Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Pharm Sci ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657756

ABSTRACT

The assessment of the mucoadhesive properties peak mucoadhesive force (Fmax) and work of mucoadhesion (Wmuc) with texture analyzers is a common in vitro method for analyzing formulation capabilities. Challenges arise in selecting and standardizing experimental conditions due to various variables influencing mucoadhesion. This complexity hampers direct product performance comparisons. In our study, we explored factors (contact force and time, probe speed and mucin in artificial saliva) impacting a model formulation's mucoadhesive capacity. Using Omcilon-A®Orabase on porcine buccal mucosa, we systematically varied experimental conditions, employing a statistical approach (Central Composite Design - CCD). Three variables (contact force, contact time, probe speed) and their interactions were assessed for their impact on Fmax and Wmuc. Results showed that contact time and force positively affected Fmax, while only contact time influenced Wmuc. In the mucin artificial saliva test, a force of 0.5 N, time of 600 s, and speed of 1 mm/s yielded optimal Fmax (0.587 N) and Wmuc (0.468 N.s). These conditions serve as a reference for comparing mucoadhesive properties of formulations for topical oral use.

2.
Food Sci Nutr ; 12(2): 1304-1317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370078

ABSTRACT

In this study, gluten-free pancakes were prepared using rice flour and potato starch at a ratio of 50:50. Due to a lack of gluten networks in these ingredients, the hydrocolloid gums including carboxymethyl cellulose (CMC) at 0.5%, 1%, and 1.5% and hydroxypropyl methylcellulose (HPMC) at 1%, 2%, and 3% were added to improve the quality of the final products. The effects of these hydrocolloid gums on the physicochemical, textural, and sensory properties of the gluten-free pancakes were evaluated. Pancakes prepared with wheat flour were used as a control sample. The results showed that the addition of both gums decreased the hardness and chewiness of the gluten-free pancakes while increasing the springiness and their moisture content. Increasing the concentration of the gums resulted in an L* value (lightness) reduction, which produced a darker crust on the pancakes. Moreover, the gluten-free pancakes containing CMC and HPMC had higher specific volumes than the gluten-free samples made without CMC and HPMC. From a sensory point of view, the samples containing 2%, 3% HPMC and 1% CMC received the highest overall acceptance score. Thus, CMC and HPMC can be used as improvers in gluten-free pancakes.

3.
Carbohydr Polym ; 326: 121603, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142092

ABSTRACT

This work investigates the molecular interaction of hydrocolloids (xanthan gum (XG), hydroxyethyl cellulose (HEC), carbomer (CBM) and hymagic™-4D (HA)) with sodium alginate (SA) in microspheres in detail. The molecular interaction of hydrocolloids with SA are demonstrated by the rheological property analysis of the mixed solutions as well as the morphology structure and texture characteristics studies of the microspheres. It is found that the hydrocolloids (XG, HEC and CBM) with branches or capable to coil are able to form complex networks with SA through molecular interactions which hinders the free diffusion of calcium ions and changes the texture characteristics of microspheres. In addition, the mixed solutions (SA-XG and SA-HEC) with complex networks and do not have a chelating effect on calcium ions are used to form the shell of the microcapsules through droplet microfluidic technology, and stable with soft microcapsules encapsulating multiphase oil cores have been successfully prepared. At the same time, the textural properties of microcapsules are quantized, which are related to human sensory properties. The developed stable and soft microcapsules which have the properties of sensory comfort are expected to be applied in the personal care industry and a variety of fields.

4.
J Sci Food Agric ; 104(2): 611-619, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37437092

ABSTRACT

BACKGROUND: Peeling of crayfish is a very important process in production. Crayfish peeling by machine can increase production efficiency and enhance safety in the production process. The tight muscle-shell attachment causes difficulty in peeling freshly caught crayfish. However, few studies have explored the changes in crayfish quality under favorable shell-loosening treatments. RESULTS: In this study, the shell-loosening properties of crayfish and changes in crayfish quality, microstructure and protein fluorescent features were investigated after high hydrostatic pressure (HHP) treatment. New methods were established to measure the peeling performance of crayfish, which are peelability and meat yield rate (MYR). The normalization of peelability and MYR were verified by different weights of crayfish tails and different treatments. The peeling effect of HHP-treated crayfish was evaluated by a new quantitative measurement method, and MYR was calculated. The results showed that all the HHP treatments reduced crayfish peeling work and increased MYR. The HHP treatment provided better crayfish quality in terms of texture and color and enlarged the shell-loosening gap. Among all HHP treatments, 200 MPa treatment exhibited lower peeling work, higher MYR and an expansion of the shell-loosening gap, reaching up to 573.8 µm. At the same time, 200 MPa treatment could maintain crayfish quality. CONCLUSION: The findings outlined above suggest that high pressure is a promising method for loosening crayfish shells. 200 MPa is an optimal HHP treatment condition for crayfish peeling, exhibiting a promising application in industrial processing. © 2023 Society of Chemical Industry.


