian randomization (MR) has been widely used to explore novel therapeutic targets. Therefore, we performed a systematic druggable genome-wide MR to explore the potential therapeutic targets for migraine. METHODS: We obtained data on druggable genes and screened for genes within brain expression quantitative trait locis (eQTLs) and blood eQTLs, which were then subjected to two-sample MR analysis and colocalization analysis with migraine genome-wide association studies data to identify genes highly associated with migraine. In addition, phenome-wide research, enrichment analysis, protein network construction, drug prediction, and molecular docking were performed to provide valuable guidance for the development of more effective and targeted therapeutic drugs. RESULTS: We identified 21 druggable genes significantly associated with migraine (BRPF3, CBFB, CDK4, CHD4, DDIT4, EP300, EPHA5, FGFRL1, FXN, HMGCR, HVCN1, KCNK5, MRGPRE, NLGN2, NR1D1, PLXNB1, TGFB1, TGFB3, THRA, TLN1 and TP53), two of which were significant in both blood and brain (HMGCR and TGFB3). The results of phenome-wide research showed that HMGCR was highly correlated with low-density lipoprotein, and TGFB3 was primarily associated with insulin-like growth factor 1 levels. CONCLUSIONS: This study utilized MR and colocalization analysis to identify 21 potential drug targets for migraine, two of which were significant in both blood and brain. These findings provide promising leads for more effective migraine treatments, potentially reducing drug development costs.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Migraine Disorders , Humans , Migraine Disorders/genetics , Migraine Disorders/drug therapy , Quantitative Trait Loci/genetics , Genetic Predisposition to Disease/genetics , Brain/metabolism
11.
BMC Immunol ; 25(1): 36, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902605

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic immune system disease with a high disability rate threatening the living quality of patients. Identifying potential biomarkers for RA is of necessity to improve the prevention and management of RA. OBJECTIVES: This study focused on miR-146b-3p evaluating its clinical significance and revealing the underlying regulatory mechanisms. MATERIALS AND METHODS: A total of 107 RA patients were enrolled, and both serum and synovial tissues were collected. Another 78 osteoarthritis patients (OA, providing synovial tissues), and 72 healthy individuals (providing serum samples) were enrolled as the control group. The expression of miR-146b-3p was analyzed by PCR and analyzed with ROC and Pearson correlation analyses evaluating its significance in diagnosis and development prediction of RA patients. In vitro, MH7A cells were treated with TNF-α. The regulation of cell proliferation, motility, and inflammation by miR-146b-3p was assessed by CCK8, Transwell, and ELISA assays. RESULTS: Significant upregulation of miR-146b-3p was observed in serum and synovial tissues of RA patients, which distinguished RA patients and were positively correlated with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), anti-cyclic citrullinated peptide antibodies (anti-CCP), and rheumatoid factor (RF) of RA patients. TNF-α promoted the proliferation and motility of MH7A cells and induced significant inflammation in cells. Silencing miR-146b-3p alleviated the effect of TNF-α and negatively regulated the expression of HMGCR. The knockdown of HMGCR reversed the protective effect of miR-146b-3p silencing on TNF-α-stimulated MH7A cells. CONCLUSIONS: Increased miR-146b-3p served as a biomarker for the diagnosis and severity of RA. Silencing miR-146b-3p could suppress TNF-α-induced excessive proliferation, motility, and inflammation via regulating HMGCR in MH7A cells.


