Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839053

ABSTRACT

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.

2.
Acta Pharmacol Sin ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605180

ABSTRACT

Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.

3.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496651

ABSTRACT

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.

4.
Mol Plant Pathol ; 25(1): e13410, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38105442

ABSTRACT

Phytoplasmas infect a wide variety of plants and can cause distinctive symptoms including the conversion of floral organs into leaf-like organs, known as phyllody. Phyllody is induced by an effector protein family called phyllogens, which interact with floral MADS-box transcription factors (MTFs) responsible for determining the identity of floral organs. The MTF/phyllogen complex then interacts with the proteasomal shuttle protein RADIATION SENSITIVE23 (RAD23), which facilitates delivery of the MTF/phyllogen complex to the host proteasome for MTF degradation. Previous studies have indicated that the MTF degradation specificity of phyllogens is determined by their ability to bind to MTFs. However, in the present study, we discovered a novel mechanism determining the degradation specificity through detailed functional analyses of a phyllogen homologue of rice yellow dwarf phytoplasma (PHYLRYD ). PHYLRYD degraded a narrower range of floral MTFs than other phyllody-inducing phyllogens, resulting in compromised phyllody phenotypes in plants. Interestingly, PHYLRYD was able to bind to some floral MTFs that PHYLRYD was unable to efficiently degrade. However, the complex of PHYLRYD and the non-degradable MTF could not interact with RAD23. These results indicate that the MTF degradation specificity of PHYLRYD is correlated with the ability to form the MTF/PHYLRYD /RAD23 ternary complex, rather than the ability to bind to MTF. This study elucidated that phyllogen target specificity is regulated by both the MTF-binding ability and RAD23 recruitment ability of the MTF/phyllogen complex.


Subject(s)
Phytoplasma , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Phytoplasma/genetics , Bacterial Proteins/metabolism , Transcription Factors/metabolism , Plants/metabolism
5.
Article in English | MEDLINE | ID: mdl-37904559

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100nm). OBJECTIVE: Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems. METHODS: Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment. RESULTS: Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system. CONCLUSION: This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.

6.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1204-1212, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37431184

ABSTRACT

Argonaute (Ago) proteins are conserved programmable nucleases present in eukaryotes and prokaryotes and provide defense against mobile genetic elements. Almost all characterized pAgos prefer to cleave DNA targets. Here, we describe a novel pAgo from Verrucomicrobia bacterium (VbAgo) that can specifically cleave RNA targets rather than DNA targets at 37°C and function as a multiple-turnover enzyme showing prominent catalytic capacity. VbAgo utilizes DNA guides (gDNAs) to cleave RNA targets at the canonical cleavage site. Meanwhile, the cleavage activity is remarkably strengthened at low concentrations of NaCl. In addition, VbAgo presents a weak tolerance for mismatches between gDNAs and RNA targets, and single-nucleotide mismatches at positions 11‒12 and dinucleotide mismatches at positions 3‒15 dramatically reduce target cleavage. Moreover, VbAgo can efficiently cleave highly structured RNA targets at 37°C. These properties of VbAgo broaden our understanding of Ago proteins and expand the pAgo-based RNA manipulation toolbox.


Subject(s)
Bacteria , DNA , Bacteria/genetics , DNA/metabolism , RNA/metabolism , Endonucleases/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism
7.
Mol Ther Nucleic Acids ; 31: 746-762, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36937620

