Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Zygote ; 32(3): 207-214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738346

ABSTRACT

Testicular biopsies (9 mm3) from domestic cats (n = 10) submitted to orchiectomy were submitted to equilibrium vitrification in the presence of ethylene glycol (EG) alone or combined with dimethylsulfoxide (DMSO) as intracellular cryoprotectants, and sucrose or trehalose as extracellular cryoprotectants. The samples were vitrified with 40% EG or 20% EG + 20% DMSO, plus 0.1 M or 0.5 M of sucrose or trehalose. The study was divided into Step 1 and Step 2. In Step 1, intratubular cells (spermatogonia, spermatids, spermatocytes, and Sertoli cells) were quantified and classified as intact or degenerated (pyknotic and/or vacuolated cells). Cryodamage of seminiferous cords was determined by spermatogonia and Sertoli cell scoring of nuclei alterations, tubular basement membrane detachment, epithelium shrinkage, and tubular measures (total area, epithelium area, larger and smaller diameter, and height of the epithelium). In Step 2, Hoechst 33342 stain and propidium iodide (PI) fluorescent stain were used to assess the cell viability of the four best experimental groups in Step 1. The effect of treatments on all analyses was accessed using analysis of variance (ANOVA), and Fisher's post hoc test at P < 0.05 significance was considered. In Step 1, the mean percentage of spermatogonia and Sertoli cells morphological integrity did not show a difference when using both sugars at different concentrations, but their morphology was more affected when DMSO was used. EG use associated with 0.1 M of sucrose or trehalose positively affected spermatocyte and spermatid morphology, respectively. The larger diameter and epithelium height of seminiferous tubules were increased using DMSO plus 0.5 M sucrose and DMSO plus 0.1 M trehalose. The changes in spermatogonial/Sertoli nucleoli visualization were best scored in the EG groups, while the nuclei condensation was lower with sucrose. The basement membrane was satisfactorily preserved with 0.1 M sucrose. In Step 2, the percentage of cell viability was higher when EG plus 0.1 M sucrose was used. Therefore, DMSO's negative effect on the vitrification of testicular biopsies of adult domestic cats was evident. The EG plus 0.1 M of sucrose or trehalose associations are the most suitable CPAs to preserve the testicular histology structure of adult domestic cats in vitrification.


Subject(s)
Cryopreservation , Cryoprotective Agents , Sertoli Cells , Testis , Vitrification , Animals , Male , Cats , Testis/cytology , Testis/drug effects , Cryoprotective Agents/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Biopsy/methods , Sertoli Cells/drug effects , Sertoli Cells/cytology , Spermatogonia/cytology , Spermatogonia/drug effects , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Cell Survival/drug effects , Sucrose/pharmacology , Trehalose/pharmacology
2.
JBRA Assist Reprod ; 28(1): 27-32, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37962947

ABSTRACT

OBJECTIVE: Penconazole is used in agriculture and human and veterinary medicine applications. It has been included in the acute toxicity hazard category by the WHO. This study examines the protective effect of selenium and vitamin C on the fertility of male rats given penconazole. METHODS: Nine groups of rats were given penconazole at concentrations of 50 and 75 mg/ml and selenium and vitamin C at concentrations of 0.5 and 100 mg/ml, respectively. Serum levels of LH and FSH were measured with ELISA kits; ß-actin, GPX4, AQP7, PRM2, and BAX gene expression was evaluated with real-time PCR performed on the left testis of each rat. RESULTS: LH, FSH, and testosterone levels were lower in the groups given penconazole (50 and 75 mg/kg). Histopathology showed that the groups given penconazole had the lowest number of spermatogonia and primary spermatocytes; these numbers were greater in the groups receiving penconazole together with selenium or vitamin C; and the highest counts were observed in separate groups given Se and vitamin C. GPX4, AQP7, PRM2 and BAX gene expression in the groups receiving penconazole was different from controls and was modulated by treatment with selenium or vitamin C. CONCLUSIONS: This study showed that antioxidant compounds have a strengthening effect on the reproductive system and can mitigate the destructive effects of chemical fungicides.