Subject(s)
Arthritis, Rheumatoid , Cell Movement , Cell Proliferation , MicroRNAs , Tumor Necrosis Factor-alpha , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/diagnosis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Necrosis Factor-alpha/metabolism , Male , Middle Aged , Female , Cell Line , Up-Regulation , Biomarkers/metabolism , Inflammation/immunology , Synovial Membrane/metabolism , Adult , Aged
12.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38828908

ABSTRACT

During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Developmental , Limb Buds , T-Box Domain Proteins , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Limb Buds/metabolism , Limb Buds/embryology , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Up-Regulation/genetics , Body Patterning/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mesoderm/metabolism , Mesoderm/embryology
13.
BMC Genomics ; 25(1): 479, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750515

ABSTRACT

BACKGROUND: In the context of early sowing of maize as a promising adaptation strategy that could significantly reduce the negative effects of climate change, an in-depth understanding of mechanisms underlying plant response to low-temperature stress is demanded. Although microRNAs (miRNAs) have been recognized as key regulators of plant stress response, research on their role in chilling tolerance of maize during early seedling stages is scarce. Therefore, it is of great significance to explore chilling-responsive miRNAs, reveal their expression patterns and associated target genes, as well as to examine the possible functions of the conserved and novel miRNAs. In this study, the role of miRNAs was examined in 5d-old maize seedlings of one tolerant and one sensitive inbred line exposed to chilling (10/8 °C) stress for 6 h and 24 h, by applying high throughput sequencing. RESULTS: A total of 145 annotated known miRNAs belonging to 30 families and 876 potentially novel miRNAs were identified. Differential expression (DE) analysis between control and stress conditions identified 98 common miRNAs for both genotypes at one time point and eight miRNAs at both time points. Target prediction and enrichment analysis showed that the DE zma-miR396, zma-miR156, zma-miR319, and zma-miR159 miRNAs modulate growth and development. Furthermore, it was found that several other DE miRNAs were involved in abiotic stress response: antioxidative mechanisms (zma-miR398), signal transduction (zma-miR156, zma-miR167, zma-miR169) and regulation of water content (zma-miR164, zma-miR394, zma-miR396). The results underline the zma-miRNAs involvement in the modulation of their target genes expression as an important aspect of the plant's survival strategy and acclimation to chilling stress conditions. CONCLUSIONS: To our understanding, this is the first study on miRNAs in 5-d old seedlings' response to chilling stress, providing data on the role of known and novel miRNAs post-transcriptional regulation of expressed genes and contributing a possible platform for further network and functional analysis.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , MicroRNAs , Seedlings , Zea mays , Zea mays/genetics , Zea mays/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Seedlings/genetics , Stress, Physiological/genetics , Cold-Shock Response/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , High-Throughput Nucleotide Sequencing , Gene Expression Profiling
14.
Plants (Basel) ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611545

ABSTRACT

Grafting is widely used to improve the resistance to abiotic stresses in cucurbit plants, but the effect and molecular mechanism of grafting on cold stress are still unknown in melon. In this study, phenotypic characteristics, physiological indexes, small-RNA sequencing and expression analyses were performed on grafted plants with pumpkin rootstock (PG) and self-grafted plants (SG) to explore the mechanism of changed cold tolerance by grafting in melon. Compared with SG plants, the cold tolerance was obviously enhanced, the malondialdehyde (MDA) content was significantly decreased and the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD) were significantly increased in PG plants. Depend on differentially expressed miRNA (DEM) identification and expression pattern analyses, cme-miR156b, cme-miR156f and chr07_30026 were thought to play a key role in enhancing low-temperature resistance resulting from grafting. Subsequently, 24, 37 and 17 target genes of cme-miR156b, cme-miR156f and chr07_30026 were respectively predicted, and 21 target genes were co-regulated by cme-miR156b and cme-miR156f. Among these 57 unique target genes, the putative promoter of 13 target genes contained the low-temperature responsive (LTR) cis-acting element. The results of qRT-PCR indicated that six target genes (MELO3C002370, MELO3C009217, MELO3C018972, MELO3C016713, MELO3C012858 and MELO3C000732) displayed the opposite expression pattern to their corresponding miRNAs. Furthermore, MELO3C002370, MELO3C016713 and MELO3C012858 were significantly downregulated in cold-resistant cultivars and upregulated in cold-sensitive varieties after cold stimulus, and they acted as the key negative regulators of low-temperature response in melon. This study revealed three key miRNAs and three putative target genes involved in the cold tolerance of melon and provided a molecular basis underlying how grafting improved the low-temperature resistance of melon plants.