ABSTRACT

Genome editing based on dual CRISPR-Cas9 complexes (multiplexes) permits removing specific genomic sequences in living cells leveraging research on functional genomics and genetic therapies. Delivering the required large and multicomponent reagents in a synchronous and stoichiometric manner remains, however, challenging. Moreover, uncoordinated activity of independently acting CRISPR-Cas9 multiplexes increases the complexity of genome editing outcomes. Here, we investigate the potential of fostering precise multiplexing genome editing using high-capacity adenovector particles (AdVPs) for the delivery of Cas9 ortholog fusion constructs alone (forced Cas9 heterodimers) or together with their cognate guide RNAs (forced CRISPR-Cas9 heterodimers). We demonstrate that the efficiency and accuracy of targeted chromosomal DNA deletions achieved by single AdVPs encoding forced CRISPR-Cas9 heterodimers is superior to that obtained when the various components are delivered separately. Finally, all-in-one AdVP delivery of forced CRISPR-Cas9 heterodimers triggers robust DMD exon 51 splice site excision resulting in reading frame restoration and selection-free detection of dystrophin in muscle cells derived from Duchenne muscular dystrophy patients. In conclusion, AdVPs promote precise multiplexing genome editing through the integrated delivery of forced CRISPR-Cas9 heterodimer components, which, in comparison with split conventional CRISPR-Cas9 multiplexes, engage target sequences in a more coordinated fashion.

8.
In Silico Pharmacol ; 11(1): 8, 2023.
Article in English | MEDLINE | ID: mdl-36999133

ABSTRACT

HCV is a hepatotropic RNA virus recognized for its frequent virulence and fatality worldwide. Despite many vaccine development programs underway, researchers are on a quest for natural bioactive compounds due to their multivalent efficiencies against viral infections, considering which the current research aimed to figure out the target-specificity and therapeutic potentiality of α, ß, and δ subunits of amyrin, as novel bioactive components against the HCV influx mechanism. Initially, the novelty of amyrin subunits was conducted from 203 pharmacophores, comparing their in-silico pharmacokinetic and pharmacodynamic profiles. Besides, the best active site of CD81 was determined following the quantum tunneling algorithm. The molecular dynamic simulation was conducted (100 ns) following the molecular docking steps to reveal the parameters- RMSD (Å); Cα; RMSF (Å); MolSA (Å2); Rg (nm); PSA (Å); SASA (Å2), and the MM-GBSA dG binding scores. Besides, molecular strings of CD81, along with the co-expressed genes, were classified, as responsible for encoding CD81-mediated protein clusters during HCV infection, resulting in the potentiality of amyrins as targeted prophylactics in HCV infection. Finally, in vivo profiling of the oxidative stress marker, liver-specific enzymes, and antioxidant markers was conducted in the DMN-induced mice model, where ß-amyrin scored the most significant values in all aspects.

9.
J Comp Neurol ; 531(8): 935-951, 2023 06.
Article in English | MEDLINE | ID: mdl-36989379

ABSTRACT

The inherited eye disease retinitis pigmentosa (RP) causes the loss of photoreceptors by a still unknown cell death mechanism. During this degeneration, cyclic guanosine-3',5'-monophosphate (cGMP) levels become elevated, leading to over-activation of the cGMP-binding protein cGMP-dependent protein kinase (PKG). cGMP analogs selectively modified to have inhibitory actions on PKG have aided in impeding photoreceptor death, and one such cGMP analog is Rp-8-Br-PET-cGMPS. However, cGMP analogs have previously been shown to interact with numerous targets, so to better understand the therapeutic action of Rp-8-Br-PET-cGMPS, it is necessary to elucidate its target-selectivity and hence what potential cellular mechanism(s) it may affect within the photoreceptors. Here, we, therefore, applied affinity chromatography together with mass spectrometry to isolate and identify Rp-8-Br-PET-cGMPS interactors from retinas derived from three different murine RP models (i.e., rd1, rd2, and rd10 mice). Our findings revealed that Rp-8-Br-PET-cGMPS bound seven known cGMP-binding proteins, including PKG1ß, PDE1ß, PDE1c, PDE6α, and PKA1α. Furthermore, an additional 28 proteins were found to be associated with Rp-8-Br-PET-cGMPS. This latter group included MAPK1/3, which is known to connect with cGMP/PKG in other systems. However, in organotypic retinal cultures, Rp-8-Br-PET-cGMPS had no effect on photoreceptor MAPK1/3 expression or activity. To summarize, Rp-8-Br-PET-cGMPS is more target specific compared to regular cGMP.


