Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Environ Pollut ; 355: 124189, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776995

ABSTRACT

Currently, headspace gas chromatography-mass spectrometry is a widely used method to identify the key odorants of sludge. However, the effect of incubation temperature on the generation and emission of key odorants from sludge was still uncertain. Thus, in this paper, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-coupled ion mobility spectrometry (HS-GC-IMS) were carried out to analyze the volatiles emitted from the sludge incubated at different temperatures (30 °C, 50 °C, 60 °C, and 80 °C). The results indicated that the total volatile concentration of the sludge increased with temperatures, which affected the identified proportion of sludge key odorants to a certain extent. Differently from the aqueous solutions, the variation of volatile emission from the sludge was inconsistent with temperature changes, suggesting a multifactorial influence of incubation temperature on the identification of sludge odorants. The microbial community structure and adenosine triphosphate (ATP) metabolic activity of the sludge samples were analyzed at the initial state, 30 °C, and 80 °C. Although no significant effect of incubation temperature on the microbial community structure of the sludge, the incubation at 80 °C led to a noticeable decrease in microbial ATP metabolic activity, accompanied by a significant change in the proportion of odor-related microorganisms with low relative abundances. Changes in the composition and activity of these communities jointly contributed to the differences in odor emission from sludge at different temperatures. In summary, the incubation temperature affects the production and emission of volatiles from sludge through physicochemical and biochemical mechanisms, by which the microbial metabolism playing a crucial role. Therefore, when analyzing the key odorants of sludge, these factors should be considered.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Sewage , Solid Phase Microextraction , Temperature , Volatile Organic Compounds , Odorants/analysis , Volatile Organic Compounds/analysis
2.
Small ; : e2402190, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794869

ABSTRACT

SnOx has received great attention as an electrocatalyst for CO2 reduction reaction (CO2RR), however; it still suffers from low activity. Moreover, the atomic-level SnOx structure and the nature of the active sites are still ambiguous due to the dynamism of surface structure and difficulty in structure characterization under electrochemical conditions. Herein, CO2RR performance is enhanced by supporting SnO2 nanoparticles on two common supports, vulcan carbon and TiO2. Then, electrolysis of CO2 at various temperatures in a neutral electrolyte reveals that the application window for this catalyst is between 12 and 30 °C. Furthermore, this study introduces a machine learning interatomic potential method for the atomistic simulation to investigate SnO2 reduction and establish a correlation between SnOx structures and their CO2RR performance. In addition, selectivity is analyzed computationally with density functional theory simulations to identify the key differences between the binding energies of *H and *CO2 -, where both are correlated with the presence of oxygen on the nanoparticle surface. This study offers in-depth insights into the rational design and application of SnOx-based electrocatalysts for CO2RR.

3.
BMC Oral Health ; 24(1): 619, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807138

ABSTRACT

PURPOSE: The aim of this in vitro study was to evaluate the changes the rheological properties of some soft lining materials, to compare the rheological properties and viscoelastic behaviour at different temperatures. MATERIALS AND METHODS: Five soft lining materials (acrylic and silicone based) were used. the storage modulus (G'), loss modulus (G"), tan delta (tan δ) and complex viscosity (η') were chosen and for each material, measurements were repeated at 23, 33 and 37  °C, using an oscillating rheometer. All data were statistically analyzed using the Mann Whitney U test, Kruskal Wallis test and Conover's Multiple Comparison test at the significance level of 0.05. RESULTS: Soft lining materials had different viscoelastic properties and most of the materials showed different rheological behavior at 23, 33 and 37  °C. At the end of the test (t¹5), at all the temperatures, Sofreliner Tough M had the highest storage modulus values while Visco Gel had the highest loss Tan delta values. CONCLUSIONS: There were significant changes in the rheological parameters of all the materials. Also temperature affected the initial rheological properties, and polymerization reaction of all the materials, depending on temperature increase. CLINICAL IMPLICATIONS: Temperature affected the initial rheological properties, and polymerization reaction of soft denture liner materials, and clinical inferences should be drawn from such studies conducted. It can be recommended to utilize viscoelastic acrylic-based temporary soft lining materials with lower storage modulus, higher tan delta value, and high viscosity in situations where pain complaint persists and tissue stress is extremely significant, provided that they are replaced often.