Subject(s)
Astacoidea , Food Microbiology , Animals , Hydrostatic Pressure , Food Handling/methods , Seafood/analysis
5.
Nutrients ; 15(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686799

ABSTRACT

Texture-modified diets are the first-line compensatory strategy for older patients with swallowing and mastication disorders. However, the absence of a common protocol to assess textural properties inhibits their standardization and quality control and, thus, patient safety. This study aimed to (a) assess the rheological and textural properties of ten thick purees (Texture C, British Dietetic Association), (b) understand the effect of oral processing, and (c) measure the properties of the ready-to-swallow bolus after oral processing in healthy adults. Shear viscosity at 50 s-1 and 300 s-1 and textural properties (maximum force, cohesiveness, and adhesiveness) of boluses of ten thick purees were analyzed with a rheometer and a texture analyzer before and after oral processing (ready-to-swallow) in five healthy volunteers. Viscosity varied by 81.78% at 50 s-1 (900-4800 mPa·s) among purees before oral processing. Maximum force varied by 60% (0.47-1.2 N); cohesiveness, 18% (0.66-0.82), and adhesiveness, 32% (0.74-1.1 N·s). The high variability of viscosity was also present in ready-to-swallow boluses, 70.32% among purees. Oral processing significantly reduced viscosity in most purees (French omelet, zucchini omelet, turkey stew, red lentils, noodles, and hake fish) and also significantly reduced maximum force (7-36%) and adhesiveness (17-51%) but hardly affected cohesiveness (<5%). All thick purees met the qualitative textural descriptors for Level C texture. However, all ten purees showed significant differences in all parameters measured instrumentally and were affected differently by oral processing. This study demonstrates the need to use instrumental quality control using standardized protocols and SI units to narrow the variability and provide the optimal values for patients with dysphagia who require texture-modified diets.


Subject(s)
Body Fluids , Deglutition Disorders , Dietetics , Animals , Deglutition , Eggs
6.
Future Med Chem ; 15(3): 241-253, 2023 02.
Article in English | MEDLINE | ID: mdl-36876477

ABSTRACT

Aim: To develop and evaluate chitosan-maleic acid conjugate. Methods: Maleic anhydride was attached to chitosan backbone via amide bond formation resulting in chitosan-maleic acid. After characterization of the product via 1H nuclear magnetic resonance, attenuated total reflectance-Fourier transform IR spectroscopy and 2,4,6-trinitrobenzenesulfonic acid assay, examination of mucoadhesion assessment was carried out. Results: The conjugate presented 44.91% modification and no toxicity could be observed after 1 day of incubation. Mucoadhesive properties exhibited 40.97-fold, 13.31-fold and 9.07-fold increase in elastic modulus, dynamic viscosity and viscous modulus, respectively. Moreover, detachment time was increased in 44.44-fold. Conclusion: Chitosan-maleic acid demonstrated enhanced in mucoadhesive properties resulting in biocompatibility. Therefore, potent candidates as polymeric excipients for oral drug delivery could be developed over corresponding chitosan.


Subject(s)
Chitosan , Chitosan/chemistry , Excipients/chemistry , Sulfhydryl Compounds/chemistry , Drug Delivery Systems/methods
7.
Expert Opin Drug Deliv ; 20(3): 395-412, 2023 03.
Article in English | MEDLINE | ID: mdl-36803111

ABSTRACT

INTRODUCTION: Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, different sites have been explored for mucoadhesion including the nasal, oral, and vaginal cavities, the gastrointestinal tract and ocular tissues. AREAS COVERED: The present review aims to provide a comprehensive understanding of different aspects of MDDS development. Part I focuses on the anatomical and biological aspects of mucoadhesion, which include a detailed elucidation of the structure and anatomy of the mucosa, the properties of mucin, the different theories of mucoadhesion and evaluation techniques. EXPERT OPINION: The mucosal layer presents a unique opportunity for effective localization as well as systemic drug delivery via MDDS. Formulation of MDDS requires a thorough understanding of the anatomy of mucus tissue, the rate of mucus secretion and turnover, and the physicochemical properties of mucus. Further, the moisture content and the hydration of polymers are crucial for interaction with mucus. A confluence of different theories used to explain the mechanism of mucoadhesion is useful for understanding the mucoadhesion of different MDDS and their evaluation is subject to factors, such as the site of administration, type of dosage form, and duration of action. [Figure: see text].


