Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 366
Filter
1.
Front Immunol ; 15: 1400550, 2024.
Article in English | MEDLINE | ID: mdl-38835756

ABSTRACT

The dog is an important companion animal and also serves as model species for human diseases. Given the central role of T cells in immune responses, a basic understanding of canine conventional T cell receptor (TCR)αß+ T cells, comprising CD4+ single-positive (sp) T helper (Th) and CD8α+ sp cytotoxic T cell subsets, is available. However, characterization of canine non-conventional TCRαß+ CD4+CD8α+ double-positive (dp) and TCRαß+ CD4-CD8α- double-negative (dn) T cells is limited. In this study, we performed a comprehensive analysis of canine dp and dn T cells in comparison with their conventional counterparts. TCRαß+ T cells from peripheral blood of healthy dogs were sorted according to their CD4/CD8α phenotype into four populations (i.e. CD4+ sp, CD8α+ sp, dp, and dn) and selected surface markers, transcription factors and effector molecules were analyzed ex vivo and after in vitro stimulation by RT-qPCR. Novel characteristics of canine dp T cells were identified, expanding the previously characterized Th1-like phenotype to Th17-like and Th2-like properties. Overall, mRNA expression of various Th cell-associated cytokines (i.e. IFNG, IL17A, IL4, IL13) in dp T cells upon stimulation highlights their versatile immunological potential. Furthermore, we demonstrated that the CD4-CD8α- dn phenotype is stable during in vitro stimulation. Strikingly, dn T cells were found to express highest mRNA levels of type 2 effector cytokines (IL4, IL5, and IL13) upon stimulation. Their strong ability to produce IL-4 was confirmed at the protein level. Upon stimulation, the percentage of IL-4-producing cells was even higher in the non-conventional dn than in the conventional CD4+ sp population. Constitutive transcription of IL1RL1 (encoding IL-33Rα) further supports Th2-like properties within the dn T cell population. These data point to a role of dn T cells in type 2 immunity. In addition, the high potential of dn T cells to transcribe the gene encoding the co-inhibitory receptor CTLA-4 and to produce the inhibitory cytokine IL-10 indicates putative immunosuppressive capacity of this population. In summary, this study reveals important novel aspects of canine non-conventional T cells providing the basis for further studies on their effector and/or regulatory functions to elucidate their role in health and disease.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta , Th2 Cells , Animals , Dogs , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Th2 Cells/immunology , CD8 Antigens/metabolism , CD8 Antigens/immunology , Cytokines/metabolism , CD4 Antigens/metabolism , CD4 Antigens/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Immunophenotyping , Male
2.
Front Immunol ; 15: 1352704, 2024.
Article in English | MEDLINE | ID: mdl-38895118

ABSTRACT

Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with skin barrier defects and a misdirected type 2 immune response against harmless antigens. The skin microbiome in AD is characterized by a reduction in microbial diversity with a dominance of staphylococci, including Staphylococcus epidermidis (S. epidermidis). Objective: To assess whether S. epidermidis antigens play a role in AD, we screened for candidate allergens and studied the T cell and humoral immune response against the extracellular serine protease (Esp). Methods: To identify candidate allergens, we analyzed the binding of human serum IgG4, as a surrogate of IgE, to S. epidermidis extracellular proteins using 2-dimensional immunoblotting and mass spectrometry. We then measured serum IgE and IgG1 binding to recombinant Esp by ELISA in healthy and AD individuals. We also stimulated T cells from AD patients and control subjects with Esp and measured the secreted cytokines. Finally, we analyzed the proteolytic activity of Esp against IL-33 and determined the cleavage sites by mass spectrometry. Results: We identified Esp as the dominant candidate allergen of S. epidermidis. Esp-specific IgE was present in human serum; AD patients had higher concentrations than controls. T cells reacting to Esp were detectable in both AD patients and healthy controls. The T cell response in healthy adults was characterized by IL-17, IL-22, IFN-γ, and IL-10, whereas the AD patients' T cells lacked IL-17 production and released only low amounts of IL-22, IFN-γ, and IL-10. In contrast, Th2 cytokine release was higher in T cells from AD patients than from healthy controls. Mature Esp cleaved and activated the alarmin IL-33. Conclusion: The extracellular serine protease Esp of S. epidermidis can activate IL-33. As an antigen, Esp elicits a type 2-biased antibody and T cell response in AD patients. This suggests that S. epidermidis can aggravate AD through the allergenic properties of Esp.