Subject(s)
Acrylic Resins , Materials Testing , Rheology , Temperature , Viscosity , Acrylic Resins/chemistry , Elasticity , Denture Liners , Elastic Modulus , Dental Cavity Lining , Silicones/chemistry , Polymerization , Humans , Oscillometry
4.
Adv Mater ; 36(28): e2402291, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38635166

ABSTRACT

Lithium-based batteries (LBBs) have been highly researched and recognized as a mature electrochemical energy storage (EES) system in recent years. However, their stability and effectiveness are primarily confined to room temperature conditions. At temperatures significantly below 0 °C or above 60 °C, LBBs experience substantial performance degradation. Under such challenging extreme contexts, sodium-ion batteries (SIBs) emerge as a promising complementary technology, distinguished by their fast dynamics at low-temperature regions and superior safety under elevated temperatures. Notably, developing SIBs suitable for wide-temperature usage still presents significant challenges, particularly for specific applications such as electric vehicles, renewable energy storage, and deep-space/polar explorations, which requires a thorough understanding of how SIBs perform under different temperature conditions. By reviewing the development of wide-temperature SIBs, the influence of temperature on the parameters related to battery performance, such as reaction constant, charge transfer resistance, etc., is systematically and comprehensively analyzed. The review emphasizes challenges encountered by SIBs in both low and high temperatures while exploring recent advancements in SIB materials, specifically focusing on strategies to enhance battery performance across diverse temperature ranges. Overall, insights gained from these studies will drive the development of SIBs that can handle the challenges posed by diverse and harsh climates.

5.
Polymers (Basel) ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611183

ABSTRACT

The aim of this work is to analyze the effect of water absorption on the mechanical properties and damage mechanisms of polyester/glass fiber/jute fiber hybrid composites obtained using the compression molding and vacuum-assisted resin transfer molding (VARTM) techniques with different stacking sequences. For this purpose, the mechanical behavior under tensile stress of the samples was evaluated before and after hygrothermal aging at different temperatures: TA, 50 °C, and 70 °C for a period of 696 h. The damage mechanism after the mechanical tests was evaluated using SEM analysis. The results showed a tendency for the mechanical properties of the composites to decrease with exposure to an aqueous ambient, regardless of the molding technique used to conform the composites. It was also observed that the stacking sequence had no significant influence on the dry composites. However, exposure to the aqueous ambient led to a reduction in mechanical properties, both for the molding technique and the stacking sequence. Damage such as delamination, fiber pull-out, fiber/matrix detachment, voids, and matrix removal were observed in the composites in the SEM analyses.

6.
Sci Rep ; 14(1): 9691, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678071

ABSTRACT

The time-varying temperature distributions on bridge structures may remarkably change structural performance, which may result in differential strain/stress responses on structural members compared with the design conditions. Therefore, it is crucial to have a comprehensive understanding of temperature distributions and its effects on bridges. In this study, taking advantage of structural health monitoring technology, 1-year field monitoring data collected from a long-span suspension bridge were used to investigate the temperature distributions and their effects on the steel box girder. Specifically, the distributions and probability statistics of temperatures on the top and bottom plates were firstly analyzed. Based on which, the transverse and vertical temperature differences on the box girder were further examined, moreover, the representative values of temperature differences for various return periods were calculated by exceedance probability method. At end, a temperature prediction method was proposed to simulated the temperature field distributions during bridge life cycle, to provide substantial temperature data for estimating future operation condition. The results of this study were beneficial to structural evaluation of in-service bridges to ensure their serviceability and integrity in the life cycle.