Subject(s)
Drug Delivery Systems , Mucous Membrane , Biological Availability , Drug Delivery Systems/methods , Mucous Membrane/metabolism , Polymers/chemistry , Chemical Phenomena
8.
Skin Res Technol ; 29(1): e13256, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36704888

ABSTRACT

BACKGROUND: The mechanical properties of hair treated with styling ingredients is an important aspect to determine if products will be efficacious when used by the consumer. Measurement techniques have been proposed in earlier work; however, these are mostly aimed at hairspray systems and not the myriad of styling products available to the modern-day consumer. AIM: In this article, experimental and data analysis guidelines are proposed for the evaluation of styling ingredients using a three-point cantilever bending technique. Most of the experiments were carried out on polysaccharide-based ingredients-guar hydroxypropyltrimonium chloride (Guar HPTC) and cassia hydroxypropyltrimonium chloride (Cassia HPTC)-to establish basic characterization concepts of the polymer-fiber assemblies. METHODS: A three-point cantilever bending technique was developed using a texture analyzer housed in a temperature and humidity-controlled chamber. Scanning electron microscopy (SEM) studies were conducted to monitor the fracture mechanics of polymer-fiber assemblies. RESULTS: Fundamental studies were carried out to determine the effect of concentration, molecular weight (MW), and chemistry of the polysaccharides on the calculated indices, which characterize the stiffness, flexibility, elasticity, and plasticity of the treated hair. Experiments were conducted in a controlled temperature and humidity environment, which allowed us to monitor the behavior of the polymer-treated hair from 40-90% RH. Studies were also conducted on polymer blends and conventional styling polymers to provide guidance of the performance of naturally-derived polymers to their synthetic counterparts. CONCLUSIONS: A detailed description is provided for a user-friendly, quick method to measure the mechanical properties of styling ingredients on hair. We provide guidelines for three-point cantilever bending tests of straight hair tresses treated with conventional and naturally-derived styling polymers. Indices were developed to characterize the force-distance curves and were designated as E1, F1, position of F1, post-fracture gradient, toughness, E10/E1, and F10/F1. These indices provide an overall characterization of the stiffness, flexibility, elasticity, and plasticity of polymer-treated hair.


Subject(s)
Chlorides , Hair Preparations , Humans , Chlorides/analysis , Chlorides/pharmacology , Hair Preparations/pharmacology , Elasticity , Hair/chemistry , Polymers/analysis
9.
Int J Pharm ; 631: 122486, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36521635

ABSTRACT

Opioid medications play a vital role in treating moderate to severe pain. Unfortunately, many drug misusers and abusers attempt to alter the formulations or properties of these drugs by manipulation, (e.g., crushing, chewing, smoking, snorting, injecting). The intravenous (IV) route is most dangerous to abusers, as the drugs directly enter the circulatory system and produce intense euphoria. To obtain a full understanding of the impact of syringe factors (e.g., needle gauge size, needle length, syringe barrel size), on the ease of injection, we undertook a comprehensive assessment of syringeability and injectability of manipulated abuse-deterrent formulations (ADFs). A texture analyzer-based testing method was developed for the measurement of the resistance force of pulling, holding, and pushing phases of injections. Results showed that the finer needle gauge sizes required higher injection force to withdraw drug solutions. In addition, the syringed liquid volume was highly dependent on needle gauge size, holding time, and sample viscosity. In most cases, a lower needle gauge number and a longer holding time increased the syringed volume. Needle length was highly correlated to injection force (R2 = 0.99). Using longer needles to inject drug solution requires greater force. Furthermore, large barrel size was correlated to pushing force (R2 = 0.99); thus, increasing the difficulty of pushing the plunger of a large syringe with one hand. Finally, relationships between injection force, sample viscosity, and testing conditions were elucidated using a mathematical model, which could be used in the future to assess and predict injection force of solution samples.