Subject(s)
Ascorbic Acid , Selenium , Triazoles , Humans , Rats , Male , Animals , Ascorbic Acid/pharmacology , Selenium/pharmacology , bcl-2-Associated X Protein/pharmacology , Fertility , Follicle Stimulating Hormone
3.
Life (Basel) ; 14(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38276265

ABSTRACT

This review aims to explore advanced reproductive technologies for male fertility preservation, underscoring the essential role that animal models have played in shaping these techniques through historical contexts and into modern applications. Rising infertility concerns have become more prevalent in human populations recently. The surge in male fertility issues has prompted advanced reproductive technologies, with animal models playing a pivotal role in their evolution. Historically, animal models have aided our understanding in the field, from early reproductive basic research to developing techniques like artificial insemination, multiple ovulation, and in vitro fertilization. The contemporary landscape of male fertility preservation encompasses techniques such as sperm cryopreservation, testicular sperm extraction, and intracytoplasmic sperm injection, among others. The relevance of animal models will undoubtedly bridge the gap between traditional methods and revolutionary next-generation reproductive techniques, fortifying our collective efforts in enhancing male fertility preservation strategies. While we possess extensive knowledge about spermatogenesis and its regulation, largely thanks to insights from animal models that paved the way for human infertility treatments, a pressing need remains to further understand specific infertility issues unique to humans. The primary aim of this review is to provide a comprehensive analysis of how animal models have influenced the development and refinement of advanced reproductive technologies for male fertility preservation, and to assess their future potential in bridging the gap between current practices and cutting-edge fertility techniques, particularly in addressing unique human male factor infertility.

4.
Animals (Basel) ; 12(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35327135

ABSTRACT

This study measured the effects of different freezing techniques and permeating cryoprotectants on the preservation of testicular tissues from adult red-rumped agoutis. Tissue biopsies (3.0 mm3) from five individuals were allocated to different experimental groups: control (non-cryopreserved); slow freezing (SF), solid-surface vitrification (SSV), and conventional vitrification (CV). Each method used dimethyl sulfoxide (DMSO), ethylene glycol (EG), or a DMSO + EG combination. Morphology, viability, mitochondrial activity, and proliferative potential were assessed in fresh and frozen tissue samples. Testicular morphology was better using SSV with a combination of DMSO and EG. Across the different cryopreservation approaches, as well as cryoprotectant combinations, cell viability was comparable. Regarding mitochondrial activity, DMSO + EG/SSV or CV, and DMSO + EG/CV were similar to the EG/SF group, which was the best group that provided values similar to fresh control groups. Adequate preservation of the proliferative potential of spermatogonia, Leydig cells, and Sertoli cells was obtained using SSV with DMSO + EG. Overall, the use of SSV with DMSO + EG was the best protocol for the preservation of testicular tissues from adult red-rumped agoutis.

5.
Biopreserv Biobank ; 20(4): 392-400, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35020470

ABSTRACT

The objective of the study was to evaluate the integrity of cat testicular tissues after vitrification with different devices followed by different warming conditions. The influence of vitro culture for 24 hours after warming also was examined. Testicular tissues from adult domestic cats were dissected in small fragments that were vitrified using Cryotop® or threaded on fine needles, warmed (directly at 37°C or with a preliminary 10 seconds exposure to 50°C), and/or cultured in vitro for an additional 24 hours. For each treatment group, tissues were assessed based on histology, apoptosis, and sperm DNA integrity. Results showed that fragments of testicular tissues were efficiently cryopreserved (maintaining the quality of all cell types) with vitrification with Cryotop followed by direct warming at 37°C, and additional culture of 24 hours at 38.5°C. These encouraging results are paving the road to optimize preservation protocols and use them for systematic banking of tissues from genetically valuable felids.