7.
Biochem Biophys Res Commun ; 703: 149597, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38367512

ABSTRACT

Myosin family proteins are ATP-driven, actin filament-based motor proteins that generate force along actin filaments. In in vitro actin filament gliding assays, certain myosins generate rotation of gliding actin filaments around their long axes. In this study, we assessed the effects of temperature on the corkscrewing motion of actin filaments, including factors like gliding and rotational velocities and corkscrewing pitch. The corkscrewing motion was driven by a nonprocessive, full-length single-headed Drosophila myosin IC attached to an antibody adsorbed onto a cover glass. We performed an in vitro actin filament corkscrewing assay at temperatures ranging from 25 °C to 35 °C. We found that the gliding and rotational velocities and the pitch of corkscrewing actin filaments generated by myosin IC molecules increased with increasing temperature. Since the pitch is determined by dividing the gliding velocity by the rotational velocity, an increase in the pitch indicates that the gliding velocity increased faster than the rotational velocity with increasing temperature. These results suggest that temperature has distinct effects on the gliding and rotational forces produced by myosin IC, with implications for interpreting the temperature effect on torque-generation mechanisms driven by myosins on actin filaments at physiological temperatures.


Subject(s)
Actin Cytoskeleton , Myosins , Temperature , Actin Cytoskeleton/metabolism , Myosins/metabolism , Rotation , Actins/metabolism
8.
Int J Biol Macromol ; 261(Pt 2): 129833, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302021

ABSTRACT

In this study, the ginger polysaccharides extracted from hot water (HW-G) were modified with subcritical water (SW-G) to effectively regulate their immune activity, and the relationship between polysaccharide chain conformation and immune activity at different subcritical water temperatures was investigated. The results indicated that, compared with HW-G, the xylose and mannose were degraded at high temperatures. The molecular weight of ginger polysaccharide decreased from 1.083 × 106 g/mol to 3.113 × 105 g/mol after subcritical water modification (100-160 °C). The chain conformation transitioned from rigid rod chain to semi-rigid chain and eventually to random coil. The degree of relaxation of the polysaccharide chains showed a continuous increase trend. Additionally, ginger polysaccharide modified by subcritical water at 130 °C was found to promote the proliferation and phagocytosis of 264.7 cells more obviously and signally increase the secretion levels of NO, IL-6, TNF-α and IL-1ß. When the subcritical water temperature exceeds 130 °C, the activity of ginger polysaccharide begins to decline rapidly. These findings demonstrate a close correlation between polysaccharide chain conformation and immunomodulatory activity, confirming the feasibility of the subcritical water temperature effect as a means of immune activity regulation, which opens up a new approach to obtaining highly active polysaccharides.


Subject(s)
Water , Zingiber officinale , Temperature , Polysaccharides/pharmacology , Antioxidants
9.
Heliyon ; 10(4): e25913, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390165

ABSTRACT

In context with growing concerns regarding mechanical damage in nanoelectromechanical systems (NEMS) and energy devices, this study implemented atomistic molecular dynamics simulation to examine the mechanical performance of Ti2C MXene, a high prospectus material in the field of NEMS and energy technologies. Bond-order Tersoff potential was employed to assess the distinction in the mechanical performance of pristine and vacancy-induced Ti2C depending on different physiological conditions, including temperature, loading rate, and chirality. A competitive elastic modulus of 130.72 GPa and 129.12 GPa has been determined along the armchair and zigzag chirality. However, tensile strength along armchair chirality was found to be 30.52 GPa, 21.4% greater than its contrary direction, whereas zigzag chirality withstands 13.55% greater strain at failure than the armchair chirality, measuring 0.273. Superior tensile strength is observed in armchair chirality, whereas zigzag chirality withstands more significant strain at failure. Mechanical attributes show declining trends as the temperature rises; however, the trend is upward while loading happens rapidly. Both carbon and titanium point vacancies degrade mechanical characteristics individually, but the conjugal influence of temperature and point vacancy makes the deterioration more severe. Carbon, the central constituent element, was found to be more significant in the functionality of Ti2C MXene. Therefore, carbon vacancy shows higher formation energy and more significant deterioration in mechanical performance than titanium vacancy. This exhaustive investigation will significantly aid in the safe design of MXene-based nanoelectromechanical devices and catalyze further experimental research on the same layered materials.