Subject(s)
Mechanical Phenomena , Needles , Molecular Weight , Viscosity , Drug Compounding , Injections, Intravenous
10.
F1000Res ; 12: 340, 2023.
Article in English | MEDLINE | ID: mdl-38322308

ABSTRACT

The use of technological tools, in the food industry, has allowed a quick and reliable identification and measurement of the sensory characteristics of food matrices is of great importance, since they emulate the functioning of the five senses (smell, taste, sight, touch, and hearing). Therefore, industry and academia have been conducting research focused on developing and using these instruments which is evidenced in various studies that have been reported in the scientific literature. In this review, several of these technological tools are documented, such as the e-nose, e-tongue, colorimeter, artificial vision systems, and instruments that allow texture measurement (texture analyzer, electromyography, others). These allow us to carry out processes of analysis, review, and evaluation of food to determine essential characteristics such as quality, composition, maturity, authenticity, and origin. The determination of these characteristics allows the standardization of food matrices, achieving the improvement of existing foods and encouraging the development of new products that satisfy the sensory experiences of the consumer, driving growth in the food sector. However, the tools discussed have some limitations such as acquisition cost, calibration and maintenance cost, and in some cases, they are designed to work with a specific food matrix.


Subject(s)
Food , Taste , Smell , Electronic Nose , Tongue
11.
Pharmaceutics ; 14(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36297431

ABSTRACT

Although some methods for measuring bioadhesion/mucoadhesion have been proposed, a standardized method is not yet available. This is expected to hinder systematic comparisons of results across studies. This study aimed to design a single/systematic in vitro method for measuring bioadhesion/mucoadhesion that is applicable to various pharmaceutical dosage forms. To this end, we measured the peak force and work of adhesion of minitablets, pellets, and a bioadhesive emulsion using a texture analyzer. Porcine tissue was used to simulate human stomach/skin conditions. The results of these formulations were then compared to those for formulations without the bioadhesive product. We conducted a case study to assess the stability of a bioadhesive emulsion. The results for the two parameters assessed were contact time = 60 s and contact force = 0.5 N at a detachment speed of 0.1 mm/s. Significant differences were observed between the bioadhesive and control formulations, thus demonstrating the adhesive capacity of the bioadhesive formulations. In this way, a systematic method for assessing the bioadhesive capacity of pharmaceutical dosage forms was developed. The method proposed here may enable comparisons of results across studies, i.e., results obtained using the same and different pharmaceutical formulations (in terms of their bioadhesion/mucoadhesion capacity). This method may also facilitate the selection of potentially suitable formulations and adhesive products (in terms of bioadhesive properties).

12.
Gels ; 8(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35877515

ABSTRACT

Besides shear viscosity, other texture parameters (adhesiveness or cohesiveness) might be relevant for safe swallowing in people suffering from oropharyngeal dysphagia. Shear viscosity is assessed through protocols developed using a viscometer or a rheometer. In contrast, protocols and instruments (capillary break-up rheometer) to assess adhesiveness and cohesiveness are less common and much less developed. Other equipment such as texture analyzers can provide useful information on food properties. Here, we aimed to explore different texture analyzer settings (type of test, probe, and protocol) to characterize four commercial dysphagia thickeners at the shear viscosity levels recommended by manufacturers. Among the tests used (extrusion or penetration) with the different probes (disc, cone and shape holder, sphere, or cylinder), cone extrusion provided information about adhesivity, disc extrusion about sample cohesiveness, and sphere about penetration and sample elasticity. The test speeds used influenced the results, but only one speed is needed as the different speeds provided the same fluid information; for easiness, it is proposed to use 1 mm/s. Comparing the texture analyzer results with viscosity values obtained at different shears, the texture analyzer parameters reflected information that differ from shear viscosity. This information could be relevant for the therapeutic effect of thickening products and food characterization.