15.
Planta ; 259(5): 116, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592549

ABSTRACT

MAIN CONCLUSION: Differentially expressed microRNAs were found associated with the development of chasmogamous and cleistogamous flowers in Viola prionantha, revealing potential roles of microRNAs in the developmental evolution of dimorphic flowers. In Viola prionantha, chasmogamous (CH) flowers are induced by short daylight, while cleistogamous (CL) flowers are triggered by long daylight. How environmental factors and microRNAs (miRNAs) affect dimorphic flower formation remains unknown. In this study, small RNA sequencing was performed on CH and CL floral buds at different developmental stages in V. prionantha, differentially expressed miRNAs (DEmiRNAs) were identified, and their target genes were predicted. In CL flowers, Viola prionantha miR393 (vpr-miR393a/b) and vpr-miRN3366 were highly expressed, while in CH flowers, vpr-miRN2005, vpr-miR172e-2, vpr-miR166m-3, vpr-miR396f-2, and vpr-miR482d-2 were highly expressed. In the auxin-activated signaling pathway, vpr-miR393a/b and vpr-miRN2005 could target Vpr-TIR1/AFB and Vpr-ARF2, respectively, and other DEmiRNAs could target genes involved in the regulation of transcription, e.g., Vpr-AP2-7. Moreover, Vpr-UFO and Vpr-YAB5, the main regulators in petal and stamen development, were co-expressed with Vpr-TIR1/AFB and Vpr-ARF2 and showed lower expression in CL flowers than in CH flowers. Some V. prionantha genes relating to the stress/defense responses were co-expressed with Vpr-TIR1/AFB, Vpr-ARF2, and Vpr-AP2-7 and highly expressed in CL flowers. Therefore, in V. prionantha, CH-CL flower development may be regulated by the identified DEmiRNAs and their target genes, thus providing the first insight into the formation of dimorphic flowers in Viola.


Subject(s)
MicroRNAs , Viola , Flowers/genetics , MicroRNAs/genetics , Reproduction , Sequence Analysis, RNA
16.
Vet Sci ; 11(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668407

ABSTRACT

Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek's disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD has been primarily controlled by vaccinations. MD vaccine efficacy might, in part, be dependent on modulations of a complex set of factors including host epigenetic factors. This study was designed to identify differentially expressed miRNAs in the primary lymphoid organ, bursae of Fabricius, in response to MD vaccination followed by MDV challenge in two genetically divergent inbred lines of White Leghorns. Small RNA sequencing and bioinformatic analyses of the small RNA sequence reads identified hundreds of miRNAs among all the treatment groups. A small portion of the identified miRNAs was differentially expressed within each of the four treatment groups, which were HVT or CVI988/Rispens vaccinated line 63-resistant birds and line 72-susceptible birds. A direct comparison between the resistant line 63 and susceptible line 72 groups vaccinated with HVT followed by MDV challenge identified five differentially expressed miRNAs. Gene Ontology analysis of the target genes of those five miRNAs revealed that those target genes, in addition to various GO terms, are involved in multiple signaling pathways including MAPK, TGF-ß, ErbB, and EGFR1 signaling pathways. The general functions of those pathways reportedly play important roles in oncogenesis, anti-cancer immunity, cancer cell migration, and metastatic progression. Therefore, it is highly likely that those miRNAs may, in part, influence vaccine protection through the pathways.