Subject(s)
Semen , Vitrification , Animals , Cats , Cryopreservation/methods , Male , Spermatozoa , Testis
6.
Anim Reprod ; 19(4): e20220135, 2022.
Article in English | MEDLINE | ID: mdl-36819484

ABSTRACT

Biological Resource Banks (BRB) or Genetic Resource Banks (GRB) are critical tools for the conservation of animal biodiversity. According to the International Union for Conservation of Nature, more than 38,500 species are threatened with extinction, out of a total of 138,300 surveyed species. These banks are repositories of biological samples and data recovered and preserved for the long term by zoos, universities, research centers and other conservation organizations. In recent years, BRB have increasingly included ovarian and testicular tissues as additional options to rescue and propagate wild species, especially those at risk of extinction. After in vitro culture or grafting, gonadal tissues are potential sources of matured gametes that can be used for Assisted Reproduction Technologies while informing about gametogenesis or mechanisms involved in infertility. It therefore is crucial to properly recover, cryopreserve, and culture these tissues using species-specific protocols. Developing BRBs is currently one of the strategies to preserve species from the Caatinga biome - an exclusively Brazilian biome with a rich wild fauna that suffers from anthropogenic activities. Among wild species from this biome, studies have been primarily conducted in collared peccaries, agoutis, cavies, and armadillos to preserve their ovarian and testicular tissues. Additionally, domestic species such as the domestic cat and donkeys have been proposed as models for wild species that are phylogenetically close. This review addresses the main technical aspects involved in obtaining BRB derived from gonadal tissues in some wild species of the Caatinga biome. It reports recent advances and perspectives to use these biological materials for wildlife conservation.

7.
Anim. Reprod. (Online) ; 19(4): e20220135, 2022. tab
Article in English | VETINDEX | ID: biblio-1420058

ABSTRACT

Biological Resource Banks (BRB) or Genetic Resource Banks (GRB) are critical tools for the conservation of animal biodiversity. According to the International Union for Conservation of Nature, more than 38,500 species are threatened with extinction, out of a total of 138,300 surveyed species. These banks are repositories of biological samples and data recovered and preserved for the long term by zoos, universities, research centers and other conservation organizations. In recent years, BRB have increasingly included ovarian and testicular tissues as additional options to rescue and propagate wild species, especially those at risk of extinction. After in vitro culture or grafting, gonadal tissues are potential sources of matured gametes that can be used for Assisted Reproduction Technologies while informing about gametogenesis or mechanisms involved in infertility. It therefore is crucial to properly recover, cryopreserve, and culture these tissues using species-specific protocols. Developing BRBs is currently one of the strategies to preserve species from the Caatinga biome - an exclusively Brazilian biome with a rich wild fauna that suffers from anthropogenic activities. Among wild species from this biome, studies have been primarily conducted in collared peccaries, agoutis, cavies, and armadillos to preserve their ovarian and testicular tissues. Additionally, domestic species such as the domestic cat and donkeys have been proposed as models for wild species that are phylogenetically close. This review addresses the main technical aspects involved in obtaining BRB derived from gonadal tissues in some wild species of the Caatinga biome. It reports recent advances and perspectives to use these biological materials for wildlife conservation.(AU)


Subject(s)
Genetic Markers , Gonads , Animals, Wild/physiology , Brazil , Biodiversity
8.
Animals (Basel) ; 10(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066219

