Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Publication year range
1.
J Appl Microbiol ; 132(4): 2673-2682, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34850505

ABSTRACT

AIM: During several local COVID-19 outbreaks in China in 2020, SARS-CoV-2 or its RNA was isolated or detected from frozen food or packages, revealing the lack of effective disinfection measures in the frozen food chain and risk of transmission. We explored the possibility that disinfectant plus antifreeze could be delivered as thermal fog to realize effective disinfection at subzero temperatures. METHODS AND RESULTS: We selected two disinfectant-antifreeze combinations, didecyl dimethyl ammonium bromide (DDAB) - propylene glycol (PPG) and peracetic acid (PAA) - triethylene glycol (TEG), and each combination is used with a custom-optimized thermal fogging machine. The two fogs were tested in -20°C freezer warehouses for their disinfection efficacy against a coronavirus porcine epidemic diarrhoea virus (PEDV) field strain, a swine influenza virus (SIV) field strain, and three indicator bacteria, Escherichia coli, Staphylococcus aureus and Bacillus subtilis endospores. At -20°C, the DDAB-PPG or PAA-TEG thermal fogs settle within 3.5 to 4.5 h and effectively inactivated PEDV with median tissue culture infective dose of 10-3.5 0.1 ml-1 and SIV-H1N1 with hemagglutination titre of 26  ml-1 within 15-60 min. DDAB-PPG could inactivate S. aureus and E. coli vegetative cells (106  cfu ml-1 ) within 15-60 min but not effective on B. subtilis spores, while PAA-TEG could disinfect B. subtilis spores more effectively than for S. aureus and E. coli. CONCLUSIONS: We showed that a practical subzero temperature disinfection technology was effective in killing enveloped viruses and vegetative bacteria or bacterial spores. DDAB-PPG or PAA-TEG thermal fogging may be a practical technology for cold-chain disinfection. SIGNIFICANCE AND IMPACT OF THE STUDY: This subzero temperature disinfection technology could help to meet the urgent public health need of environmental disinfection in frozen food logistics against pandemic and other potential pathogens and to enhance national and international biosecurity.


Subject(s)
COVID-19 , Disinfectants , Influenza A Virus, H1N1 Subtype , Animals , Bacillus subtilis , Disinfectants/pharmacology , Disinfection/methods , Escherichia coli , Peracetic Acid/pharmacology , SARS-CoV-2 , Staphylococcus aureus , Swine , Weather
2.
Acta Trop ; 224: 106107, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34450061

ABSTRACT

This study evaluates the efficacy of palm oil-based nanoemulsion insecticides in thermal fogging applications against adult Ae. aegypti. The nanoemulsion formulations contained a palm oil methyl ester solvent, water, a non-ionic surfactant, and active ingredient deltamethrin, with nanoemulsion droplet diameters ranging from 362 to 382 nm. Knockdown and mortality rates of caged mosquitoes were measured at various distances up to 18 m from the spray nozzle. After 15 min of insecticide exposure, nanoemulsion insecticides achieved a knockdown rate of >97% at a spraying distance of 4 m, and the knockdown effect increased substantially with exposure time. At an 18 m spraying distance, the best nanoemulsion formulation, NanoEW8, achieved a high mosquito mortality rate of more than 80%, whereas the non-nanoemulsion and the commercial product reached only 14 and 8 m distances, respectively, for comparable mortality. The artificial neural network (ANN) was used to predict the mosquito knockdown distribution over the spraying distances and time intervals. The models predicted that NanoEW8 can still cause knockdown at a maximum distance of 61.5 m from the discharge point 60 min after spraying. The results established that Ae. aegypti was susceptible to the newly developed palm oil-based nanoemulsion insecticide, indicating a high potential for mosquito control.