Subject(s)
Cyclic GMP , Retina , Mice , Animals , Cyclic GMP/metabolism , Cyclic GMP/pharmacology , Retina/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism
10.
Front Neurosci ; 16: 888362, 2022.
Article in English | MEDLINE | ID: mdl-36117624

ABSTRACT

Circuit formation is a defining characteristic of the developing brain. However, multiple lines of evidence suggest that circuit formation can also take place in adults, the mechanisms of which remain poorly understood. Here, we investigated the epilepsy-associated mossy fiber (MF) sprouting in the adult hippocampus and asked which cell surface molecules define its target specificity. Using single-cell RNAseq data, we found lack and expression of Pcdh11x in non-sprouting and sprouting neurons respectively. Subsequently, we used CRISPR/Cas9 genome editing to disrupt the Pcdh11x gene and characterized its consequences on sprouting. Although MF sprouting still developed, its target specificity was altered. New synapses were frequently formed on granule cell somata in addition to dendrites. Our findings shed light onto a key molecular determinant of target specificity in MF sprouting and contribute to understanding the molecular mechanism of adult brain rewiring.

11.
Plant J ; 112(1): 172-192, 2022 10.
Article in English | MEDLINE | ID: mdl-35959634

ABSTRACT

Sacred lotus (Nelumbo nucifera Gaertn.) is a basal eudicot plant with a unique lifestyle, physiological features, and evolutionary characteristics. Here we report the unique profile of transposable elements (TEs) in the genome, using a manually curated repeat library. TEs account for 59% of the genome, and hAT (Ac/Ds) elements alone represent 8%, more than in any other known plant genome. About 18% of the lotus genome is comprised of Copia LTR retrotransposons, and over 25% of them are associated with non-canonical termini (non-TGCA). Such high abundance of non-canonical LTR retrotransposons has not been reported for any other organism. TEs are very abundant in genic regions, with retrotransposons enriched in introns and DNA transposons primarily in flanking regions of genes. The recent insertion of TEs in introns has led to significant intron size expansion, with a total of 200 Mb in the 28 455 genes. This is accompanied by declining TE activity in intergenic regions, suggesting distinct control efficacy of TE amplification in different genomic compartments. Despite the prevalence of TEs in genic regions, some genes are associated with fewer TEs, such as those involved in fruit ripening and stress responses. Other genes are enriched with TEs, and genes in epigenetic pathways are the most associated with TEs in introns, indicating a dynamic interaction between TEs and the host surveillance machinery. The dramatic differential abundance of TEs with genes involved in different biological processes as well as the variation of target preference of different TEs suggests the composition and activity of TEs influence the path of evolution.


Subject(s)
Nelumbo , Retroelements , DNA Transposable Elements/genetics , DNA, Intergenic , Evolution, Molecular , Genome, Plant/genetics , Nelumbo/genetics , Retroelements/genetics
12.
J Adv Vet Anim Res ; 9(2): 230-240, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35891654