ABSTRACT

Systematic cryo-banking of semen and testicular tissues is critical to preserve the genetic value of recently deceased or neutered black-footed ferrets (BFFs). Specifically, recovering or producing mature sperm cells from vitrified-warmed issues offers additional options in assisted reproduction. This could, in turn, enhance the genetic management of this rare and endangered species over multiple generations. The objective of the study was to evaluate structural properties, DNA fragmentation, cell viability, and germ cell composition in vitrified testicular tissues from BFFs directly after warming or after warming plus a short in vitro culture period. Tissue biopsies from five adult BFFs were either kept fresh or vitrified with a standard protocol (using dimethylsulphoxide (DMSO) and glycerol) and warmed at 50 °C for 5 s. Some of the warmed samples were then cultured in vitro for 24 h. Fresh, warmed, and warmed/cultured tissues were analyzed using different indicators: histology of seminiferous tubules, intact Sertoli cells (vimentin labeling), DNA integrity, cell viability, germ cell composition (Oct4 and Boule labeling). Percentages of intact seminiferous tubules decreased after vitrification/warming and returned to the level of fresh samples after culture. While percentages of cells labeled with vimentin, with intact DNA integrity, or proportions of viable cells were affected by vitrification/warming, they all reached similar or better levels than the fresh tissue after culture. Proportions of cells labeled with Boule antibodies also improved during in vitro culture post-warming. We demonstrated for the first time that BFF testes subjected to vitrification, rapid warming, and short in vitro culture were viable and maintained the ability to resume germ cell progression. Cryopreserved testicular tissues could potentially contribute to new strategies to enhance BFF assisted reproduction as well as conservation efforts.

9.
Biopreserv Biobank ; 18(5): 415-424, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32780644

ABSTRACT

Anhydrous preservation is a promising approach for storage of living biomaterials at nonfreezing temperatures. Using the domestic cat model, the objectives of this study were to characterize changes in histology, DNA integrity, and viability of testicular tissues from adult versus prepubertal individuals during microwave-assisted drying. Testes from each age group were cut into small pieces before reversible membrane permeabilization, exposure to trehalose, and microwave-assisted drying during different time periods. In Experiment 1, water content was monitored for up to 40 minutes of drying. Tissues from adult or prepubertal cats experienced similar decreases of water content during the first 10 minutes. Desiccation progressed slowly between 10 and 20 minutes and then remained stable. In Experiment 2, structural properties were explored at 5, 10, and 20 minutes of desiccation. Percentages of normal seminiferous tubules were lower after 20 minutes drying in adult (43%) than in prepubertal tissues (61%). At the same time point, the proportion of cell degeneration was higher in adult (53%) than prepubertal tissues (28%). Percentages of intact DNA in tissues remained above 85% regardless of the microwave time in both age groups. Lastly, adult and prepubertal tissues only lost 33% of viability in both age groups. Collective results demonstrated for the first time that normal morphology, incidence of degeneration, DNA integrity, and viability of testicular tissues remained at acceptable levels during microwave-assisted drying for 20 minutes. Overall, prepubertal testicular tissues appeared to be more resilient to microwave-assisted desiccations than adult tissues. Importantly, water loss in the presence of trehalose after 20 minutes of desiccation already is compatible with long-term storage of testicular tissues at temperatures above -20°C, which is one step closer to future storage at supra-zero temperatures.


Subject(s)
Microwaves , Animals , Cats , Desiccation , Preservation, Biological , Temperature , Trehalose , Water
10.
J. Anim. Behav. Biometeorol. ; 08(03): 174-180, July 2020. tab, ilus, graf
Article in English | VETINDEX | ID: vti-763889