17.
Redox Biol ; 72: 103134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643749

ABSTRACT

The cytoprotective transcription factor NRF2 regulates the expression of several hundred genes in mammalian cells and is a promising therapeutic target in a number of diseases associated with oxidative stress and inflammation. Hence, an ability to monitor basal and inducible NRF2 signalling is vital for mechanistic understanding in translational studies. Due to some caveats related to the direct measurement of NRF2 levels, the modulation of NRF2 activity is typically determined by measuring changes in the expression of one or more of its target genes and/or the associated protein products. However, there is a lack of consensus regarding the most relevant set of these genes/proteins that best represents NRF2 activity across cell types and species. We present the findings of a comprehensive literature search that according to stringent criteria identifies GCLC, GCLM, HMOX1, NQO1, SRXN1 and TXNRD1 as a robust panel of markers that are directly regulated by NRF2 in multiple cell and tissue types. We assess the relevance of these markers in clinically accessible biofluids and highlight future challenges in the development and use of NRF2 biomarkers in humans.


Subject(s)
Biomarkers , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Animals , Gene Expression Regulation
18.
Mar Biotechnol (NY) ; 26(3): 526-538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647909

ABSTRACT

High-temperature stress poses a significant environmental challenge for aquatic organisms, including tsinling lenok trout (Brachymystax lenok tsinlingensis). This study aimed to investigate the role of microRNAs (miRNAs) in inducing liver inflammation in tsinling lenok trout under high-temperature stress. Tsinling lenok trout were exposed to high-temperature conditions (24 °C) for 8 h, and liver samples were collected for analysis. Through small RNA sequencing, we identified differentially expressed miRNAs in the liver of high-temperature-stressed tsinling lenok trout compared to the control group (maintained at 16 °C). Several miRNAs, including novel-m0105-5p and miR-8159-x, showed significant changes in expression levels. Additionally, we conducted bioinformatics analysis to explore the potential target genes of these differentially expressed miRNAs. Our findings revealed that these miRNA target genes are involved in inflammatory response pathways, such as NFKB1 and MAP3K5. The downregulation of novel-m0105-5p and miR-8159-x in the liver of high-temperature-stressed tsinling lenok trout suggests their role in regulating liver inflammatory responses. To validate this, we performed a dual-luciferase reporter assay to confirm the regulatory relationship between miRNAs and target genes. Our results demonstrated that novel-m0105-5p and miR-8159-x enhance the inflammatory response of hepatocytes by promoting the expression of NFKB1 and MAP3K5, respectively. In conclusion, our study provides evidence that high-temperature stress induces liver inflammation in tsinling lenok trout through dysregulation of miRNAs. Understanding the molecular mechanisms underlying the inflammatory response in tsinling lenok trout under high-temperature stress is crucial for developing strategies to mitigate the negative impacts of environmental stressors on fish health and aquaculture production.


Subject(s)
Liver , MicroRNAs , Trout , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Trout/genetics , Hot Temperature , Fish Diseases/genetics , Fish Diseases/immunology , Fish Diseases/metabolism , Inflammation/genetics , Inflammation/metabolism , Gene Expression Regulation , Stress, Physiological
19.
BMC Plant Biol ; 24(1): 213, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528453