13.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2465-2473, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35531694

ABSTRACT

Physical attributes of Chinese herbal extracts are determined by their chemical components, and the physical and chemical attributes jointly affect the preparation process performance and the final product quality. Therefore, in order to improve the quality control of Chinese herbal extracts, we should comprehensively study the batch-to-batch consistency of physical and chemical attributes as well as the correlations between them. This paper first explored the physical attributes affecting the preparation process performance of the compound Danshen extract and developed a method for characterizing the texture attributes. With such main chemical components as water, phenolic acids, saponins, and saccharides and texture, rheology, and other physical attributes taken into consideration, the batch-to-batch quality fluctuation of products from different production lines and time was analyzed by principal components analysis(PCA). Finally, the correlation and partial least squares(PLS) analysis was conducted, and the regression equation was established. The fitting result of the PLS model for dynamic viscosity was satisfying(R~2Y=0.857, Q~2=0.793), suggesting that the chemical components could be adjusted by the component transfer rate in the extraction process, the impurity removal rate in the alcohol precipitation process, and the water retention rate of the concentration process to meet the control of the extract dynamic viscosity. This study clarified the correlations between physical and chemical attributes of the compound Danshen extract and established a method for controlling its physical attributes based on process regulation, which would provide reference for improving the quality control of Chinese herbal extracts.


Subject(s)
Drugs, Chinese Herbal , Salvia miltiorrhiza , Drugs, Chinese Herbal/chemistry , Quality Control , Salvia miltiorrhiza/chemistry , Water
14.
Front Plant Sci ; 13: 813863, 2022.
Article in English | MEDLINE | ID: mdl-35401635

ABSTRACT

Ethylene, produced endogenously by plants and their organs, can induce a wide array of physiological responses even at very low concentrations. Nevertheless, the role of ethylene in regulating blueberry (Vaccinium spp.) ripening and storability is still unclear although an increase in ethylene production has been observed in several studies during blueberry ripening. To overcome this issue, we evaluated the endogenous ethylene production of a Vaccinium germplasm selection at different fruit ripening stages and after cold storage, considering also textural modifications. Ethylene and texture were further assessed also on a bi-parental full-sib population of 124 accessions obtained by the crossing between "Draper" and "Biloxi", two cultivars characterized by a different chilling requirement and storability performances. Our results were compared with an extensive literature research, carried out to collect all accessible information on published works related to Vaccinium ethylene production and sensitivity. Results of this study illustrate a likely role of ethylene in regulating blueberry shelf life. However, a generalisation valid for all Vaccinium species is not attainable because of the high variability in ethylene production between genotypes, which is strictly genotype-specific. These differences in ethylene production are related with blueberry fruit storage performances based on textural alterations. Specifically, blueberry accessions characterized by the highest ethylene production had a more severe texture decay during storage. Our results support the possibility of tailoring ad hoc preharvest and postharvest strategies to extend blueberry shelf life and quality according with the endogenous ethylene production level of each cultivar.

15.
J Texture Stud ; 53(4): 465-477, 2022 08.
Article in English | MEDLINE | ID: mdl-35191036

ABSTRACT

In this study, a micro texture analyzer (MTA) was employed to explore the texture characteristics of the surface of an individual steamed rice (SR) and fried rice (FR) grain exhibited in four simulated digestion environments in vitro. The elastic modulus, hardness and elastic index of the single cooked rice particle were measured using the MTA. The hardness of SR particles decreased by 66, 81, 89.1, and 95% after simulated digestion in distilled water, HCl, simulated gastric fluid (SGF), and simulated salivary and gastric fluid (SSF + SGF), respectively. This is in line with the most significant volume expansion and structure ruptures when digested in SSF + SGF. Similar mechanical and structural behaviors were shown for FR, but the hardness and elastic modulus decreased less than those of SR under the same digestion conditions. The different surface mechanics are consistent with the reduced expansion and more compact structure with smaller voids in FR during in vitro digestion. This could be attributed to the encapsulation by frying oil on the surface that would retard the diffusion of digestive fluids into the rice kernels. A weak negative correlation was found between the elastic modulus and the moisture content of the cooked rice. The present study has quantitatively assessed the surface mechanics of cooked rice as influenced by gastric fluids using the MTA. This is practically meaningful for gaining an in-depth understanding of the influence of textural modifications on disintegration of solid foods and release of nutrients during digestion.