ABSTRACT

Objective: Despite the development of several vaccines against severe acute respiratory syndrome coronavirus-2, the need for an additional prophylactic agent is evident. In recent in silico studies, isovitexin exhibited a higher binding affinity against the human angiotensin converting-enzyme 2 (hACE2) receptor than existing antiviral drugs. The research aimed to find out the point specificity of isovitexin for the hACE2 receptor and to assess its therapeutic potential, depending on the stability of the isovitexin-hACE2 complex. Materials and Methods: The pharmacokinetic profile of isovitexin was analyzed. The crystal structure of the hACE2 receptor and the ligand isovitexin were docked to form a ligand-protein complex following molecular optimization. To determine the isovitexin-hACE2 complex stability, their binding affinity, hydrogen bonding, and hydrophobic interactions were studied. Lastly, the root mean square deviation (RMSD), root mean square fluctuation, solvent accessible surface area, molecular surface area, radius of gyration (Rg), polar surface area, and principal component analysis values were found by simulating the complex with molecular dynamic (MD). Results: The predicted Lethal dose50 for isovitexin was 2.56 mol/kg, with an acceptable maximum tolerated dose and no hepatotoxicity or AMES toxicity. Interactions with the amino acid residues Thr371, Asp367, Glu406, Pro346, His345, Phe274, Tyr515, Glu375, Thr347, Glu402, and His374 of the hACE2 protein were required for the high binding affinity and specificity of isovitexin. Based on what was learned from the MD simulation, the hACE2 receptor-blocking properties of isovitexin were looked at. Conclusions: Isovitexin is a phytochemical with a reasonable bioactivity and safety profile for use in humans, and it can potentially be used as a hACE2-specific therapeutic to inhibit COVID-19 infection.

13.
ACS Chem Neurosci ; 13(14): 2191-2208, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35767676

ABSTRACT

Alzheimer's disease is undoubtedly the most well-studied neurodegenerative disease. Consequently, the amyloid-ß (Aß) protein ranks at the top in terms of getting attention from the scientific community for structural property-based characterization. Even after decades of extensive research, there is existing volatility in terms of understanding and hence the effective tackling procedures against the disease that arises due to the lack of knowledge of both specific target- and site-specific drugs. Here, we develop a multidimensional approach based on the characterization of the common static-dynamic-thermodynamic trait of the monomeric protein, which efficiently identifies a small target sequence that contains an inherent tendency to misfold and consequently aggregate. The robustness of the identification of the target sequence comes with an abundance of a priori knowledge about the length and sequence of the target and hence guides toward effective designing of the target-specific drug with a very low probability of bottleneck and failure. Based on the target sequence information, we further identified a specific mutant that showed the maximum potential to act as a destabilizer of the monomeric protein as well as enormous success as an aggregation suppressor. We eventually tested the drug efficacy by estimating the extent of modulation of binding affinity existing within the fibrillar form of the Aß protein due to a single-point mutation and hence provided a proof of concept of the entire protocol.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/metabolism , Amino Acid Sequence , Amyloid beta-Peptides/metabolism , Humans
14.
Int J Biol Macromol ; 208: 627-641, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35341885

ABSTRACT

The emergence of new lifestyle disorders and pharmaco-resistant variants of diseases has necessitated the search for effective therapeutic moieties and approaches that could overcome the limitations in the existing treatment modalities. In this context, bioactives such as flavonoids, polyphenols, tannins, terpenoids and alkaloids have demonstrated promise in therapy owing to their ability to scavenge free radicals and modulate the mitochondrial function as well as regulate metabolic pathways. However, their clinical applicability is low owing to their poor bioavailability and aqueous solubility. The encapsulation of bioactives in nanodimensional particles has overcome these limitations to a large extent while simultaneously conferring additional advantages of improved circulation time, enhanced cell uptake and target specific release. A wide range of nanocarriers derived from biopolymers such as polysaccharides, lipids and proteins, have been explored for encapsulation of different bioactives and have reported significant improvement of the bioavailability and therapeutic efficacy of the encapsulated cargo. However, incorporation of cell-specific and mitochondria-specific elements on the nanocarriers has been relatively less explored. This review summarizes some of the recent attempts to treat different disorders using bioactives encapsulated in biopolymer nanostructures and few instances of mitochondria-specific delivery.


