Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
2.
Curr Alzheimer Res ; 20(3): 131-148, 2023.
Article in English | MEDLINE | ID: mdl-37309767

ABSTRACT

The accumulation of amyloid-ß (Aß) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of ß-secretase (ß-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aß peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aß generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
3.
Curr Radiopharm ; 16(4): 337-339, 2023.
Article in English | MEDLINE | ID: mdl-37226787

ABSTRACT

Nanotechnology has changed the world, with a great impact on industry and medicine. In this commentary, we discuss the importance of radiolabeled nanomaterials for the construction of theranostic, imaging and therapeutic agents in order to pave the future of medicine.


Subject(s)
Nanostructures , Radiopharmaceuticals , Radiopharmaceuticals/therapeutic use , Nanostructures/therapeutic use , Nanotechnology , Diagnostic Imaging , Theranostic Nanomedicine
4.
Vet Res Commun ; 47(3): 1687-1695, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37100969

ABSTRACT

Bovine Trichomonosis (BT), a sexually transmitted disease endemic in countries with extensive cattle farming and natural service, is one of the most common causes of reproductive failure. 5-nitroimidazoles and their derivatives are used for its treatment, mainly metronidazole. The emergence of drug resistance mechanisms and treatment failures raise the need to investigate the effectiveness of new active compounds that contribute to parasite control. In this regard, extracts of Lantana camara (Verbenacea) have shown high biocidal potential against isolates of Trypanosoma cruzi and Leishmania braziliensis in vitro assays, although their effect on Tritrichomonas foetus has not been demonstrated yet. The available information on in vitro susceptibility of trichomonicidal drugs comes from the use of a diversity of methodologies and criteria, especially the observation of parasite motility under the optical microscope to assess their viability. Recently, in our laboratory, the use of flow cytometry has been described for the first time as a rapid and efficient method to evaluate the viability of T. foetus against metronidazole. The present study aimed to evaluate the cytostatic effect of L. camara extracts against T. foetus isolates by flow cytometry. Under aerobic conditions, IC50 values of 22.60 µg/mL were obtained on average. Under anaerobic conditions, the IC50 oscilated around 29.04 µg/mL. The results obtained allowed describing the susceptibility exhibited by these protozoa, being a valuable information for the development of potential BT treatments.


Subject(s)
Lantana , Tritrichomonas foetus , Verbenaceae , Animals , Cattle , Metronidazole/pharmacology , Flow Cytometry/veterinary
5.
Mol Ther Nucleic Acids ; 31: 541-552, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36895953

ABSTRACT

Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics.

6.
Curr Med Chem ; 30(21): 2357-2395, 2023.
Article in English | MEDLINE | ID: mdl-35708081

ABSTRACT

Neurodegenerative and mental disorders are a public health burden with pharmacological treatments of limited efficacy. Organoselenium compounds are receiving great attention in medicinal chemistry mainly because of their antioxidant and immunomodulatory activities, with a multi-target profile that can favor the treatment of multifactorial diseases. Therefore, the purpose of this review is to discuss recent preclinical studies about organoselenium compounds as therapeutic agents for the management of mental (e.g., depression, anxiety, bipolar disorder, and schizophrenia) and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis). We have summarized around 70 peer-reviewed articles from 2016 to the present that used in silico, in vitro, and/or in vivo approaches to assess the neuropharmacology of selenium- containing compounds. Among the diversity of organoselenium molecules investigated in the last five years, diaryl diselenides, Ebselen-derivatives, and Se-containing heterocycles are the most representative. Ultimately, this review is expected to provide disease-oriented information regarding the neuropharmacology of organoselenium compounds that can be useful for the design, synthesis, and pharmacological characterization of novel bioactive molecules that can potentially be clinically viable candidates.


Subject(s)
Mental Disorders , Organoselenium Compounds , Humans , Neuropharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Mental Disorders/drug therapy , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Organoselenium Compounds/chemistry
8.
Future Microbiol ; 17: 1393-1408, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36169345

ABSTRACT

Background: Antimicrobial resistance has been a threat to human health ever since the accelerated consumption of antibiotics began. Materials & methods: The present systematic review was carried out using a free and specialized online database - Espacenet - and a survey for patents of antimicrobial agents from 2010 to 2021, selecting 33 recent patents that claimed compounds with antimicrobial activity against resistant strains of Gram-negative bacteria. Results: Some different and new approaches to the development of the patented antibacterial agents were identified, such as antimicrobial peptides, nanomaterials and natural extracts. Conclusion: Some alternatives to modern antibiotics with diminished effectiveness due to antimicrobial resistance were spotted. Nevertheless, many challenges remain to establish a robust and sustainable antibacterial R&D pipeline.


Subject(s)
Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Humans , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
10.
Pharmaceutics ; 13(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917938

ABSTRACT

Drugs are widely used as therapeutic agents; however, they may present some limitations. To overcome some of the therapeutic disadvantages of drugs, the use of ß-cyclodextrin-based nanosponges (ßCDNS) constitutes a promising strategy. ßCDNS are matrices that contain multiple hydrophobic cavities, increasing the loading capacity, association, and stability of the included drugs. On the other hand, gold nanoparticles (AuNPs) are also used as therapeutic and diagnostic agents due to their unique properties and high chemical reactivity. In this work, we developed a new nanomaterial based on ßCDNS and two therapeutic agents, drugs and AuNPs. First, the drugs phenylethylamine (PhEA) and 2-amino-4-(4-chlorophenyl)-thiazole (AT) were loaded on ßCDNS. Later, the ßCDNS-drug supramolecular complexes were functionalized with AuNPs, forming the ßCDNS-PhEA-AuNP and ßCDNS-AT-AuNP systems. The success of the formation of ßCDNS and the loading of PhEA, AT, and AuNPs was demonstrated using different characterization techniques. The loading capacities of PhEA and AT in ßCDNS were 90% and 150%, respectively, which is eight times higher than that with native ßCD. The functional groups SH and NH2 of the drugs remained exposed and allowed the stabilization of the AuNPs, 85% of which were immobilized. These unique systems can be versatile materials with an efficient loading capacity for potential applications in the transport of therapeutic agents.

11.
Electron. j. biotechnol ; Electron. j. biotechnol;40: 40-44, July. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1053231

ABSTRACT

Background: The study of plant-associated microorganisms is very important in the discovery and development of bioactive compounds. Pseudomonas is a diverse genus of Gammaproteobacteria comprising more than 60 species capable of establishing themselves in many habitats, which include leaves and stems of many plants. There are reports of metabolites with diverse biological activity obtained from bacteria of this genus, and some of the metabolites have shown cytotoxic activity against cancer cell lines. Because of the high incidence of cancer, research in recent years has focused on obtaining new sources of active compounds that exhibit interesting pharmacodynamic and pharmacokinetic properties that lead to the development of new therapeutic agents. Results: A bacterial strain was isolated from tumors located in the stem of Pinus patula, and it was identified as Pseudomonas cedrina. Extracts from biomass and broth of P. cedrina were obtained with chloroform:methanol (1:1). Only biomass extracts exhibited antiproliferative activity against human tumor cell lines of cervix (HeLa), lung (A-549), and breast (HBL-100). In addition, a biomass extract from P. cedrina was fractioned by silica gel column chromatography and two diketopiperazines were isolated: cyclo-(L-Prolyl-L-Valine) and cyclo-(L-Leucyl-L-Proline). Conclusions: This is the first report on the association of P. cedrina with the stems of P. patula in Mexico and the antiproliferative activity of extracts from this species of bacteria against human solid tumor cell lines.


Subject(s)
Pseudomonas/chemistry , Pinus/microbiology , Cell Line, Tumor/drug effects , Antineoplastic Agents/pharmacology , Plants/microbiology , Symbiosis , Biomass , Gammaproteobacteria/chemistry , Cell Proliferation/drug effects
12.
Curr Org Synth ; 16(7): 968-1001, 2019.
Article in English | MEDLINE | ID: mdl-31984880

ABSTRACT

BACKGROUND: Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE: The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS: Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS: As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION: As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.


Subject(s)
Biological Products/pharmacology , Drug Discovery , Flavones/pharmacology , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Cardiovascular Agents/chemistry , Cardiovascular Agents/pharmacology , Drug Discovery/methods , Flavones/chemistry , Humans
13.
Rev Neurosci ; 30(3): 221-232, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30048237

ABSTRACT

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that involves an intricate interaction between the central nervous system and the immune system. Nevertheless, its etiology is still unknown. MS exhibits different clinical courses: recurrent episodes with remission periods ('relapsing-remitting') that can evolve to a 'secondary progressive' form or persistent progression from the onset of the disease ('primary progressive'). The discovery of an effective treatment and cure has been hampered due to the pathological and clinical heterogeneity of the disease. Historically, MS has been considered as a disease exclusively of white matter. However, patients with progressive forms of MS present with cortical lesions associated with meningeal inflammation along with physical and cognitive disabilities. The pathogenesis of the cortical lesions has not yet been fully described. Animal models that represent both the cortical and meningeal pathologies will be critical in addressing MS pathogenesis as well as the design of specific treatments. In this review, we will address the state-of-the-art diagnostic and therapeutic alternatives and the development of strategies to discover new therapeutic approaches, especially for the progressive forms.


Subject(s)
Cerebral Cortex/pathology , Demyelinating Diseases/pathology , Multiple Sclerosis/pathology , White Matter/pathology , Animals , Disease Progression , Humans , Inflammation/immunology , Multiple Sclerosis/therapy
14.
Exp Parasitol ; 187: 1-11, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29501696

ABSTRACT

Naegleria fowleri is a pathogenic amoeboflagellate most prominently known for its role as the etiological agent of the Primary Amoebic Meningoencephalitis (PAM), a disease that afflicts the central nervous system and is fatal in more than 95% of the reported cases. Although being fatal and with potential risks for an increase in the occurrence of the pathogen in populated areas, the organism receives little public health attention. A great underestimation in the number of PAM cases reported is assumed, taking into account the difficulty in obtaining an accurate diagnosis. In this review, we summarize different techniques and methods used in the identification of the protozoan in clinical and environmental samples. Since it remains unclear whether the protozoan infection can be successfully treated with the currently available drugs, we proceed to discuss the current PAM therapeutic strategies and its effectiveness. Finally, novel compounds for potential treatments are discussed as well as research on vaccine development against PAM.


Subject(s)
Central Nervous System Protozoal Infections/therapy , Naegleria fowleri/physiology , Antiprotozoal Agents/therapeutic use , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/prevention & control , Drinking Water/parasitology , Drinking Water/standards , Humans , Naegleria fowleri/genetics , Risk Factors , Vaccination
15.
J Toxicol Environ Health B Crit Rev ; 21(6-8): 382-399, 2018.
Article in English | MEDLINE | ID: mdl-30614421

ABSTRACT

Characterized as one of the most potent biosurfactants, surfactin is a cyclic lipopeptide synthesized by several strains of Bacillus genus. The aim of this review was to present the physicochemical and structural properties of surfactin and to demonstrate advances and applications of this biosurfactant for health and environmental biotechnology. Further, this review also focused on toxicological effects of surfactin on in vivo and in in vitro systems. The hydrophobic nature of surfactin enables interaction with membrane-bound phospholipids and indicates the ability of the molecule to act as a new weapon with respect to therapeutic and environmental properties. Seeking to avoid environmental contamination produced by widespread use of synthetic surfactants, surfactin emerges as a biological control agent against pathogen species owing to its antibacterial and antiviral properties. In addition, the mosquitocidal activity of surfactin was suggested as new strategy to control disease vectors. The current findings warrant future research to assess the toxicity of surfactin to enable an optimizing anticancer therapy and to seek refined methodologies, including nanotechnology techniques, to allow for an improved delivery of the biogenic molecule on target cells.


Subject(s)
Bacillus/chemistry , Bacterial Proteins/chemistry , Lipopeptides/chemistry , Peptides, Cyclic/chemistry , Surface-Active Agents/chemistry , Bacterial Proteins/pharmacology , Bacterial Proteins/toxicity , Biotechnology , Environmental Health , Lipopeptides/pharmacology , Lipopeptides/toxicity , Peptides, Cyclic/pharmacology , Peptides, Cyclic/toxicity , Surface-Active Agents/pharmacology , Surface-Active Agents/toxicity
16.
Drug Dev Ind Pharm ; 43(6): 871-888, 2017 06.
Article in English | MEDLINE | ID: mdl-28142290

ABSTRACT

Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.


Subject(s)
Nanoparticles , Neurodegenerative Diseases/drug therapy , Peptides , Animals , Blood-Brain Barrier , Humans
17.
Article in English | MEDLINE | ID: mdl-27933277

ABSTRACT

Infection by Toxoplasma gondii affects around one-third of world population and the treatment for patients presenting toxoplasmosis clinically manifested disease is mainly based by a combination of sulfadiazine, pyrimethamine, and folinic acid. However, this therapeutic protocol is significantly toxic, causing relevant dose-related bone marrow damage. Thus, it is necessary to improve new approaches to investigate the usefulness of more effective and non-toxic agents for treatment of patients with toxoplasmosis. It has been described that lectins from plants can control parasite infections, when used as immunological adjuvants in vaccination procedures. This type of lectins, such as ArtinM and ScLL is able to induce immunostimulatory activities, including efficient immune response against parasites. The present study aimed to evaluate the potential immunostimulatory effect of ScLL and ArtinM for treatment of T. gondii infection during acute phase, considering that there is no study in the literature accomplishing this issue. For this purpose, bone marrow-derived macrophages (BMDMs) were treated with different concentrations from each lectin to determine the maximum concentration without or with lowest cytotoxic effect. After, it was also measured the cytokine levels produced by these cells when stimulated by the selected concentrations of lectins. We found that ScLL showed high capacity to induce of pro-inflammatory cytokine production, while ArtinM was able to induce especially an anti-inflammatory cytokines production. Furthermore, both lectins were able to increase NO levels. Next, we evaluated the treatment effect of ScLL and ArtinM in C57BL/6 mice infected by ME49 strain from T. gondii. The animals were infected and treated with ScLL, ArtinM, ArtinM plus ScLL, or sulfadiazine, and the following parameters analyzed: Cytokines production, brain parasite burden and survival rates. Our results demonstrated that the ScLL or ScLL plus ArtinM treatment induced production of pro-inflammatory and anti-inflammatory cytokines, showing differential but complementary profiles. Moreover, when compared with non-treated mice, the parasite burden was significantly lower and survival rates higher in mice treated with ScLL or ScLL plus ArtinM, similarly with sulfadiazine treatment. In conclusion, the results demonstrated the suitable potential immunotherapeutic effect of ScLL and ArtinM lectins to control acute toxoplasmosis in this experimental murine model.


Subject(s)
Adjuvants, Immunologic/pharmacology , Artocarpus/chemistry , Lectins/pharmacology , Plant Extracts/pharmacology , Toxoplasma/immunology , Toxoplasmosis/drug therapy , Toxoplasmosis/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Brain/immunology , Brain/parasitology , Cytokines/blood , Cytokines/drug effects , Cytotoxicity Tests, Immunologic , DNA, Bacterial , Disease Models, Animal , Dose-Response Relationship, Immunologic , Female , Lectins/administration & dosage , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Nitric Oxide/analysis , Parasite Load , Protozoan Vaccines/immunology , Sulfadiazine/pharmacology , Survival Analysis , Toxoplasma/drug effects , Toxoplasma/pathogenicity
18.
Arq. bras. endocrinol. metab ; Arq. bras. endocrinol. metab;58(3): 237-242, abr. 2014. tab
Article in English | LILACS | ID: lil-709352

ABSTRACT

Objetivo : To evaluate the therapeutic agents used during metabolic crises and in long-term management of patients with propionic acidemia (PA).Materials and methods : The records of PA patients were retrospectively evaluated.Results : The study group consisted of 30 patients with 141 admissions. During metabolic crises, hyperammonemia was found in 130 (92%) admissions and almost all patients were managed with normal saline, ≥ 10% dextrose, and restriction of protein intake. In 56 (40%) admissions, management was done in intensive care unit, 31 (22%) with mechanical ventilation, 10 (7%) with haemodialysis, 16 (11%) with vasopressor agents, and 12 (9%) with insulin. In the rescue procedure, L-carnitine was used in 135 (96%) patients, sodium bicarbonate in 116 (82%), sodium benzoate in 76 (54%), and metronidazole in 10 (7%), biotin in about one-quarter, L-arginine in one third, and antibiotics in three-quarter of the admissions. Blood/packed RBCs were used in 28 (20%) patients, platelets in 26 (18%), fresh frozen plasma in 8 (6%), and granulocyte-colony stimulating factors in 10 (7%) admissions. All patients were managed completely/partially with medical nutrition formula plus amino acid mixture, vitamins and minerals. For long-term management 24 (80%) patients were on L-carnitine, 22 (73%) on sodium benzoate, 6 (20%) on biotin, one half on alkaline therapy and 4 (13%) on regular metronidazole use. Almost all patients were on medical formula and regular follow-up.Conclusion : Aggressive and adequate management of acute metabolic crises with restriction of protein intake, stabilization of patient, reversal of catabolism, and removal of toxic metabolites are essential steps. Concerted efforts to ensure adequate nutrition, to minimize the risk of acute decompensation and additional therapeutic advances are imperative to improve the outcome of PA patients. Arq Bras Endocrinol Metab. 2014;58(3):237-42.