Subject(s)
Oryza , Cooking , Edible Grain , Hardness , Oryza/chemistry
16.
J Texture Stud ; 53(2): 296-306, 2022 04.
Article in English | MEDLINE | ID: mdl-35103309

ABSTRACT

This study was to compare the results of texture analyzer with those of farinograph and extensograph and determine whether texture analyzer could be used to evaluate the processing quality of highland barley flour (HBF) dough sheet. The farinograph and extensograph tests were used to determine the reconstituted flour properties, a texture analyzer was applied to measure the tensile strength (TS) of HBF dough sheet, and the content of glutenin macropolymer (GMP), free sulfhydryl (-SH) and secondary structure of protein and microstructure in HBF dough sheet were investigated. Furthermore, correlations between these parameters were determined by regression analysis and Pearson correlation coefficient. It was suggested that the reconstituted flours with a higher gluten index showed a higher farinograph quality number (FQN) and greater maximum resistance to extension (Rm ). HBF dough sheets with higher gluten index possessed higher GMP and lower free -SH contents, a more ordered secondary structure of protein, resulting in a more compact gluten network and a stronger TS. The regression and correlation analysis showed that TS was positively correlated with FQN and Rm . In addition, it was significantly correlated with the content of GMP, -SH, secondary structure of protein and gluten network. It was concluded that texture analyzer could be an alternative approach to evaluate the processing quality of HBF dough sheet. Moreover, the gluten index of flours could be used to predict the processing quality of HBF dough sheet.


Subject(s)
Hordeum , Flour , Glutens/chemistry , Triticum/chemistry
17.
Int J Pharm ; 614: 121416, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34958898

ABSTRACT

Fused Deposition Modeling is a suitable technique for the production of personalized solid oral dosage forms. For widespread application, it is necessary to be able to print a wide range of different formulations to address individual therapeutic needs. Due to the complexity of formulation composition (e.g., due to different compounds, excipients for enhancement of release and mechanical properties) and limited mechanical understanding, determination of suitable printing parameters is challenging. To address this challenge, we have developed a feed force tester using a Texture Analyser setup that mimics the actual printing process. Feed force data were compared to the mass of tablets printed from technical materials as well as pharmaceutical filaments containing ketoconazole at high drug loads of 20% and 40% and polyvinyl alcohol. By determining a feed force limit for the 3D printer from feed force data of several formulations printed, it was possible to specify the operable printing range, where printing is reproducible and printed mass corresponds the target mass. Based on these results, rational optimization of the printing process in terms of speed, time and temperature for different materials and formulations is possible.


Subject(s)
Excipients , Technology, Pharmaceutical , Dosage Forms , Drug Liberation , Printing, Three-Dimensional , Tablets
18.
Braz. J. Pharm. Sci. (Online) ; 58: e191120, 2022. tab, graf
Article in English | LILACS | ID: biblio-1394048

ABSTRACT

Abstract The aim of the current study was to assess the physicochemical characteristics and wound healing activity of chitosan-polyvinyl alcohol (PVA) crosslinked hydrogel containing recombinant human epidermal growth factor (rh-EGF) or recombinant mouse epidermal growth factor (rm-EGF). The hydrogels were prepared and analyses were made of the morphological properties, viscosity, water absorption capacity, mechanical and bio-adhesive properties. The viscosity of the formulations varied between 14.400 - 48.500 cPs, with the greatest viscosity values determined in K2 formulation. F2 formulation showed the highest water absorption capacity. According to the studies of the mechanical properties, H2 formulation (0.153±0.018 N.mm) showed the greatest adhesiveness and E2 (0.245±0.001 mj/cm2) formulation, the highest bio-adhesion values. Hydrogels were cytocompatible considering in vitro cell viability values of over 76% on human keratinocyte cells (HaCaT, CVCL-0038) and of over 84% on human fibroblast cells (NIH 3T3, CRL-1658) used as a model cell line. According to the BrdU cell proliferation results, B1 (197.82±2.48%) formulation showed the greatest NIH 3T3 and C1 (167.43±5.89%) formulation exhibited the highest HaCaT cell proliferation ability. In addition, the scratch closure assay was performed to assess the wound healing efficiency of formulation and the results obtained in the study showed that F2 formulation including PEGylated rh-EGF had a highly effective role.


Subject(s)
Wound Healing , Hydrogels/analysis , Chitosan/chemical synthesis , Epidermal Growth Factor , Polyvinyl Alcohol/pharmacology , Wounds and Injuries/classification , In Vitro Techniques/methods , Cell Culture Techniques/methods , Cell Proliferation/genetics , Absorption
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940214