Subject(s)
Dermatitis, Atopic , Immunoglobulin E , Serine Proteases , Staphylococcus epidermidis , Humans , Staphylococcus epidermidis/immunology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Serine Proteases/immunology , Serine Proteases/metabolism , Adult , Male , Female , Immunoglobulin E/immunology , Immunoglobulin E/blood , Bacterial Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Cytokines/metabolism , Cytokines/immunology , T-Lymphocytes/immunology , Allergens/immunology , Interleukin-33/immunology , Middle Aged
3.
Cells ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891095

ABSTRACT

Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are high-incidence, non-melanoma skin cancers (NMSCs). The success of immune-targeted therapies in advanced NMSCs led us to anticipate that NMSCs harbored significant populations of tumor-infiltrating lymphocytes with potential anti-tumor activity. The main aim of this study was to characterize T cells infiltrating NMSCs. Flow cytometry and immunohistochemistry were used to assess, respectively, the proportions and densities of T cell subpopulations in BCCs (n = 118), SCCs (n = 33), and normal skin (NS, n = 30). CD8+ T cells, CD4+ T cell subsets, namely, Th1, Th2, Th17, Th9, and regulatory T cells (Tregs), CD8+ and CD4+ memory T cells, and γδ T cells were compared between NMSCs and NS samples. Remarkably, both BCCs and SCCs featured a significantly higher Th1/Th2 ratio (~four-fold) and an enrichment for Th17 cells. NMSCs also showed a significant enrichment for IFN-γ-producing CD8+T cells, and a depletion of γδ T cells. Using immunohistochemistry, NMSCs featured denser T cell infiltrates (CD4+, CD8+, and Tregs) than NS. Overall, these data favor a Th1-predominant response in BCCs and SCCs, providing support for immune-based treatments in NMSCs. Th17-mediated inflammation may play a role in the progression of NMSCs and thus become a potential therapeutic target in NMSCs.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Lymphocytes, Tumor-Infiltrating , Skin Neoplasms , Th1 Cells , Th17 Cells , Humans , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Th17 Cells/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Th1 Cells/immunology , Carcinoma, Basal Cell/immunology , Carcinoma, Basal Cell/pathology , Female , Male , Aged , Cross-Sectional Studies , Middle Aged , CD8-Positive T-Lymphocytes/immunology , Aged, 80 and over , Adult
4.
Front Nutr ; 11: 1367864, 2024.
Article in English | MEDLINE | ID: mdl-38757128

ABSTRACT

Background: Allergic Asthma is a disease presenting various endotypes and no current therapies act curative but alleviate disease symptoms. Dietary interventions are gaining increasing importance in regulating immune responses. Furthermore, short chain fatty acids (SFCA), as the main products of dietary fiber's fermentation by the gut bacteria, ameliorate the pathogenesis and disease burden of different illnesses including asthma. Nevertheless, the connection and crosstalk between the gut and lung is poorly understood. Objective: In this work, the role of high fiber diet on the development of allergic asthma at baseline and after exacerbation of disease induced by respiratory viruses was investigated. Methods: Hereby, SCFA in serum of asthmatic and non-asthmatic pre-school children before and after airway disease symptoms were analyzed. Moreover, the effect of high fiber diet in vivo in a murine model of house dust mite extract (HDM) induced allergic asthma and in the end in isolated lung and spleen cells infected ex vivo with Rhinovirus was analyzed. Results: In this study, a decrease of the SCFA 3-Hydroxybutyric acid in serum of asthmatic children after symptomatic episodes at convalescent visit as compared to asthmatic and control children at baseline visit was observed. In experimental asthma, in mice fed with high fiber diet, a reduced lung GATA3 + Th2 type mediated inflammation, mucus production and collagen deposition and expression of Fc epsilon receptor Ia (FcεRIa) in eosinophils was observed. By contrast, the CD8+ memory effector T cells were induced in the lungs of asthmatic mice fed with high fiber diet. Then, total lung cells from these asthmatic mice fed with either standard food or with fiber rich food were infected with RV ex vivo. Here, RV1b mRNA was found significantly reduced in the lung cells derived from fiber rich food fed mice as compared to those derived from standard food fed asthmatic mice. Looking for the mechanism, an increase in CD8+ T cells in RV infected spleen cells derived from fiber rich fed asthmatic mice, was observed. Conclusion: Convalescent preschool asthmatic children after a symptomatic episode have less serum ß-Hydroxybutyric acid as compared to control and asthmatic children at baseline visit. Fiber rich diet associated with anti-inflammatory effects as well as anti-allergic effects by decreasing Type 2 and IgE mediated immune responses and inducing CD8+ memory effector T cells in a murine model of allergic asthma. Finally, ex vivo infection with Rhinovirus (RV) of total lung cells from asthmatic mice fed with fiber rich food led to a decreased RV load as compared to mice fed with standard food. Moreover, spleen cells derived from asthmatic mice fed with fiber rich food induced CD8+ T cells after ex vivo infection with RV. Clinical implications: Dietary interventions with increased content in natural fibers like pectins would ameliorate asthma exacerbations. Moreover, respiratory infection in asthma downregulated SCFA in the gut contributing to asthma exacerbations.