10.
Materials (Basel) ; 17(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38255632

ABSTRACT

Temperature is one of the most important factors significantly affecting damage detection performance in civil engineering. A new method called the Adaptive Bandwidth Filter Algorithm (ABFA) is proposed in this paper to separate the temperature effect from quasi-static long-term structural health monitoring data. The Adaptive Bandwidth Filter Algorithm (ABFA) is referred to as an algorithm of automatically adjusting the frequency bandwidth filter via the particle swarm optimization (PSO) algorithm. Considering the obvious multi-scale feature of the collected data of civil structure, the acquired time series are divided into different time scales (for example, day, month, year, etc.), and these scales in the frequency domain correspond to the center frequencies of the adaptive bandwidth filter. The temperature effect on structure responses across different time scales is thereafter explored by adaptively adjusting the frequency bandwidth of the filter based on the known center frequencies of different scales. The relationship between the temperature and the structure responses is established through statistical regression facilitated by sufficient in situ monitoring data. Simulation and experiment results show the very promising performance of the proposed algorithm and decouple the temperature effect accurately from the contaminated data; thus an enhanced capability of damage detection is achieved.

11.
Materials (Basel) ; 17(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255484

ABSTRACT

The effects of anisotropy and temperature of short carbon fiber-reinforced polyamide-6 (CF-PA6) by the injection molding process were investigated to obtain the static and fatigue characteristics. Static and fatigue tests were conducted with uniaxial tensile and three-point bending specimens with various fiber orientations at temperatures of 40, 60, and 100 °C. The anisotropy caused by the fiber orientations along a polymer flow was calculated using three software connecting analysis sequences. The characteristics of tensile strength and fatigue life can be changed by temperature and anisotropy variations. A semi-empirical strain-stress fatigue life prediction model was proposed, considering cyclic and thermodynamic properties based on the Arrhenius equation. The developed model had a good agreement with an R2 = 0.9457 correlation coefficient. The present fatigue life prediction of CF-PA6 can be adopted when designers make suitable decisions considering the effects of temperature and anisotropy.

12.
Molecules ; 28(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067604

ABSTRACT

In this study, density functional theory (DFT) was used to investigate the influence of temperature on the performance of a novel Cu-nitrogen-doped graphene Cu2-N8/Gr nanocomposite as a catalyst for the oxygen reduction reaction (ORR) in fuel cell applications. Our DFT calculations, conducted using Gaussian 09w with the 3-21G/B3LYP basis set, focus on the Cu-nitrogen-doped graphene nanocomposite cathode catalyst, exploring its behavior at three distinct temperatures: 298.15 K, 353.15 K, and 393.15 K, under acidic conditions. Our analysis of formation energies indicates that the structural stability of the catalyst remains unaffected as the temperature varies within the potential range of 0-7.21 V. Notably, the stability of the ORR steps experiences a marginal decrease with increasing temperature, with the exception of the intermediate OH + H2O (*OH + H + *OH). Interestingly, the optimization reveals the absence of single OH and H2O intermediates during the reactions. Furthermore, the OH + H2O step is optimized to form the OH + H + OH intermediate, featuring the sharing of a hydrogen atom between dual OH intermediates. Free energy calculations elucidate that the catalyst supports spontaneous ORR at all temperatures. The highest recorded maximum cell potential, 0.69 V, is observed at 393.15 K, while the lowest, 0.61 V, is recorded at 353.15 K. In particular, the Cu2-N8/Gr catalyst structure demonstrates a reduced favorability for the H2O2 generation at all temperatures, resulting in the formation of dual OH intermediates rather than H2O2. In conclusion, at 393.15 K, Cu2-N8/Gr exhibits enhanced catalyst performance compared to 353.15 K and 298.15 K, making it a promising candidate for ORR catalysis in fuel cell applications.