ABSTRACT

BACKGROUND: KNOTTED1-like homeobox (KNOX) genes, plant-specific homologous box transcription factors (TFs), play a central role in regulating plant growth, development, organ formation, and response to biotic and abiotic stresses. However, a comprehensive genome-wide identification of the KNOX genes in Moso bamboo (Phyllostachys edulis), the fastest growing plant, has not yet been conducted, and the specific biological functions of this family remain unknown. RESULTS: The expression profiles of 24 KNOX genes, divided into two subfamilies, were determined by integrating Moso bamboo genome and its transcriptional data. The KNOX gene promoters were found to contain several light and stress-related cis-acting elements. Synteny analysis revealed stronger similarity with rice KNOX genes than with Arabidopsis KNOX genes. Additionally, several conserved structural domains and motifs were identified in the KNOX proteins. The expansion of the KNOX gene family was primarily regulated by tandem duplications. Furthermore, the KNOX genes were responsive to naphthaleneacetic acid (NAA) and gibberellin (GA) hormones, exhibiting distinct temporal expression patterns in four different organs of Moso bamboo. Short Time-series Expression Miner (STEM) analysis and quantitative real-time PCR (qRT-PCR) assays demonstrated that PeKNOX genes may play a role in promoting rapid shoot growth. Additionally, Gene Ontology (GO) and Protein-Protein Interaction (PPI) network enrichment analyses revealed several functional annotations for PeKNOXs. By regulating downstream target genes, PeKNOXs are involved in the synthesis of AUX /IAA, ultimately affecting cell division and elongation. CONCLUSIONS: In the present study, we identified and characterized a total of 24 KNOX genes in Moso bamboo and investigated their physiological properties and conserved structural domains. To understand their functional roles, we conducted an analysis of gene expression profiles using STEM and RNA-seq data. This analysis successfully revealed regulatory networks of the KNOX genes, involving both upstream and downstream genes. Furthermore, the KNOX genes are involved in the AUX/IAA metabolic pathway, which accelerates shoot growth by influencing downstream target genes. These results provide a theoretical foundation for studying the molecular mechanisms underlying the rapid growth and establish the groundwork for future research into the functions and transcriptional regulatory networks of the KNOX gene family.


Subject(s)
Oryza , Poaceae , Poaceae/genetics , Poaceae/metabolism , Oryza/genetics , Oryza/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Genome, Plant , Gene Regulatory Networks , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Noncoding RNA Res ; 9(2): 350-358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511065

ABSTRACT

Background: Schizophrenia (SZ), a complex and chronic neuropsychiatric disorder affecting approximately 1 % of the general population, presents diagnostic challenges due to the absence of reliable biomarkers, and relying mainly on clinical observations. MicroRNAs (miRNAs) signatures in a wide range of diseases, including psychiatric disorders, hold immense potential for serving as biomarkers. This study aimed to analyze the expression levels of specific microRNAs (miRNAs) namely miR-29b-3p, miR-106b-5p, and miR-199a-3p and explore their diagnostic potential for SZ in Jordanian patients. Methods: Small RNAs (miRNAs) were extracted from plasma samples of 30 SZ patients and 35 healthy controls. RNA was reverse transcribed and quantified by real-time polymerase chain reaction (qRT-PCR). The expression levels of three miRNAs (miR-29b-3p, miR-106b-5p and miR-199a-3p) were analyzed. Receiver operating characteristic (ROC) curves analysis was performed to evaluate diagnostic value of these miRNAs. Target genes prediction, functional enrichment and pathway analyses were done using miRWalk and Metascape. STRING database was used to construct protein-protein network and identify hub genes. Results: Notably, miR-106b-5p and miR-199a-3p were significantly upregulated (p < 0.0001), while miRNA-29b-3p was downregulated (p < 0.0001) in SZ patients compared to controls. The diagnostic potential was assessed through ROC curves, revealing substantial diagnostic value for miR-199a-3p (AUC: 0.979) followed by miR-106b-5p (AUC: 0.774), with limited diagnostic efficacy for miR-29b-3p. Additionally, bioinformatic analyses for the predicted target genes of the diagnostically significant miRNAs uncovered Gene Ontology (GO) terms related to neurological development, including morphogenesis, which is involved in neuron differentiation, brain development, head development, and neuron projection morphogenesis. These findings highlight a potential connection between the identified miRNAs and SZ pathophysiology in the studied Jordanian population. Furthermore, a protein-protein interaction network from the target genes identified in association with neurological development in the Gene Ontology (GO) terms deepens our comprehension of the molecular landscape of the regulated target genes. Conclusions: This comprehensive exploration highlights the promising role of miRNAs in unraveling intricate molecular pathways associated with SZ in the Jordanian cohort and suggests that plasma miRNAs could serve as reliable biomarkers for SZ diagnosis and disease progression. Remarkably, this study represents the first investigation into the role of circulating miRNA expression among Jordanian patients with SZ, providing valuable insights into the diagnostic landscape of this disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...