5.
Adv Healthc Mater ; : e2400237, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691819

ABSTRACT

Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.

6.
Exp Dermatol ; 33(5): e15077, 2024 May.
Article in English | MEDLINE | ID: mdl-38711200

ABSTRACT

Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.


Subject(s)
Dermatitis, Atopic , Fibroblasts , Interleukin-13 , Interleukin-4 , Keratinocytes , Sequence Analysis, RNA , Single-Cell Analysis , Th2 Cells , Humans , Fibroblasts/metabolism , Interleukin-4/pharmacology , Interleukin-4/metabolism , Interleukin-13/metabolism , Interleukin-13/pharmacology , Cytokines/metabolism , Coculture Techniques , RNA-Seq , Cells, Cultured , Skin/pathology
7.
Front Immunol ; 15: 1385101, 2024.
Article in English | MEDLINE | ID: mdl-38725998

ABSTRACT

Background: Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods: The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results: Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions: The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.


Subject(s)
Antigens, Plant , Carrier Proteins , Food Hypersensitivity , Immunity, Innate , Humans , Food Hypersensitivity/immunology , Female , Antigens, Plant/immunology , Carrier Proteins/immunology , Male , Adult , Cytokines/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Plant Proteins/immunology , Lymphocyte Activation/immunology , Young Adult , Middle Aged
8.
Heliyon ; 10(7): e28401, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586354

ABSTRACT

Background: Asthma, a principally T helper 2 (Th2) cell mediated immunological disease, is categorized into Th2-high and Th2-low endotypes. The influence of these endotypes on clinical characteristics and treatment responsiveness in asthma is yet to be completely understood. This study delves into the underlying molecular mechanisms of Th2 endotypes on asthma. Methods: Transcriptomics data of airway epithelial and corresponding clinical information were sourced from the GEO. The co-expression modules were established by WGCNA. Cytoscape was applied to construct PPI networks, and hub genes were determined via the Cytohubba plugin. Additionally, a functional enrichment analysis was conducted on the co-expressed genes from the relevant modules. The relative abundances levels of 22 different types of immune cells in asthma patients were evaluated by CIBERSORT algorithm. Results: There were 471 genes in the pink module significantly correlated with Th2 endotype. Overall, 151 DEGs were identified in the various Th2 endotypes, and 66 were obtained through intersection with the pink module. In the PPI network, the ten most important genes that regulate Th2 endotypes were selected as hub genes. In Th2-high endotype asthma, the hub genes were significantly related to γ-aminobutyric acid (GABA) pathways, indicating that hub genes can mainly regulate Th2-high endotype asthma through GABAergic system. Conclusions: The severity of asthma is influenced by different Th2 endotypes. GABAergic related hub genes may provide innovative insights for the treatment of Th2-high asthma.

9.
Life (Basel) ; 14(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38541674

ABSTRACT

Allergic conjunctivitis is one of the common immune hypersensitivity disorders that affect the ocular system. The clinical manifestations of this condition exhibit variability contingent upon environmental factors, seasonal dynamics, and genetic predisposition. While our comprehension of the pathophysiological engagement of immune and nonimmune cells in the conjunctiva has progressed, the same cannot be asserted for the cytokines mediating this inflammatory cascade. In this review, we proffer a comprehensive description of interleukins 4 (IL-4), IL-5, IL-6, IL-9, IL-13, IL-25, IL-31, and IL-33, as well as thymic stromal lymphopoietin (TSLP), elucidating their pathophysiological roles in mediating the allergic immune responses on the ocular surface. Delving into the nuanced functions of these cytokines holds promise for the exploration of innovative therapeutic modalities aimed at managing allergic conjunctivitis.

10.
Life (Basel) ; 14(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38541686

ABSTRACT

Vernal keratoconjunctivitis (VKC) is a complex and multifactorial disease process that employs Th2 cell-mediated immunologic processes, which involves the overexpression of interleukin 4 (IL-4), IL-5, IL-9, IL-13, and IL-31, and the activation of mast cells that release IL-5 and CCL-11, recruiting eosinophils to the site of inflammation. The disease primarily affects young males and is more common in regions with warm climates. VKC is characterized by persistent and recurrent conjunctival inflammation that can adversely affect the patient's quality of life, and, when inadequately treated, may lead to a host of ocular complications, such as corneal shield ulcers and scarring. The major distinct forms of VKC include limbal or palpebral, which may occur in combination. The clinicopathological features of VKC include the presence of pseudogerontoxon, limbal gelatinous hyperplasia, and perilimbal hyperpigmentation. Topical immunomodulators are effective anti-steroidal options for controlling severe and chronic cases of VKC. This review will provide a brief overview of topical immunomodulators, including cyclosporin and tacrolimus, and will highlight the clinical manifestations, pathological mechanisms, and fibroproliferative changes in the conjunctiva that can result from recurrent disease.

11.
Cell Biochem Funct ; 42(3): e3997, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38555506

ABSTRACT

Allergic rhinitis (AR) is characterized by nasal symptoms such as rubbing and sneezing, often triggered by allergen exposure. The purpose of this study is to dissect the roles of NLRP3-mediated immune modulation and macrophage pyroptosis in modulating T cell differentiation within the context of ovalbumin (OVA)-induced AR in mice. OVA-induced AR was established in mice, evaluating nasal symptoms, macrophage infiltration, cytokine levels, and T cell differentiation. Manipulations using NLRP3-/-, ASC-/- mice, clodronate liposome treatment, and NLRP3 inhibitor MCC950 were performed to assess their impact on AR symptoms and immune responses. Following OVA stimulation, increased nasal symptoms were observed in the OVA group along with augmented GATA3 expression and elevated IL-4 and IL-1b levels, indicative of Th2 polarization and cellular pyroptosis involvement. NLRP3-/- and ASC-/- mice exhibited reduced CD3+ T cells post OVA induction, implicating cellular pyroptosis in AR. Macrophage depletion led to decreased IgE levels, highlighting their involvement in allergic responses. Further investigations revealed enhanced macrophage pyroptosis, influencing Th1/Th2 differentiation in AR models. IL-18 released through NLRP3-mediated pyroptosis induced Th2 differentiation, distinct from IL-1b. Additionally, MCC950 effectively mitigated AR symptoms by modulating Th2 responses and reducing macrophage infiltration. This comprehensive study unravels the pivotal role of NLRP3-mediated immune modulation and macrophage pyroptosis in Th1/Th2 balance regulation in OVA-induced AR. Targeting NLRP3 pathways with MCC950 emerged as a promising strategy to alleviate AR symptoms, providing insights for potential therapeutic interventions in AR management.


Subject(s)
Rhinitis, Allergic , Th2 Cells , Mice , Animals , Th2 Cells/metabolism , Interleukin-18/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nasal Mucosa/metabolism , Ovalbumin/metabolism , Ovalbumin/pharmacology , Rhinitis, Allergic/drug therapy , Cytokines/metabolism , Immunomodulation , Immunity , Disease Models, Animal , Mice, Inbred BALB C
12.
Braz. j. med. biol. res ; 57: e13019, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550146

ABSTRACT

Abstract Autophagy-related gene (ATG) 5 regulates blood lipids, chronic inflammation, CD4+ T-cell differentiation, and neuronal death and is involved in post-stroke cognitive impairment. This study aimed to explore the correlation of serum ATG5 with CD4+ T cells and cognition impairment in stroke patients. Peripheral blood was collected from 180 stroke patients for serum ATG5 and T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cell detection via enzyme-linked immunosorbent assays and flow cytometry. The Mini-Mental State Examination (MMSE) scale was completed at enrollment, year (Y)1, Y2, and Y3 in stroke patients. Serum ATG5 was also measured in 50 healthy controls (HCs). Serum ATG5 was elevated in stroke patients compared to HCs (P<0.001) and was positively correlated to Th2 cells (P=0.022), Th17 cells (P<0.001), and Th17/Treg ratio (P<0.001) in stroke patients but not correlated with Th1 cells, Th1/Th2 ratio, or Treg cells (all P>0.050). Serum ATG5 (P=0.037), Th1 cells (P=0.022), Th17 cells (P=0.002), and Th17/Treg ratio (P=0.018) were elevated in stroke patients with MMSE score-identified cognition impairment vs those without cognition impairment, whereas Th2 cells, Th1/Th2 ratio, and Treg cells were not different between them (all P>0.050). Importantly, serum ATG5 was negatively linked with MMSE score at enrollment (P=0.004), Y1 (P=0.002), Y2 (P=0.014), and Y3 (P=0.001); moreover, it was positively related to 2-year (P=0.024) and 3-year (P=0.012) MMSE score decline in stroke patients. Serum ATG5 was positively correlated with Th2 and Th17 cells and estimated cognitive function decline in stroke patients.

13.
Cell Rep ; 43(3): 113824, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38386557

ABSTRACT

Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear. We show that mice deficient in CD27, a member of the tumor necrosis factor receptor superfamily, are more resistant to obesity and associated disorders. A comparative analysis of the CD4 compartment of both strains revealed higher numbers of fat-resident memory Th2 cells in the adipose tissue of CD27 knockout mice, which correlated with decreased programmed cell death protein 1-induced apoptosis. Our data point to a non-redundant role for Th2 lymphocytes in obesogenic conditions.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Mice , Cytokines/metabolism , Homeostasis , Interleukin-33 , Intra-Abdominal Fat/metabolism , Lymphocytes/metabolism , Th2 Cells , Tumor Necrosis Factor Receptor Superfamily, Member 7
14.
Int Immunopharmacol ; 130: 111712, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38377858

ABSTRACT

Cutaneous drug reactions (CDRs) are common drug-induced allergic reactions that cause severe consequences in HIV/AIDS patients. The CCL17/CCR4 axis is involved in the immune mechanism of allergic diseases, but its role in the CDRs has not been determined. Here, we aimed to determine the role of the CCL17/CCR4 axis and the underlying mechanism involved in CDRs. In this study, the serum cytokine levels in patients with CDR and healthy controls were measured. The CCL17-triggered allergic profile was screened via a PCR array. Apoptosis of keratinocytes cocultured with CCL17-stimulated Th2 cells was analyzed by flow cytometry. An NVP-induced rat CDR model was established, and dynamic inflammatory factor levels and Th2 cells in the peripheral blood of the rats were measured. Rat skin lesions and signaling pathways in Th2 cells were also analyzed. We showed that the serum CCL17 level was significantly upregulated in CDR patients (P = 0.0077), and the Th2 cell subgroup was also significantly elevated in the CDR rats. The CCL17/CCR4 axis induces Th2 cells to release IL-4 and IL-13 via the ERK/STAT3 pathway. The CCR4 antagonist compound 47 can alleviate rash symptoms resulting from NVP-induced drug eruption, Th2 cell subgroup, IL-4, and IL-13 and inhibit keratinocyte apoptosis. Taken together, these findings indicate that the CCL17/CCR4 axis mediates CDR via the ERK/STAT3 pathway in Th2 cells and type 2 cytokine-induced keratinocyte apoptosis.


Subject(s)
Interleukin-13 , Th2 Cells , Humans , Rats , Animals , Interleukin-13/metabolism , Interleukin-4/metabolism , Cytokines/metabolism , Signal Transduction , Receptors, CCR4/metabolism , Chemokine CCL17/metabolism , STAT3 Transcription Factor/metabolism
15.
Allergy Asthma Immunol Res ; 16(1): 71-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38262392

ABSTRACT

PURPOSE: The roles and mechanisms of long noncoding RNAs (lncRNAs) in T helper 2 (Th2) differentiation from allergic asthma are poorly understood. We aimed to explore a novel lncRNA, LincR-protein phosphatase 2 regulatory subunit B' gamma (PPP2R5C), in Th2 differentiation in a mouse model of asthma. METHODS: LincR-PPP2R5C from RNA-seq data of CD4+ T cells of asthma-like mice were validated and confirmed by quantitative reverse transcription polymerase chain reaction, northern blotting, nuclear and cytoplasmic separation, and fluorescence in situ hybridization (FISH). Lentiviruses encoding LincR-PPP2R5C or shRNA were used to overexpress or silence LincR-PPP2R5C in CD4+ T cells. The interactions between LincR-PPP2R5C and PPP2R5C were explored with western blotting, chromatin isolation by RNA purification assay, and fluorescence resonance energy transfer. An ovalbumin-induced acute asthma model in knockout (KO) mice (LincR-PPP2R5C KO, CD4 conditional LincR-PPP2R5C KO) was established to explore the roles of LincR-PPP2R5C in Th2 differentiation. RESULTS: LncR-PPP2R5C was significantly higher in CD4+ T cells from asthmatic mice ex vivo and Th2 cells in vitro. The lentivirus encoding LincR-PPP2R5C suppressed Th1 differentiation; in contrast, the short hairpin RNA (shRNA) lentivirus decreased LincR-PPP2R5C and Th2 differentiation. Mechanistically, LincR-PPP2R5C deficiency suppressed the phosphatase activity of the protein phosphatase 2A (PP2A) holocomplex, resulting in a decline in Th2 differentiation. The formation of an RNA-DNA triplex between LincR-PPP2R5C and the PPP2R5C promoter enhanced PPP2R5C expression and activated PP2A. LincR-PPP2R5C KO and CD4 conditional KO decreased Th2 differentiation, airway hyperresponsiveness and inflammatory responses. CONCLUSIONS: LincR-PPP2R5C regulated PPP2R5C expression and PP2A activity by forming an RNA-DNA triplex with the PPP2R5C promoter, leading to Th2 polarization in a mouse model of acute asthma. Our data presented the first definitive evidence of lncRNAs in the regulation of Th2 cells in asthma.

16.
Immunol Cell Biol ; 102(3): 194-211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286436

ABSTRACT

T helper 2 (Th2) cells stochastically express from the Il4 locus but it has not been determined whether allelic expression is linked or independent. Here, we provide evidence that alleles are independently activated and inactivated. We compared Il4 locus expression in T cells from hemizygous IL-4 reporter mice in culture and in vivo following exposure to type 2 immunogens. In culture, Il4 alleles had independent, heritable expression probabilities. Modeling showed that in co-expressors, dual allele transcription occurs for only short periods, limiting per-cell mRNA variation in individual cells within a population of Th2 cells. In vivo profiles suggested that early in the immune response, IL-4 output was derived predominantly from single alleles, but co-expression became more frequent over time and were tuned by STAT6, supporting the probabilistic regulation of Il4 alleles in vivo among committed IL-4 producers. We suggest an imprinted probability of expression from individual alleles with a short transcriptional shutoff time controls the magnitude of T cell IL-4 output, but the amount produced per allele is amplified by STAT6 signaling. This form of regulation may be a relevant general mechanism governing cytokine expression.


Subject(s)
Interleukin-4 , Th2 Cells , Animals , Mice , Alleles , Cytokines , RNA, Messenger/genetics
17.
Ann Med ; 55(2): 2280991, 2023.
Article in English | MEDLINE | ID: mdl-38109924

ABSTRACT

Bullous pemphigoid (BP) is an organ-specific disease. Its pathogenesis has not been clearly studied yet; However, studies in recent years have shown that its pathogenesis is related to T helper cells. The pathogenesis of BP is mainly related to Th2 and Th17-related cytokines. IL-4, IL-5 and IL-13 cause eosinophil recruitment, promote antibody production, trigger pruritus and promote blister formation and other symptoms. IL-17 and IL-23 promote the production of matrix metalloproteinase-9 (MMP-9) by related cells, which causes dermo-epidermal junction (DEJ) separation to form bullae and blisters, and can persist in BP inflammation. The serum concentrations of IL-17 and IL-23 are related to the prognosis of BP. In this paper, we focus on the role of related cytokines in the pathogenesis of bullous pemphigoid and the relationship between the related cytokine populations secreted by three major T helper cells-helper T lymphocytes 1 (Th1), Th2, and Th17. A better understanding of the biological and immunological functions of cytokines associated with BP patients will provide opportunities for therapeutic targets in BP.


Subject(s)
Pemphigoid, Bullous , Humans , Cytokines , Interleukin-17 , Eosinophils/pathology , Inflammation/complications , Interleukin-23
18.
Front Immunol ; 14: 1302336, 2023.
Article in English | MEDLINE | ID: mdl-38143758

ABSTRACT

Background: Human adipose tissue-derived stem cells (hADSCs) exert potent immunosuppressive effects in the allogeneic transplantation treatment. In mouse model of allergic rhinitis (AR), ADSCs partially ameliorated AR. However, no study has evaluated the potential therapeutic effects of hADSC-derived extracellular vesicles (hADSC-EVs) on AR. Methods: Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce AR. One day after the last nasal drop, each group received phosphate buffered saline (PBS) or hADSC-EVs treatment. Associated symptoms and biological changes were then assessed. Results: hADSC-EV treatment significantly alleviated nasal symptoms, and reduced inflammatory infiltration. Serum levels of OVA-specific IgE, interleukin (IL)-4 and interferon (IFN)-γ were all significantly reduced. The mRNA levels of IL-4 and IFN-γ in the spleen also changed accordingly. The T helper (Th)1/Th2 cell ratio increased. The treatment efficacy index of hADSC-EV was higher than that of all human-derived MSCs in published reports on MSC treatment of AR. ADSC-EVs exhibited a greater therapeutic index in most measures when compared to our previous treatment involving ADSCs. Conclusion: These results demonstrated that hADSC-EVs could ameliorate the symptoms of AR by modulating cytokine secretion and Th1/Th2 cell balance. hADSC-EVs could potentially be a viable therapeutic strategy for AR. Further animal studies are needed to elucidate the underlying mechanisms and to optimize potential clinical protocols.


Subject(s)
Cytokines , Rhinitis, Allergic , Female , Humans , Animals , Mice , Immunoglobulin E , T-Lymphocytes, Helper-Inducer , Stem Cells
19.
Stem Cell Res Ther ; 14(1): 281, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784129

ABSTRACT

BACKGROUND: T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS: A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS: Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS: Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.


Subject(s)
Conjunctivitis, Allergic , Mesenchymal Stem Cells , Humans , Animals , Mice , Conjunctivitis, Allergic/drug therapy , Conjunctivitis, Allergic/pathology , Conjunctiva/metabolism , Conjunctiva/pathology , Cytokines/metabolism , Disease Models, Animal , Mesenchymal Stem Cells/metabolism , Umbilical Cord
20.
Thorac Cancer ; 14(33): 3282-3294, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37732365

ABSTRACT

BACKGROUND: Th22 subset is a particular type of CD4+ T helper cells subset. Our study aimed to explore the expression level of circulating Th22, Th17, Th1, and Th2 cells and the possible mechanism of these cells in breast cancer (BC) with different pathological features. METHODS: Our study enrolled 43 newly diagnosed BC patients and 30 healthy controls. Frequencies of peripheral Th22, Th17, Th1, and Th2 cells were tested by flow cytometry. Concentrations of IL-22 cytokine in plasma were examined by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was done to test aromatic hydrocarbon receptor (AHR) and RAR-associated orphan receptor C (RORC) gene expression. RESULTS: Frequencies of Th22, Th17, Th2 subsets, and the plasma IL-22 level was obviously higher in the BC patients. A positive correlation between Th22 frequency and IL-22 concentration in plasma was detected in BC patients. Furthermore, the percentage of Th22, Th2 subsets in peripheral blood of HER2 positive BC was higher than that in HER2 negative BC patients. A negative correlation between Th1 subset and Ki-67% as well as a positive correlation between Th2 subset and Ki-67% was found in BC patients. The proportion of Th1 cells in BC patients was significantly lower than that of the control group. Expression of AHR and RORC transcription factors were also observed to be upregulated in the BC patients. Furthermore, Th22 cells were positively correlated with BC tumor stage and clinical outcomes. The BC patients with a higher percentage of Th22, Th17, Th1 cells or a lower percentage of Th1 cells showed a decreased trend of survival rate. CONCLUSION: Th22, Th17, Th1, and Th2 subsets may play an essential role in BC patients. Th22, Th17, Th1, and Th2 cells may have potential significance to be used as clinical markers in BC patients with different molecular classification. Th22 cells may have potential value in BC patients' outcomes prediction, providing clinical value.


Subject(s)
Breast Neoplasms , Th1 Cells , Humans , Female , Th1 Cells/metabolism , Th2 Cells , Breast Neoplasms/metabolism , Ki-67 Antigen/metabolism , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...