ABSTRACT

ObjectiveModern scientific methods and techniques were used to scientifically characterize the traditional softening process of Corydalis Rhizoma, so as to clarify the scientificity and rationality of the traditional process, and provide reference for inheriting the processing methods and experience of traditional Chinese medicine. MethodLow-field nuclear magnetic resonance imaging (LF-NMR/MRI) was used to characterize the water types and distribution in the softening process of Corydalis Rhizoma. Samples during the softening process was cut into thick slices and its section was observed by stereoscopic microscope. High performance liquid chromatography (HPLC) was employed to determine the content change of tetrahydropalmatine during the softening process with the mobile phase of methanol-0.1% phosphoric acid solution (60∶40, triethylamine regulated to pH 6.5) and detection wavelength at 280 nm. The determination method of softening endpoint of Corydalis Rhizoma was simulated by texture analyzer (hand pinch method), and the softening degree of the finished products was determined after optimizing the relevant parameters. ResultLF-NMR/MRI showed that the water could penetrate through the core and distribute evenly in Corydalis Rhizoma softened by Zhangbang method. The water first entered into the medicinal material from the epidermis and stem marks in the soaking stage as the form of free water, and then penetrated into the inner core to achieve redistribution in the moistening stage. Under stereoscopic microscope, it was observed that Corydalis Rhizoma softened by the Zhangbang method could be sliced well, but the core bursting slices were easy to appear if the softening time was not enough, and the softening of samples was caused by the keratine-like powder after absorbing water. HPLC measurement showed that the loss of tetrahydropalmatine in the softening method was small, its content decreased about 5% in the soaking process, and its content was almost unchanged during the moistening process. The softening degree of Corydalis Rhizoma could be quantified by the texture analyzer, and the optimum parameters were 2 mm·s-1 of speed before test, test speed and speed after test, 20 g of the trigger force, 20% of compression degree. The compressive force of the qualified softened Corydalis Rhizoma was 12.75-15.69 N with the relative standard deviation (RSD) of 6.8%. ConclusionModern scientific methods and techniques can characterize the scientificity and rationality of the traditional processing methods, and confirm that the Zhangbang softening method has the advantages of high efficiency, convenience and small loss of index components. The texture analyzer can simulate the softening endpoint judgment method (hand pinch method), and realize the goal from subjective experience judgment to objective technology quantification, which has a good demonstration role for the modern inheritance of traditional processing technology.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940117

ABSTRACT

ObjectiveModern scientific methods and techniques were used to scientifically characterize the traditional softening process of Corydalis Rhizoma, so as to clarify the scientificity and rationality of the traditional process, and provide reference for inheriting the processing methods and experience of traditional Chinese medicine. MethodLow-field nuclear magnetic resonance imaging (LF-NMR/MRI) was used to characterize the water types and distribution in the softening process of Corydalis Rhizoma. Samples during the softening process was cut into thick slices and its section was observed by stereoscopic microscope. High performance liquid chromatography (HPLC) was employed to determine the content change of tetrahydropalmatine during the softening process with the mobile phase of methanol-0.1% phosphoric acid solution (60∶40, triethylamine regulated to pH 6.5) and detection wavelength at 280 nm. The determination method of softening endpoint of Corydalis Rhizoma was simulated by texture analyzer (hand pinch method), and the softening degree of the finished products was determined after optimizing the relevant parameters. ResultLF-NMR/MRI showed that the water could penetrate through the core and distribute evenly in Corydalis Rhizoma softened by Zhangbang method. The water first entered into the medicinal material from the epidermis and stem marks in the soaking stage as the form of free water, and then penetrated into the inner core to achieve redistribution in the moistening stage. Under stereoscopic microscope, it was observed that Corydalis Rhizoma softened by the Zhangbang method could be sliced well, but the core bursting slices were easy to appear if the softening time was not enough, and the softening of samples was caused by the keratine-like powder after absorbing water. HPLC measurement showed that the loss of tetrahydropalmatine in the softening method was small, its content decreased about 5% in the soaking process, and its content was almost unchanged during the moistening process. The softening degree of Corydalis Rhizoma could be quantified by the texture analyzer, and the optimum parameters were 2 mm·s-1 of speed before test, test speed and speed after test, 20 g of the trigger force, 20% of compression degree. The compressive force of the qualified softened Corydalis Rhizoma was 12.75-15.69 N with the relative standard deviation (RSD) of 6.8%. ConclusionModern scientific methods and techniques can characterize the scientificity and rationality of the traditional processing methods, and confirm that the Zhangbang softening method has the advantages of high efficiency, convenience and small loss of index components. The texture analyzer can simulate the softening endpoint judgment method (hand pinch method), and realize the goal from subjective experience judgment to objective technology quantification, which has a good demonstration role for the modern inheritance of traditional processing technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...