Subject(s)
Nanoparticles , Nanostructures , Biopolymers/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Mitochondria , Nanoparticles/chemistry , Polysaccharides
15.
Sci Total Environ ; 824: 153781, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35176375

ABSTRACT

Biopesticides obtained from renewable resources and associated with biodegradability have the potential to address resource limitations and environmental pollution, often caused by many conventional pesticides, due to the facility of natural products to run in natural nutrient cycles. Flavonoids are considered benign substitutes for pesticides, however, little comprehensive information of their pesticidal activities and critical evaluation of their associated advantages is available. Therefore, this systematic review assessed sources, structures, activities and the environmental fate of flavonoids on a basis of 201 selected publications. We identified 281 different flavonoids that were investigated for their pesticidal activity as either a pure compound or a flavonoid-containing extract, with quercetin, kaempferol, apigenin, luteolin and their glycosides as the most studied compounds. Agricultural or food waste, a potential sustainable source for flavonoids, represent 10.6% of the plant sources of flavonoids within these studies, showing the currently underutilization of these preferable feedstocks. Analysis of pesticidal activities and target organisms revealed a broad target spectrum for the class of flavonoids, including fungi, insects, plants, bacteria, algae, nematodes, molluscs and barnacles. Little information is available on the environmental fate and biodegradation of flavonoids, and a connection to studies investigating pesticidal activities is largely missing. Emerging from these findings is the need for comprehensive understanding of flavonoids pesticidal activities with emphasis on structural features that influence activity and target specificity to avoid risks for non-target organisms. Only if the target spectrum and environmental fate of a potential biopesticide are known it can serve as a benign substitute. Then, flavonoids can be integrated in a valorization process of agricultural and food waste shifting the extract-produce-consume linear chain to a more circular economy.


Subject(s)
Pesticides , Refuse Disposal , Biological Control Agents , Flavonoids , Food , Pesticides/analysis , Plants
16.
Trends Mol Med ; 28(3): 171-172, 2022 03.
Article in English | MEDLINE | ID: mdl-35086771

ABSTRACT

Gene editing allows the precise modification of cells to correct genetic defects or enhance immunotherapies. A limitation is the delivery of this technology to specific cells or organs. Recently, Banskota et al. reported the use of virus-like particles (VLPs) loaded with gene-editing agents for gene therapy delivery directly inside the body.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Humans
17.
Chem Biol Drug Des ; 99(2): 206-221, 2022 02.
Article in English | MEDLINE | ID: mdl-34687134

ABSTRACT

cGMP interactors play a role in several pathologies and may be targets for cGMP analog-based drugs, but the success of targeting depends on the biochemical stereospecificity between the cGMP-analog and the interactor. The stereospecificity between general cGMP analogs-or such that are selectivity-modified to obtain, for example, inhibitory actions on a specific target, like the cGMP-dependent protein kinase-have previously been investigated. However, the importance of stereospecificity for cGMP-analog binding to interactors is not known. We, therefore, applied affinity chromatography on mouse cortex proteins utilizing analogs with cyclic phosphate (8-AET-cGMP, 2-AH-cGMP, 2'-AHC-cGMP) and selectivity-modified analogs with sulfur-containing cyclic phosphorothioates (Rp/Sp-8-AET-cGMPS, Rp/Sp-2'-AHC-cGMPS) immobilized to agaroses. The results illustrate the cGMP analogs' stereospecific binding for PKG, PKA regulatory subunits and PKA catalytic subunits, PDEs, and EPAC2 and the involvement of these in various KEGG pathways. For the seven agaroses, PKG, PKA regulatory subunits, and PKA catalytic subunits were more prone to be enriched by 2-AH-, 8-AET-, Rp-8-AET-, and Sp-8-AET-cGMP, whereas PDEs and EPAC2 were more likely to be enriched by 2-AH-, Rp-2'-AHC-, and Rp-8-AET-cGMP. Our findings help elucidate the stereospecific-binding sites essential for the interaction between individual cGMP analogs and cGMP-binding proteins, as well as the cGMP analogs' target specificity, which are two crucial parameters in drug design.