Objetivo : Avaliar os agentes terapêuticos usados durante as crises metabólicas e para o manejo de longo prazo de pacientes com academia propiônica (AP).Materiais e métodos : Avaliação retrospectiva das fichas médicas de pacientes com AP.Resultados : O grupo estudado consistiu de 30 pacientes com 141 hospitalizações. Durante as crises metabólicas, a hiperamonemia foi observada em 130 (92%) pacientes hospitalizados e quase todos foram tratados com solução salina regular, ≥ 10% dextrose e restrição da ingestão de proteína. Em 56 (40%) das hospitalizações, o manejo foi feito na unidade de terapia intensiva, 31(22%) com ventilação mecânica, 10 (7%) com hemodiálise, 16 (11%) com vasopressores e 12 (9%) com insulina. Para o resgate, a L-carnitina foi usada em 135 (96%) pacientes, o bicarbonato de sódio em 116 (82%), o benzoato de sódio em 76 (54%), o metronidazole em 10 (7%), a biotina em cerca de um quarto, a L-arginina em um quarto e antibióticos em três quartos dos pacientes hospitalizados. Sangue/concentrado de hemácias foram usados em 28 (20%), plaquetas em 26 (18%), plasma fresco congelado em 8 (6%) e fatores estimulantes de colônias de granulócitos em 10 (7%) pacientes hospitalizados. Todos os pacientes foram manejados completamente/parcialmente com fórmula de nutrição hospitalar mais uma mistura de aminoácidos, vitaminas e minerais. Para o manejo de longo prazo, 24 (80%) dos pacientes foram tratados com L-carnitina, 22 (73%) com benzoato de sódio, 6 (20%) com biotina, a metade com tratamento alcalino e 4 (13%) com uso regular de metronidazole. Quase todos os pacientes foram tratados com fórmulas médicas e acompanhamento regular.Conclusão : O manejo adequado e agressivo de crises metabólicas com restrição da ingestão de proteína, ...


Subject(s)
Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Propionic Acidemia/therapy , Anti-Infective Agents/therapeutic use , Biotin/therapeutic use , Carnitine/therapeutic use , Diet, Protein-Restricted , Hyperammonemia/blood , Hyperammonemia/drug therapy , Long-Term Care , Metronidazole/therapeutic use , Nutrition Therapy , Propionic Acidemia/diagnosis , Retrospective Studies , Sodium Benzoate/therapeutic use , Sodium Bicarbonate/therapeutic use , Vitamin B Complex/therapeutic use
19.
Rev. bras. farmacogn ; 22(2): 459-474, Mar.-Apr. 2012. ilus, tab
Article in English | LILACS | ID: lil-624654

ABSTRACT

Mushrooms have been known for their nutritional and culinary values and used as medicines and tonics by humans for ages. In modern terms, they can be considered as functional foods which can provide health benefits beyond the traditional nutrients. There are monographs that cover the medicinal and healing properties of some individual traditional mushrooms. There has been a recent upsurge of interest in mushrooms not only as a health food which is rich in protein but also as a source of biologically active compounds of medicinal value which include complementary medicine/dietary supplements for anticancer, antiviral, hepatoprotective, immunopotentiating and hypocholesterolemic agents. However the mechanisms of the various health benefits of mushrooms to humans still require intensive investigation, especially given the emergence of new evidence of their health benefits. In the present paper the medicinal potential of mushrooms is being discussed.

20.
Open Med Chem J ; 5: 40-50, 2011.
Article in English | MEDLINE | ID: mdl-21629510

ABSTRACT

The impact of highly active antiretroviral therapy (HAART) in the natural history of AIDS disease has been allowed to prolong the survival of people with HIV infection, particularly whose with increased HIV viral load. Additionally, the antiretroviral therapy could exert a certain degree of protection against parasitic diseases. A number of studies have been evidenced a decrease in the incidence of opportunistic parasitic infections in the era of HAART. Although these changes have been attributed to the restoration of cell-mediated immunity, induced by either non-nucleoside reverse transcriptase inhibitors or HIV protease inhibitors, in combination with at least two nucleoside reverse transcriptase inhibitors included in HAART, there are evidence that the control of these parasitic infections in HIV-positive persons under HAART, is also induced by the inhibition of the proteases of the parasites. This review focuses on the principal available data related with therapeutic HIV-protease inhibitors and their in vitro and in vivo effects on the opportunistic protozoan parasites.

SELECTION OF CITATIONS
SEARCH DETAIL