13.
Water Environ Res ; 95(12): e10949, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38056599

ABSTRACT

EPANET and its commercial derivatives are the most widely-used software packages for modeling free chlorine and its by-products in drinking water distribution systems. Yet, they are not sufficiently accurate, general, or efficient for deriving optimal chlorine dosing strategies at different seasonal temperatures. To overcome EPANET's limitations, an integrated set of rigorously validated multispecies process models are proposed for application within the EPANET-MSX environment. An executable (command-line) version of these MSX models is supplied for use either within the MSX environment or embedded in commercial versions of MSX. A new general method was devised to obtain output of any intermediate coefficient or variable involved in the simulation. This overcomes MSX's limited output options. When the debugged models were applied to a real distribution system, the optimal chlorine dose for summer required almost double the chlorine dose needed in winter. A lower initial dose combined with a downstream booster dose required less chlorine in total. Formal optimization techniques are needed to efficiently obtain similar strategies in more complex systems. PRACTITIONER POINTS: EPANET water quality models are not accurate or general enough for deriving optimal chlorine dosing strategies in distribution systems. Integrated EPNET-MSX models of chlorine reactions in bulk water and at pipe walls, and associated by-product formation, overcome EPANET's limitations. To verify model authenticity, a general technique was developed to obtain values of coefficients and variables within an EPANET-MSX simulation. EPANET-MSX command lines implementing these integrated EPANET-MSX models are presented with verified results for optimal initial and booster dosing strategies. Optimal summer dosing in a real system of rough pipes was almost double that required in winter.


Subject(s)
Drinking Water , Water Purification , Chlorine , Water Supply , Water Quality , Water Purification/methods
14.
Materials (Basel) ; 16(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37959491

ABSTRACT

Although Lamb waves have found extensive use in structural damage detection, their practical applications remain limited. This limitation primarily arises from the intricate nature of Lamb wave propagation modes and the effect of temperature variations. Therefore, rather than directly inspecting and interpreting Lamb wave responses for insights into the structural health, this study proposes a novel approach, based on a two-step cointegration-based computation procedure, for structural damage evaluation using Lamb wave data represented as time series that exhibit some common trends. The first step involves the composition of Lamb wave series sharing a common upward (or downward) trend of temperature. In the second step, the cointegration analysis is applied for each group of Lamb wave series, which represents a certain condition of damage. So, a cointegration analysis model of Lamb wave series is created for each damage condition. The geometrical and statistical features of Lamb wave series and cointegration residual series are used for detecting and distinguishing damage conditions. These features include the shape, peak-to-peak amplitude, and variance of the series. The validity of this method is confirmed through its application to the Lamb wave data collected from both undamaged and damaged aluminium plates subjected to temperature fluctuations. The proposed approach can find its application not only in Lamb wave-based damage detection, but also in other structural health monitoring (SHM) systems where the data can be arranged in the form of sharing common environmental and/or operational trends.

15.
Micromachines (Basel) ; 14(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38004953

ABSTRACT

Many studies on magnetorheological fluid (MRF) have been carried out over the last three decades, highlighting several salient advantages, such as a fast phase change, easy control of the yield stress, and so forth. In particular, several review articles of MRF technology have been reported over the last two decades, summarizing the development of MRFs and their applications. As specific examples, review articles have been published that include the optimization of the particles and carrier liquid to achieve minimum off-state viscosity and maximum yield stress at on-state, the formulation of many constitutive models including the Casson model and the Herschel-Bulkley (H-B) model, sedimentation enhancement using additives and nanosized particles, many types of dampers for automotive suspension and civil structures, medical and rehabilitation devices, MRF polishing technology, the methods of magnetic circuit design, and the synthesis of various controllers. More recently, the effect of the temperature and thermal conductivity on the properties of MRFs and application systems are actively being investigated by several works. However, there is no review article on this issue so far, despite the fact that the thermal problem is one of the most crucial factors to be seriously considered for the development of advanced MRFs and commercial products of application systems. In this work, studies on the thermal conductivity and temperature in MRFs themselves and their temperature-dependent application systems are reviewed, respectively, and principal results are summarized, emphasizing the following: how to reduce the temperature effect on the field-dependent properties of MRFs and how to design an application system that minimizes the thermal effect. It is noted here that the review summary is organized in a chronological format using tables.