Subject(s)
Cerebral Cortex/metabolism , Cyclic GMP/metabolism , Animals , Binding Sites , Catalytic Domain , Cerebral Cortex/enzymology , Chromatography, Affinity , Cyclic GMP/analogs & derivatives , Mice , Molecular Structure , Nerve Tissue Proteins/metabolism , Protein Kinases/metabolism , Sepharose/chemistry , Tandem Mass Spectrometry
18.
Trends Biochem Sci ; 47(5): 433-450, 2022 05.
Article in English | MEDLINE | ID: mdl-34920928

ABSTRACT

The constantly expanding group of class II CRISPR-Cas (clustered regularly interspaced short palindromic repeats-associated) effectors and their engineered variants exhibit distinct editing modes and efficiency, fidelity, target range, and molecular size. Their enormous diversity of capabilities provides a formidable toolkit for a large array of technologies. We review the structural and biochemical mechanisms of versatile effector proteins from class II CRISPR-Cas systems to provide mechanistic insights into their target specificity, protospacer adjacent motif (PAM) restriction, and activity regulation, and discuss possible strategies to enhance genome-engineering tools in terms of accuracy, efficiency, applicability, and controllability.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics
19.
J Biomed Res ; 35(6): 459-473, 2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34857680

ABSTRACT

Lassa hemorrhagic fever, caused by Lassa mammarenavirus (LASV) infection, accumulates up to 5000 deaths every year. Currently, there is no vaccine available to combat this disease. In this study, a library of 200 bioactive compounds was virtually screened to study their drug-likeness with the capacity to block the α-dystroglycan (α-DG) receptor and prevent LASV influx. Following rigorous absorption, distribution, metabolism, and excretion (ADME) and quantitative structure-activity relationship (QSAR) profiling, molecular docking was conducted with the top ligands against the α-DG receptor. The compounds chrysin, reticuline, and 3-caffeoylshikimic acid emerged as the top three ligands in terms of binding affinity. Post-docking analysis revealed that interactions with Arg76, Asn224, Ser259, and Lys302 amino acid residues of the receptor protein were important for the optimum binding affinity of ligands. Molecular dynamics simulation was performed comprehensively to study the stability of the protein-ligand complexes. In-depth assessment of root-mean-square deviation (RMSD), root mean square fluctuation (RMSF), polar surface area (PSA), B-Factor, radius of gyration (Rg), solvent accessible surface area (SASA), and molecular surface area (MolSA) values of the protein-ligand complexes affirmed that the candidates with the best binding affinity formed the most stable protein-ligand complexes. To authenticate the potentialities of the ligands as target-specific drugs, an in vivo study is underway in real time as the continuation of the research.

20.
Plant Commun ; 2(6): 100232, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34778747

ABSTRACT

Transcription factors (TFs) regulate gene expression by binding to cis-regulatory sequences in the promoters of target genes. Recent research is helping to decipher in part the cis-regulatory code in eukaryotes, including plants, but it is not yet fully understood how paralogous TFs select their targets. Here we addressed this question by studying several proteins of the basic helix-loop-helix (bHLH) family of plant TFs, all of which recognize the same DNA motif. We focused on the MYC-related group of bHLHs, that redundantly regulate the jasmonate (JA) signaling pathway, and we observed a high correspondence between DNA-binding profiles in vitro and MYC function in vivo. We demonstrated that A/T-rich modules flanking the MYC-binding motif, conserved from bryophytes to higher plants, are essential for TF recognition. We observed particular DNA-shape features associated with A/T modules, indicating that the DNA shape may contribute to MYC DNA binding. We extended this analysis to 20 additional bHLHs and observed correspondence between in vitro binding and protein function, but it could not be attributed to A/T modules as in MYCs. We conclude that different bHLHs may have their own codes for DNA binding and specific selection of targets that, at least in the case of MYCs, depend on the TF-DNA interplay.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cyclopentanes/metabolism , DNA-Binding Proteins/metabolism , Oxylipins/metabolism , DNA/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Genes, Plant , Plant Growth Regulators/metabolism , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...