ABSTRACT

Elevation of scrotal temperature may be injurious to spermatogenesis and leading cause male infertility. Scrotal heat stress reduces the number and motility of spermatozoa, fertilization ability of the surviving sperm and poor fertilization-embryo. This study was designed to investigate the effect of heat stress (at 37 ºC, 40 ºC and 43 ºC) on histopathological features of testicular tissue in scrotal heatexposed male mice. Experimental and control groups were sacrificed after completion of five weeks heat exposureperiod. The testes were fixed and stained hematoxylin-eosin (H&E) for qualitative and quantitative analysis of histopathological alterations and spermatogenesis accordingto Johnson scoring system. The results indicated that mice exposed to heat-stress mice exhibited degenerated anddisorganized features of spermatogenic epithelium and reduced spermatogenic cells. Heat stress exposure (40 ºC and43 ºC) shows the significantly reduced Johnson score compared to the control condition (P < 0.05 and P < 0.001,respectively). Meanwhile, scrotal heat exposure at 37 ºC did not reach significantly changes in Johnsen's testicularhistopathological score. The seminiferous tubule structure and spermatogenesis were completely disrupted in mice exposedto 43 °C. Percentage of high Johnsen score point was decreased in mice in heat-stress exposure group, while the ratio of low Johnsen score points was gradually increase. Spermatogenesis in male mice exposed to chronic scrotal heatstress is disrupted at 43 °C. In conclusion, this study attempted to develop an animal model for studying the male reproductivesystem. Johnsen scores system was standardized to assess murine testicular histopathology in the seminiferous tubulecross-section. Collectively, these results indicated a negative impact on histopathological alterations and spermatogenesis arrest following chronic scrotal heat stress.(AU)


Subject(s)
Animals , Male , Mice , Heat-Shock Response/radiation effects , Testis/abnormalities , Testis/pathology , Testis/radiation effects
11.
J. Anim. Behav. Biometeorol ; 8(3): 174-180, July 2020. tab, ilus, graf
Article in English | VETINDEX | ID: biblio-1484317

ABSTRACT

Elevation of scrotal temperature may be injurious to spermatogenesis and leading cause male infertility. Scrotal heat stress reduces the number and motility of spermatozoa, fertilization ability of the surviving sperm and poor fertilization-embryo. This study was designed to investigate the effect of heat stress (at 37 ºC, 40 ºC and 43 ºC) on histopathological features of testicular tissue in scrotal heatexposed male mice. Experimental and control groups were sacrificed after completion of five weeks heat exposureperiod. The testes were fixed and stained hematoxylin-eosin (H&E) for qualitative and quantitative analysis of histopathological alterations and spermatogenesis accordingto Johnson scoring system. The results indicated that mice exposed to heat-stress mice exhibited degenerated anddisorganized features of spermatogenic epithelium and reduced spermatogenic cells. Heat stress exposure (40 ºC and43 ºC) shows the significantly reduced Johnson score compared to the control condition (P < 0.05 and P < 0.001,respectively). Meanwhile, scrotal heat exposure at 37 ºC did not reach significantly changes in Johnsen's testicularhistopathological score. The seminiferous tubule structure and spermatogenesis were completely disrupted in mice exposedto 43 °C. Percentage of high Johnsen score point was decreased in mice in heat-stress exposure group, while the ratio of low Johnsen score points was gradually increase. Spermatogenesis in male mice exposed to chronic scrotal heatstress is disrupted at 43 °C. In conclusion, this study attempted to develop an animal model for studying the male reproductivesystem. Johnsen scores system was standardized to assess murine testicular histopathology in the seminiferous tubulecross-section. Collectively, these results indicated a negative impact on histopathological alterations and spermatogenesis arrest following chronic scrotal heat stress.


Subject(s)
Male , Animals , Mice , Heat-Shock Response/radiation effects , Testis/abnormalities , Testis/radiation effects , Testis/pathology
12.
Rev Urol ; 17(4): 211-9, 2015.
Article in English | MEDLINE | ID: mdl-26839518

ABSTRACT

Approximately 0.2% of Americans aged 20 to 39 years are childhood cancer survivors. Advances in cancer detection and therapy have greatly improved survival rates for young cancer patients; however, treatment of childhood cancers can adversely impact reproductive function. Many cancer patients report a strong desire to be informed of existing options for fertility preservation and future reproduction prior to initiation of gonadotoxic cancer therapies, including surgery, chemotherapy, and radiotherapy. This article discusses, in detail, the effects of cancer treatment on fertility in men and women, and outlines both current and experimental methods of fertility preservation among cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL