Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Int J Biol Macromol ; 271(Pt 1): 132400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759851

ABSTRACT

Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.


Subject(s)
Molecular Sequence Annotation , Testis , Transcriptome , Animals , Male , Cattle , Testis/metabolism , Testis/growth & development , Transcriptome/genetics , Open Reading Frames/genetics , Gene Expression Profiling/methods , Alternative Splicing , RNA, Long Noncoding/genetics , Gene Regulatory Networks , Sequence Analysis, RNA/methods
2.
Mamm Genome ; 35(2): 149-159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658415

ABSTRACT

The petit (pet) locus is associated with dwarfism, testicular anomalies, severe thymic hypoplasia, and high postnatal lethality, which are inherited in autosomal recessive mode of inheritance in rats with a Wistar strain genetic background. Linkage analysis localized the pet locus between 98.7 Mb and 101.2 Mb on rat chromosome 9. Nucleotide sequence analysis identified 2 bp deletion in exon 2 of the Thap4 gene as the causative mutation for pet. This deletion causes a frameshift and premature termination codon, resulting in a truncated THAP4 protein lacking approximately two-thirds of the C-terminal side. Thap4 is expressed in various organs, including the testis and thymus in rats. To elucidate the biological function of THAP4 in other species, we generated Thap4 knockout mice lacking exon 2 of the Thap4 gene through genome editing. Thap4 knockout mice also exhibited dwarfism and small testis but did not show high postnatal lethality. Thymus weights of adult Thap4 knockout male mice were significantly higher compared to wild-type male mice. Although Thap4 knockout male mice were fertile, their testis contained seminiferous tubules with spermatogenesis and degenerative seminiferous tubules lacking germ cells. Additionally, we observed vacuoles in seminiferous tubules, and clusters of cells in the lumen in seminiferous tubules in Thap4 knockout male mice. These results demonstrate that spontaneous mutation of Thap4 gene in rats and knockout of Thap4 gene in mice both cause dwarfism and testicular anomalies. Thap4 gene in rats and mice is essential for normal testicular development, maintaining spermatogenesis throughout the entire region of seminiferous tubules.


Subject(s)
Dwarfism , Mice, Knockout , Testis , Animals , Male , Dwarfism/genetics , Dwarfism/pathology , Testis/metabolism , Testis/pathology , Mice , Rats , Mutation , Rats, Wistar
3.
BMC Genomics ; 25(1): 395, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649810

ABSTRACT

The testes are the organs of gamete production and testosterone synthesis. Up to date, no model system is available for mammalian testicular development, and only few studies have characterized the mouse testis transcriptome from no more than three postnatal ages. To describe the transcriptome landscape of the developing mouse testis and identify the potential molecular mechanisms underlying testis maturation, we examined multiple RNA-seq data of mouse testes from 3-week-old (puberty) to 11-week-old (adult). Sperm cells appeared as expected in 5-week-old mouse testis, suggesting the proper sample collection. The principal components analysis revealed the genes from 3w to 4w clustered away from other timepoints, indicating they may be the important nodes for testicular development. The pairwise comparisons at two adjacent timepoints identified 7,612 differentially expressed genes (DEGs), resulting in 58 unique mRNA expression patterns. Enrichment analysis identified functions in tissue morphogenesis (3-4w), regulation of peptidase activity (4-5w), spermatogenesis (7-8w), and antigen processing (10-11w), suggesting distinct functions in different developmental periods. 50 hub genes and 10 gene cluster modules were identified in the testis maturation process by protein-protein interaction (PPI) network analysis, and the miRNA-lncRNA-mRNA, miRNA-circRNA-mRNA and miRNA-circRNA-lncRNA-mRNA competing endogenous RNA (ceRNA) networks were constructed. The results suggest that testis maturation is a complex developmental process modulated by various molecules, and that some potential RNA-RNA interactions may be involved in specific developmental stages. In summary, this study provides an update on the molecular basis of testis development, which may help to understand the molecular mechanisms of mouse testis development and provide guidance for mouse reproduction.


Subject(s)
Gene Expression Profiling , Testis , Animals , Male , Testis/metabolism , Testis/growth & development , Mice , Gene Expression Regulation, Developmental , Transcriptome , Gene Regulatory Networks , Protein Interaction Maps , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Front Cell Dev Biol ; 12: 1356151, 2024.
Article in English | MEDLINE | ID: mdl-38529408

ABSTRACT

Introduction: Zeugodacus tau (Walker) is an invasive pest. An effective method to control this pest is the sterile insect technique (SIT). To better apply this technique, it is necessary to understand testis development progression. Methods: Differentially expressed genes (DEGs) during testis development were analyzed by PacBio Iso-Seq and RNA-seq. Results: RNA-Seq library of Z. tau testes on day 1, 6, and 11 post eclosion were constructed. We identified 755 and 865 differentially expressed genes in the comparisons of T6 (testes on day 6) vs. T1 and T11 vs. T1, respectively. The KEGG pathway analysis showed that the DEGs were significantly enriched in retinol metabolism, vitamin B6 metabolism, and ascorbate and aldarate metabolism pathways. Knockdown of retinol dehydrogenase 12-like (rdh12-like), pyridoxal kinase (pdxk) and regucalcin (rgn), the representative gene in each of the above 3 pathways, reduced the hatching rate of Z. tau offspring. In addition, we identified 107 Drosophila spermatogenesis-related orthologous genes in Z. tau, of which innexin 2 (inx2) exhibited significantly up-regulated expression throughout testis development, and the knockdown of this gene reduced offspring hatching rate. Discussion: Our data indicated that rdh12-like, pdxk, rgn, and inx2 genes were related to testis development, and they were conserved in tephritid species. These results suggested that this gene might have the same function in tephritid. The findings provide an insight into testis development and spermatogenesis in tephritid species.

5.
Sci Total Environ ; 912: 169340, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38110097

ABSTRACT

Research on the mechanisms of reproductive toxicity caused by persistent organic pollutants (POPs) in marine animals has received significant attention. One group of typical POPs, called polycyclic aromatic hydrocarbons (PAHs), has been found to cause various reproductive toxicities in aquatic organisms, including epigenotoxicity, reproductive endocrine disruption, DNA damage effects and other reproductive toxicity, thereby affecting gonadal development. Interestingly, male aquatic animals are more susceptible to the disturbance and toxicity of environmental pollutants. However, current studies primarily focus on vertebrates, leaving a large gap in our understanding of the reproductive toxicity and mechanisms of PAHs interference in marine invertebrates. In this study, male Ruditapes philippinarum was used as an experimental subject to investigate reproduction-related indexes in clams under the stress of benzo[a]pyrene (B[a]P) at different concentrations (0, 0.8, 4 and 20 µg/L) during the proliferative, growth, maturity, and spawning period. We analyzed the molecular mechanisms of reproductive toxicity caused by PAHs in marine bivalves, specifically epigenotoxicity, reproductive endocrine disruption, and gonadal damage-apoptotic effect. The results suggest that DNA methylation plays a crucial role in mediating B[a]P-induced reproductive toxicity in male R. philippinarum. B[a]P may affect sex hormone levels, impede spermatogenesis and testis development in clams, by inhibiting the steroid hormone synthesis pathway and downregulating genes critical for cell proliferation, testis development, and spermatid expulsion. Moreover, the spermatids of male R. philippinarum were severely impaired under the B[a]P stress, leading to reduced reproductive performance in the clams. These findings contribute to a better understanding of the reproductive toxicity response of male marine invertebrates to POPs stress.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Male , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Testis , Bivalvia/metabolism , Aquatic Organisms , Gonadal Steroid Hormones/metabolism , DNA Damage , Water Pollutants, Chemical/analysis
6.
Mol Cell Biochem ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37659974

ABSTRACT

Spermatogenesis, a key part of the spermiation process, is regulated by a combination of key cells, such as primordial germ cells, spermatogonial stem cells, and somatic cells, such as Sertoli cells. Abnormal spermatogenesis can lead to azoospermia, testicular tumors, and other diseases related to male infertility. The application of single-cell RNA sequencing (scRNA-seq) technology in male reproduction is gradually increasing with its unique insight into deep mining and analysis. The data cover different periods of neonatal, prepubertal, pubertal, and adult stages. Different types of male infertility diseases including obstructive and non-obstructive azoospermia (NOA), Klinefelter Syndrome (KS), Sertoli Cell Only Syndrome (SCOS), and testicular tumors are also covered. We briefly review the principles and application of scRNA-seq and summarize the research results and application directions in spermatogenesis in different periods and pathological states. Moreover, we discuss the challenges of applying this technology in male reproduction and the prospects of combining it with other technologies.

7.
Dev Cell ; 58(20): 2097-2111.e3, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37582368

ABSTRACT

Formation of either an ovary or a testis during human embryonic life is one of the most important sex-specific events leading to the emergence of secondary sexual characteristics and sex assignment of babies at birth. Our study focused on the sex-specific and sex-indifferent characteristics of the prenatal ovarian stromal cells, cortical cords, and germline, with the discovery that the ovarian mesenchymal cells of the stroma are transcriptionally indistinguishable from the mesenchymal cells of the testicular interstitium. We found that first-wave pre-granulosa cells emerge at week 7 from early supporting gonadal cells with stromal identity and are spatially defined by KRT19 levels. We also identified rare transient state f0 spermatogonia cells within the ovarian cords between weeks 10 and 16. Taken together, our work illustrates a unique plasticity of the embryonic ovary during human development.


Subject(s)
Gonads , Ovary , Male , Female , Infant, Newborn , Humans , Testis , Germ Cells , Single-Cell Analysis
8.
Genes (Basel) ; 14(7)2023 06 25.
Article in English | MEDLINE | ID: mdl-37510239

ABSTRACT

Reproductive competence in male mammals depends on testicular function. Testicular development and spermatogenesis in goats involve highly complex physiological processes. In this study, six testes were, respectively, obtained from each age group, immature (1 month), sexually mature (6 months) and physically mature (12 months old) Qianbei Ma goats. RNA-Seq was performed to assess testicular mRNA expression in Qianbei Ma goats at different developmental stages. Totally, 18 libraries were constructed to screen genes and pathways involved in testis development and spermatogenesis. Totally, 9724 upregulated and 4153 downregulated DEGs were found between immature (I) and sexually mature (S) samples; 7 upregulated and 3 downregulated DEGs were found between sexually mature (S) and physically mature (P) samples, and about 4% of the DEGs underwent alternative splicing events between I and S. Select genes were assessed by qRT-PCR, corroborating RNA-Seq findings. The detected genes have key roles in multiple developmental stages of goat testicular development and spermatogenesis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine differentially expressed genes (DEGs). GO analysis revealed DEGs between S and P contributed to "reproduction process", "channel activity" and "cell periphery part" between I and S, and in "ion transport process", "channel activity" and "transporter complex part". KEGG analysis suggested the involvement of "glycerolipid metabolism", "steroid hormone biosynthesis" and "MAPK signaling pathway" in testis development and spermatogenesis. Genes including IGF1, TGFB1, TGFBR1 and EGFR may control the development of the testis from immature to sexually mature, which might be important candidate genes for the development of goat testis. The current study provides novel insights into goat testicular development and spermatogenesis.


Subject(s)
Testis , Transcriptome , Animals , Male , Testis/metabolism , Goats/genetics , Goats/metabolism , Spermatogenesis/genetics , Gene Expression Profiling
9.
BMC Genomics ; 24(1): 283, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237333

ABSTRACT

BACKGROUND: Testis is the only organ supporting sperm production and with the largest number of proteins and tissue-specific proteins in animals. In our previous studies, we have found that knockdown of ocnus (ocn), a testis-specific gene, resulted in much smaller testis with no germ cells in Drosophila melanogaster. However, the molecular consequences of ocn knockdown in fly testes are unknown. RESULTS: In this study, through iTRAQ quantitative proteomics sequencing, 606 proteins were identified from fly abdomens as having a significant and at least a 1.5-fold change in expression after ocn knockdown in fly testes, of which 85 were up-regulated and 521 were down-regulated. Among the differential expressed proteins (DEPs), apart from those proteins involved in spermatogenesis, the others extensively affected biological processes of generation of precursor metabolites and energy, metabolic process, and mitochondrial transport. Protein-protein interaction (PPI) analyses of DEPs showed that several kinases and/or phosphatases interacted with Ocn. Re-analyses of the transcriptome revealed 150 differential expressed genes (DEGs) appeared in the DEPs, and their changing trends in expressions after ocn knockdown were consistent. Many common down-regulated DEGs and DEPs were testis-specific or highly expressed in the testis of D. melanogaster. Quantitative RT-PCR (qRT-PCR) confirmed 12 genes appeared in both DEGs and DEPs were significantly down-regulated after ocn knockdown in fly testes. Furthermore, 153 differentially expressed phosphoproteins (DEPPs), including 72 up-regulated and 94 down-regulated phosphorylated proteins were also identified (13 phosphoproteins appeared in both up- and down-regulated groups due to having multiple phosphorylation sites). In addition to those DEPPs associated with spermatogenesis, the other DEPPs were enriched in actin filament-based process, protein folding, and mesoderm development. Some DEPs and DEPPs were involved in Notch, JAK/STAT, and cell death pathways. CONCLUSIONS: Given the drastic effect of the ocn knockdown on tissue development and testis cells composition, the differences in protein abundance in the ocn knockdown flies might not necessarily be the direct result of differential gene regulation due to the inactivation of ocn. Nevertheless, our results suggest that the expression of ocn is essential for Drosophila testis development and that its down-regulation disturbs key signaling pathways related to cell survival and differentiation. These DEPs and DEPPs identified may provide significant candidate set for future studies on the mechanism of male reproduction of animals, including humans.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Phosphoric Monoester Hydrolases , Testis , Animals , Male , Drosophila melanogaster/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proteomics/methods , Semen , Testis/growth & development , Drosophila Proteins/genetics , Phosphoric Monoester Hydrolases/genetics
10.
Animals (Basel) ; 13(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37238135

ABSTRACT

Cyclin B3 (CycB3) is involved in the metabolic pathway of the cell cycle, playing essential roles in the regulation of cell proliferation and mitosis. CycB3 is also predicted to be involved in the reproduction of male oriental river prawns (Macrobrachium nipponense). In this study, the potential functions of CycB3 in M. nipponense were investigated using quantitative real-time PCR, RNA interference, and histological observations. The full-length DNA sequence of CycB3 in M. nipponense was 2147 base pairs (bp) long. An open reading frame of 1500 bp was found, encoding 499 amino acids. A highly conserved destruction box and two conserved cyclin motifs were found in the protein sequence of Mn-CycB3. Phylogenetic tree analysis revealed that this protein sequence was evolutionarily close to that of CycB3s of crustacean species. Quantitative real-time PCR analysis results suggested that CycB3 was involved in the process of spermiogenesis, oogenesis, and embryogenesis in M. nipponense. RNA interference analysis showed that CycB3 had a positive regulatory relationship with insulin-like androgenic gland hormone (IAG) in M. nipponense. In addition, sperm were rarely observed in the testis of double-stranded CycB3-injected prawns after 14 days of treatment, and sperm abundance was dramatically lower than that in the double-stranded GFP-injected prawns on the same day. This result indicated that CycB3 can regulate the testis reproduction in M. nipponense through inhibiting the IAG expressions. Overall, these results indicated that CycB3 plays essential roles in the regulation of male reproduction in M. nipponense, which may promote the studies of male reproduction in other crustacean species.

11.
Elife ; 122023 04 25.
Article in English | MEDLINE | ID: mdl-37096870

ABSTRACT

Spermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that single-cell sequencing assay for transposase-accessible chromatin (scATAC-Seq) allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell-type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution dataset also unveiled previously unreported subpopulations within both the Sertoli and Leydig cell groups. Further, we defined candidate target cell types and genes of several genome-wide association study (GWAS) signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the 'regulon' of the mouse male germline and supporting somatic cells.


Subject(s)
Chromatin , Testis , Male , Pregnancy , Female , Animals , Mice , Chromatin/metabolism , Testis/metabolism , Genome-Wide Association Study , Transcription Factors/metabolism , Spermatogenesis/genetics , Single-Cell Analysis
12.
Anim Reprod Sci ; 251: 107216, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37011421

ABSTRACT

Testosterone is a key crucial hormone synthesized by steroidogenic enzymes that initiate and maintain spermatogenesis and secondary sexual characteristics in adult males. The taste receptor family 1 subunit 3 (T1R3) is reported to be associated with male reproduction. T1R3 can regulate the expressions of steroidogenic enzymes and affect testosterone synthesis. In this study, we addressed the question of whether the expression of steroid synthase was associated with T1R3 and its downstream-tasting molecules during testicular development. The results showed an overall upward trend in testosterone and morphological development in testes from Congjiang Xiang pigs from pre-puberty to sexual maturity. Gene expression levels of testicular steroidogenic acute regulatory protein (StAR), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), cytochrome P450c17 (CYP17A1) and 17ß-hydroxysteroid dehydrogenase (17ß-HSD) were increased from pre-puberty to sexual maturity. Protein expression changes of CYP17A1 and 3ß-HSD were consistent with mRNA. The relative abundance of tasting molecules (TAS1R3, phospholipase Cß2, PLCß2) was increased from pre-puberty to puberty (P < 0.05), with no further significant changes in expression from puberty to sexual maturity. Steroidogenic enzymes (3ß-HSD and CYP17A1) were strongly detected in Leydig cells from pre-puberty to sexual maturity, while tasting molecules were localized in Leydig cells and spermatogenic cells. Correlation analysis showed that the genes mentioned above (except for PLCß2) were positively correlated with testosterone levels and morphological characteristics of the testes at different developmental stages of Congjiang Xiang pigs. These results suggest that steroidogenic enzymes regulate testosterone synthesis and testicular development, and that taste receptor T1R3, but not PLCß2, may associate with this process.


Subject(s)
Leydig Cells , Testis , Male , Animals , Swine , Testis/metabolism , Leydig Cells/metabolism , Testosterone/metabolism , Spermatogenesis/physiology , RNA, Messenger/metabolism
13.
Genes (Basel) ; 14(3)2023 02 23.
Article in English | MEDLINE | ID: mdl-36980836

ABSTRACT

Insulin-like androgenic gland hormone (IAG) is the master regulator of sexual differentiation and testis development in male crustaceans. However, the molecular mechanism on how IAG functions during testis development is still largely unknown. Here, the transcriptional changes were analyzed in the testes of shrimp after LvIAG knockdown in Litopenaeus vannamei. Differential expression analysis identified 111 differentially expressed genes (DEGs), including 48 upregulated DEGs and 63 downregulated DEGs, in testes of shrimp after LvIAG knockdown. Gene ontology (GO) analysis showed that these DEGs were apparently enriched in cytoskeleton-related GO items. Gene function analysis showed that genes enriched in these GO items mainly encoded actin, myosin, and heat shock protein. Interestingly, these genes were all downregulated in testis after LvIAG knockdown, which was confirmed by qRT-PCR detection. Furthermore, injection of LvIAG protein that was recombinantly expressed in insect cells upregulated the expression levels of these genes. The present study revealed that shrimp IAG might function in testis development through regulating the expression of cytoskeletal protein-encoding genes, which would provide new insights into understanding the functional mechanisms of IAG on male sexual development of crustaceans.


Subject(s)
Androgens , Testis , Male , Humans , Testis/metabolism , Androgens/metabolism , Sex Differentiation/genetics , Sexual Development , Cytoskeleton/genetics , Cytoskeleton/metabolism
14.
Integr Zool ; 18(3): 543-551, 2023 May.
Article in English | MEDLINE | ID: mdl-35639924

ABSTRACT

The bicoid-related transcription factor 2 (Pitx2) plays a crucial role in the development of many organs and tissues by affecting the mitotic cell cycle. Postnatal testis development is related to mitosis and meiosis in multiple cell types, but the role of Pitx2 gene in seasonal inhibition of testicular development remains unknown in rodents. We analyzed PITX2 protein and Pitx2 mRNA expression features using both laboratory and wild male Rattus norvegicus caraco. In postnatal testicle of laboratory colony, we found that PITX2 was expressed in Leydig cells, pachytene spermatocytes, round spermatids, and elongating spermatids rather than spermatogonia and leptotene/zygotene spermatocytes. Pitx2b expression significantly increased along with the occurrence of pachytene spermatocytes and round spermatids, while decreased along with the processes of elongated spermatids. In wild male rats with similar testes weight, a significantly suppressed Pitx2b expression occurred with an active meiotic stage in the inhibited testes in autumn and winter, compared with the normally developing testes in spring and summer. These results indicate that Pitx2b expression suppression plays a crucial role in the seasonal inhibition of testis development.


Subject(s)
Spermatogenesis , Testis , Animals , Male , Rats , Seasons , Spermatids/metabolism , Spermatogenesis/genetics , Spermatogonia/metabolism , Testis/growth & development , Homeobox Protein PITX2
15.
Aquat Toxicol ; 254: 106371, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36529091

ABSTRACT

Benzophenone-type UV filters (BPs) are ubiquitous contaminants in aquatic environments, possibly posing ecological risks to aquatic populations. So far, little is known about the potential adverse effects of BPs on amphibians. Given their potential estrogenic property, we investigated the detrimental effects of the commonly used BPs, BP-3, BP-2, and BP-1, on testis development in amphibians using Xenopus laevis as a model species. Following exposure to 10, 100, 1000 nM BP-3, BP-2, or BP-1 from stages 45/46 to 52, tadpoles presented morphological abnormal testes, characterized by reduced gonomere size and testis area, coupled with suppressed cell proliferation. Meanwhile, the downregulation of testis-biased gene expression and the upregulation of ovary-biased gene expression were observed in BPs-treated testes. Moreover, the estrogen receptor (ER) antagonist ICI 182780 significantly antagonized ovary-biased gene upregulation caused by BPs, suggesting that the effects of BPs on testis differentiation could be mediated by ER, at least partially. Of note, the effects of BPs were not concentration-dependent, but the lowest concentration generally exerted significant effects. Altogether, these observations indicate that the three BPs inhibited testis differentiation and exerted feminizing effects. Importantly, when BP-2 exposure was extended to two months post-metamorphosis, testes of froglets were generally less-developed, with relatively fewer spermatocytes, more spermatogonia, and poorly formed seminiferous tubules. Considering the fact that the lowest concentration (10 nM) of BPs in this study are detectable in aquatic environments, we conclude that BP-3, BP-2, and BP-1, even at environmentally relevant concentrations, can retard testis differentiation at pre-metamorphic stages and cause testis dysgenesis after metamorphosis in the amphibian X. laevis. Our findings suggest that ubiquitous BPs in aquatic environments could pose a potential risk to amphibians.


Subject(s)
Testis , Water Pollutants, Chemical , Male , Animals , Female , Xenopus laevis , Water Pollutants, Chemical/toxicity , Ovary , Benzophenones/toxicity
16.
Mar Biotechnol (NY) ; 25(1): 123-139, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36520355

ABSTRACT

Testis development is a complex process involving multiple genes, and the molecular mechanisms underlying testis development in Opsariichthys bidens remain unclear. We performed transcriptome sequencing analysis on a total of 12 samples of testes from stages II, III, IV, and V of O. bidens and obtained a total of 79.52 Gb clean data, as well as 288,573 transcripts and 116,215 unigenes. Differential expression analysis showed that 22,857 differentially expressed genes (DEGs) were screened in six comparison groups (III vs. II, IV vs. II, V vs. II, IV vs. III, V vs. III, and V vs. IV). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs showed that six comparison groups were significantly enriched for a total of 20 significantly up- or down-regulated pathways, including six pathways related to signal transduction, three pathways related to energy metabolism, five pathways related to disease, and two pathways related to ribosomes. Furthermore, our investigation revealed that DEGs were enriched in several important functional pathways, such as Huntington's disease signaling pathway, TGF-ß signaling pathway, and ribosome signaling pathway. Protein-protein interaction network analysis of DEGs identified 63 up-regulated hub genes, including 9 kinesin genes and 2 cytoplasmic dynein genes, and 39 down-regulated hub genes, including 13 ribosomal protein genes. This result contributes to the knowledge of spermatogenesis and testis development in O. bidens.


Subject(s)
Testis , Transcriptome , Male , Humans , Gene Expression Profiling , Spermatogenesis/genetics , Computational Biology
17.
Biotech Histochem ; 98(3): 179-186, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36475412

ABSTRACT

The antipsychotic drug, olanzapine, is prescribed for postpartum psychosis. Possible adverse effects on fertility of offspring are unclear. We investigated the effects of administering olanzapine via lactation on testicular development and endocrine function of prepuberal male rats. Olanzapine was administered to mothers at 2.5, 5 or 10 mg/kg. We found in male offspring increased body weight, decreased gonadosomatic index, testicular weight and epididymal weight. The volume of seminiferous tubules, seminiferous epithelium, Leydig cells, intertubule tissue and lymphatic space was reduced in rat pups exposed to olanzapine. Tubule diameter and length, seminiferous epithelium height, Leydig cell size and nuclear diameter also were reduced. Testosterone levels were reduced in the groups exposed to olanzapine, while prolactin levels were increased. We observed histopathology in testes of animals whose mothers had been treated with 2.5 mg/kg olanzapine; more severe pathology was observed in offspring whose mothers were administered higher doses. Administration of olanzapine to mothers during lactation produced testicular and endocrine pathology in prepuberal rats in a dose-dependent manner.


Subject(s)
Lactation , Testis , Rats , Female , Animals , Male , Olanzapine/pharmacology , Testosterone , Atrophy/pathology , Organ Size
18.
Theriogenology ; 197: 116-126, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36502589

ABSTRACT

In mammals, the testis is the organ with the highest transcriptional activity. After gene transcription, translation, and post-translational protein modification, the transcriptional results are finally presented at the metabolic level. Metabolites not only essential for cell signaling and energy transfer, but also directly influenced by the physiological and pathological changes in tissues and accurately reflect the physiological changes. The fact that the testes are oxygen-deprived organs can explain why Sertoli cells and germ cells may use distinctive metabolic pathways to obtain energy in their different stages of development. Therefore, studying metabolic changes during testis development can better elucidate metabolic profile of the testis, which is essential to revealing characteristic metabolic pathways. The present study applied a widely targeted UPLC-MS/MS-based metabolomics approach with large-scale detection, identification and quantification to investigate the widespread metabolic changes during Tibetan sheep testis development. Firstly, a total of 847 metabolites were detected in the sheep testis, and their changes along with the three testis-development stages were further investigated. The results indicated that those metabolites were clustered into amino acids and their derivatives, carbohydrates and their derivatives, organic acids and their derivatives, benzene and substituted derivatives, alcohols and amines, lipids, nucleotides and their derivatives, bile acids, coenzymes and vitamins, hormones and hormone-related compounds, etc. Among them, the most abundant metabolites in the testis were amino acids and lipid metabolites. The results showed that most of the lipids, carbohydrates with their derivatives, as well as alcohol and amines metabolites were high in sexually immature sheep while organic acids, amino acids and nucleotides showed a continuously increasing trend along with testis development stages. Among them, the content of metabolites with antioxidant effects increased along with testis development, while those related with energy synthesis was downregulated with age. Further correlation analyses of each metabolite-metabolite pair emphasized the cross talk between differential metabolisms across testis development, suggesting a significant correlation between lipids and other metabolites. Finally, based on KEGG pathway analysis, we found that the metabolic pathways in Tibetan sheep testis development were mainly clustered into energy metabolism, gonadal development, and anti-oxidative stress. Reactive oxygen species (ROS) are by-products of normal cellular metabolism and are inevitable during testicular energy metabolism. Thus, the anti-oxidative stress function is a key process in maintaining the normal physiological function of testis. These results contributed to a broader view of the testis metabolome and a comprehensive analysis on metabolomic variation among different testis-development stages, providing a theoretical basis for us to understand the sheep testis metabolic mechanism.