16.
Molecules ; 28(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005267

ABSTRACT

The adsorption of nitrogen molecules on a (100) tungsten surface has been studied using a new potential energy surface in which long-range interactions are suitably characterized and represented by the Improved Lennard-Jones function. The new potential energy surface is used to carry out molecular dynamics simulations by adopting a semiclassical collisional method that explicitly includes the interaction with the surface phonons. The results of the sticking probability, evaluated as a function of the collision energy, are in good agreement with those obtained in the experiments and improve the already good comparison recently obtained with calculations performed using interactions from the Density Functional Theory method and corrected for long-range van der Waals contributions. The dependence of trapping probability on the surface temperature for a well-defined collision energy has also been investigated.

17.
J Elastomers Plast ; 55(8): 1199-1212, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38026587

ABSTRACT

Elastomers are known for their strain-rate-dependent properties not only to quasistatic but also to high strain rate deformations, where mechanical behavior is significantly affected by inertia. Concurrently, environmental changes, such as temperature and humidity variations, can impact their stress response to deformation. This study investigates the effects of material layers within neoprene samples on mitigating these environmental changes. While the presence of an intermediate layer proves effective against temperature and humidity influence, it fails to block the impact of increasing high strain rates. Moreover, the different humidity levels at room and elevated temperatures do not significantly alter the mechanical behavior of filled neoprene samples compared to pure neoprene. Notably, in unfilled neoprene, an increase in humidity levels, other than an absolutely dry environment, leads to a notable stress level rise at room temperature, while under elevated temperature conditions, there is a significant stress decrease with increasing humidity. However, neoprene filled with polyester/cotton or nylon displays resilience to diminishing mechanical behavior under various temperature and humidity regulations, indicating that the material layer within these samples effectively "protects" the rubbers from potential stress lapses observed in unfilled neoprene. While a high strain rate compression affects the behavior of the filled variants significantly, increasing humidity and temperature have minimal impact on their stress levels. These findings offer valuable insights into the dynamic responses of elastomers to environmental changes, highlighting the advantages of using filled rubbers in diverse applications.

18.
Pestic Biochem Physiol ; 195: 105536, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666608

ABSTRACT

The efficacy of insecticides is usually influenced by temperature. Insecticides can be divided into "positive", "negative" and "non-effect" temperature coefficient insecticides (TCI). To assess the temperature-dependent effect of tetrachlorantraniliprole (TET) on Plutella xylostella Linnaeus and to elucidate the mechanism of temperature affects TET toxicity, we determined the toxicity of TET against P. xylostella from 15 °C to 35 °C by leaf dipping method. Moreover, we compared the transcriptome data of the third-instar larvae treated by TET, chlorfenapyr (CHL, non-effect TCI), and the control group at 15, 25, 35 °C, respectively. The results showed that the toxicity of TET against P. xylostella increased with increasing temperature from 15 °C to 35 °C. A total of 21 differential expressed genes (DEGs) of detoxification enzymes were screened by RNA-seq, in which 10 up-regulated genes (3 UGTs, 2 GSTs, 5 P450s) may involve the positive temperature effect of TET, and their expression patterns were consistent with qPCR results. Furthermore, the enzyme activities of GSTs and UGTs significantly increased after TET was treated at 15 °C. Especially, the temperature coefficient (TC) of TET was significantly reduced mixed with UGTs enzyme inhibitor 5-NI. Overall, TET showed higher insecticidal activity with increasing temperature, in which detoxifying enzymes associated with regulation of the positive temperature effect of TET on P. xylostella, such as UGTs, GSTs and P450s, are strongly involved. The transcriptome data provide in-depth information to understand the TET mechanism against diamondback moth. Most importantly, we identified detoxification enzymes that might be involved in regulating TET's positive temperature effect process, and contributed to efficient pest management.


Subject(s)
Insecticides , Lepidoptera , Animals , Insecticides/toxicity , Temperature , Larva/genetics , Plant Leaves
19.
Prev Vet Med ; 219: 105991, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37678000

ABSTRACT

African Swine Fever Virus (ASFV) is the cause of an infectious disease in pigs, which is difficult to control. Long viability of ASFV has been shown for several contaminated materials, especially under low temperature. Therefore, when pigs are exposed to a contaminated environment, new infections could occur without the presence of infectious individuals. For example, a contaminated, poorly washed, empty livestock vehicle poses a risk to the next load of pigs. A quantitative stochastic environmental transmission model was applied to simulate the change in environmental contamination levels over time and calculate the epidemic parameters through exposure-based estimation. Due to the lack of experimental data on environmental transmission at low temperatures, we performed a non-linear fit of the decay rate parameter with temperature based on a literature review. Eventually, 16 scenarios were constructed for different temperature (at 20 °C, 10 °C, 0 °C, or -10 °C) and duration of empty periods (1, 3, 5, or 7 days) after the environment had been contaminated. We quantified the variation in the contamination level of the environment over time and the probability of newly added recipients getting infected when exposed to the environment after the empty period. As a result, the transmission rate parameter for ASFV in pigs was estimated to be 1.53 (0.90, 2.45) day-1, the decay rate parameter to be 1.02 (0.73, 1.47) day-1 (at 21 °C), and the excretion rate parameter to be 2.70 (2.51, 3.02) day-1. Without washing and disinfecting, the environment required 9, 14, 24, 54 days to reach a low probability of causing at least one new case (<0.005) at 20 °C, 10 °C, 0 °C, -10 °C, respectively. In addition, the method proposed in this paper enables assessment of the effect of washing and disinfecting on ASFV environmental transmission. We conducted this study to better understand how the viability of ASFV at different temperatures could affect the infectivity in environmental transmission and to improve risk assessment and disease control strategies.

20.
Materials (Basel) ; 16(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37629864

ABSTRACT

In this paper, the tensile mechanical behavior and progressive damage morphology of glass-fiber-reinforced magnesium alloy laminate for different numbers of holes in a temperature range of 25-180 °C were investigated. In addition, based on extensive tensile tests, the tensile mechanical behavior and microscopic damage morphology of porous-glass-fiber-reinforced magnesium alloy laminates at different temperatures were observed by finite element simulation and scanning electron microscopy (SEM). Finally, the numerical simulation and experimental results were in good accordance with the prediction of mechanical properties and fracture damage patterns of the laminates, the average difference between the residual strength values of the specimens at ambient temperature was 5.57%, and the stress-strain curves were in good agreement. The experimental and finite element analysis results showed that the damaged area of the bonded layer tended to expand with the increase in the number of holes, which has a lesser effect on the ultimate tensile strength. As the temperature increased, the specimens changed from obvious fiber breakage (pull-out) and the resin matrix damage mode to matrix softening damage and interfacial delamination fracture damage. As the testing temperature of the specimens increased from 25 °C to 180 °C, the tensile strength of the specimens decreased by an average of 51.59%, while the tensile strength of the specimens showed a nonlinear decreasing trend. The damage mechanism of porous-glass-fiber-reinforced magnesium alloy laminates at different temperatures is discussed in this paper, which can provide a reference for engineering applications and design.

SELECTION OF CITATIONS
SEARCH DETAIL
...