Subject(s)
Sheep, Domestic , Testis , Male , Animals , Sheep , Testis/metabolism , Tibet , Chromatography, Liquid/veterinary , Tandem Mass Spectrometry/veterinary , Metabolome , Amino Acids/metabolism , Hormones/metabolism , Carbohydrates , Lipids , Amines/metabolism , Nucleotides/metabolism
19.
Hum Reprod ; 38(1): 1-13, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36409992

ABSTRACT

The amount of single-cell RNA-sequencing (scRNA-seq) data produced in the field of human male reproduction has steadily increased. Transcriptional profiles of thousands of testicular cells have been generated covering the human neonatal, prepubertal, pubertal and adult period as well as different types of male infertility; the latter include non-obstructive azoospermia, cryptozoospermia, Klinefelter syndrome and azoospermia factor deletions. In this review, we provide an overview of transcriptional changes in different testicular subpopulations during postnatal development and in cases of male infertility. Moreover, we review novel concepts regarding the existence of spermatogonial and somatic cell subtypes as well as their crosstalk and provide corresponding marker genes to facilitate their identification. We discuss the potential clinical implications of scRNA-seq findings, the need for spatial information and the necessity to corroborate findings by exploring other levels of regulation, including at the epigenetic or protein level.


Subject(s)
Azoospermia , Infertility, Male , Adult , Infant, Newborn , Humans , Male , Spermatogenesis/genetics , Azoospermia/metabolism , Testis/metabolism , Infertility, Male/metabolism , Fertility , Stem Cells , RNA/metabolism
20.
Front Endocrinol (Lausanne) ; 13: 1084802, 2022.
Article in English | MEDLINE | ID: mdl-36545330

ABSTRACT

Polo-like kinase 1 (Plk1) has multiple functions in the cell cycle, including in the maturation of centrosomes during the G2/M transition, the separation of centrosomes, and the activation of cyclin-dependent kinase 1 expression and spindle assembly. In this study, we investigated the potential regulatory roles of Plk1 in the reproductive development of the male oriental river prawn (Machrobrachium nipponense). The full cDNA sequence of Mn-Plk1 was 2360 base pairs long, with an open reading frame of 1836 base pairs encoding 611 amino acids. Protein sequence alignment identified a conserved serine/threonine kinase domain and two Polo-boxes. Phylogenetic tree analysis revealed that Mn-Plk1 had the closest evolutionary distance with Plk1s of freshwater prawns and then with those of crustacean species, whereas the evolutionary distance with mollusks was much more distant. Quantitative PCR analysis predicted that Mn-Plk1 plays essential roles in the regulation of gonad development. RNA interference analysis and histological observations showed that expression of insulin-like androgenic gland hormone decreased as the expression of Mn-Plk1 decreased, and fewer than 5% of cells were sperm cells at day 14 in the dsPlk1 injected prawns. This result indicated that Plk1 positively regulated testis development in M. nipponense by affecting the expression of this hormone. Our results highlight the functions of Plk1 in M. nipponense and provide valuable information that can be applied to establish artificial techniques to regulate testis development in this species.


Subject(s)
Decapoda , Palaemonidae , Animals , Male , RNA Interference , Palaemonidae/genetics , Palaemonidae/metabolism , Phylogeny , Base Sequence , Semen/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Decapoda/genetics , Insulin/metabolism , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...