Subject(s)
Aedes , Insecticides , Pyrethrins , Animals , Insecticide Resistance , Insecticides/pharmacology , Malaysia , Mosquito Control , Palm Oil
3.
Salud pública Méx ; 62(4): 432-438, jul.-ago. 2020. tab, graf
Article in Spanish | LILACS | ID: biblio-1377335

ABSTRACT

Resumen: Objetivo: Evaluar la efectividad de la mezcla de flupyradifurona 26.3 g/L y transflutrina 52.5 g/L aplicada como niebla térmica a mosquitos Aedes vectores de virus dengue, Zika y chikungunya. Material y métodos: Se colocaron grupos de 15 mosquitos de Ae. aegypti (susceptibles y resistentes a piretroides) dentro de jaulas, en sala, recámara y cocina. Posteriormente, se aplicó la mezcla de flupyradifurona y transflutrina dentro de las viviendas a una dosis de 2 y 4 mg/m3, respectivamente. Resultados: La mezcla de flupyradifurona y transflutrina causó mortalidades de 97 a 100% sobre las cepas de mosquitos Aedes y su efectividad fue la misma en los diferentes compartimentos de las viviendas. Conclusiones: La mezcla de flupyradifurona y transflutrina, aplicada en niebla térmica, es una herramienta prometedora para el control de poblaciones de mosquitos Aedes independientemente de su estado de resistencia a insecticidas.


Abstract: Objective: To evaluate the efficacy of thermal fogging of a mixture of flupyrafirudone (26.3 g/L) and transfluthrin (52.5 g/L) against dengue, Zika y chikungunya Aedes mosquito vectors. Materials and methods: Groups of 15 caged Ae. aegypti (susceptible and pyrethroid resistant) mosquitoes were placed in living room, kitchen and bedroom inside houses, after which a dose of 2 and 4 mg/m3 of flupyradifurone and transfluthrine, respectively, was applied as thermal fog. After one hour of exposure mosquitoes were transferred to the laboratory and mortality was recorded after 24 h. Results: The mixture killed 97 to 100% of mosquitoes from the strains and the efficacy was similar independently of their place within the premises. Conclusions: The mixture of flupyrafirudone and transfluthrin applied as thermal fog is a promising tool to control Aedes mosquito populations independently of the pyrethroid-insecticide resistance status.


Subject(s)
Animals , Pyridines , 4-Butyrolactone/analogs & derivatives , Insecticide Resistance , Aedes , Cyclopropanes , Fluorobenzenes , Insecticides , Chikungunya virus , Mosquito Control/methods , Aedes/virology , Aerosols , Dengue Virus , Drug Combinations , Zika Virus , Mosquito Vectors , Housing , Mexico
4.
Salud Publica Mex ; 62(4): 432-438, 2020.
Article in Spanish | MEDLINE | ID: mdl-32250091

ABSTRACT

OBJECTIVE: To evaluate the efficacy of thermal fogging of a mixture of flupyrafirudone (26.3 g/L) and transfluthrin (52.5 g/L) against dengue, Zika y chikungunya Aedes mosquito vectors. MATERIALS AND METHODS: Groups of 15 caged Ae. aegypti (susceptible and pyrethroid resistant) mosquitoes were placed in living room, kitchen and bedroom inside houses, after which a dose of 2 and 4 mg/m3 of flupyradifurone and transfluthrine, respectively, was applied as thermal fog. After one hour of exposure mosquitoes were transferred to the laboratory and mortality was recorded after 24 h. RESULTS: The mixture killed 97 to 100% of mosquitoes from the strains and the efficacy was similar independently of their place within the premises. CONCLUSIONS: The mixture of flupyrafirudone and transfluthrin applied as thermal fog is a promising tool to control Aedes mosquito populations independently of the pyrethroid-insecticide resistance status.


OBJETIVO: Evaluar la efectividad de la mezcla de flupyradifurona 26.3 g/L y transflutrina 52.5 g/L aplicada como niebla térmica a mosquitos Aedes vectores de virus dengue, Zika y chikungunya. MATERIAL Y MÉTODOS: Se colocaron grupos de 15 mosquitos de Ae. aegypti (susceptibles y resistentes a piretroides) dentro de jaulas, en sala, recámara y cocina. Posteriormente, se aplicó la mezcla de flupyradifurona y transflutrina dentro de las viviendas a una dosis de 2 y 4 mg/m3, respectivamente. RESULTADOS: La mezcla de flupyradifurona y transflutrina causó mortalidades de 97 a 100% sobre las cepas de mosquitos Aedes y su efectividad fue la misma en los diferentes compartimentos de las viviendas. CONCLUSIONES: La mezcla de flupyradifurona y transflutrina, aplicada en niebla térmica, es una herramienta prometedora para el control de poblaciones de mosquitos Aedes independientemente de su estado de resistencia a insecticidas.


Subject(s)
4-Butyrolactone/analogs & derivatives , Aedes , Cyclopropanes , Fluorobenzenes , Insecticide Resistance , Insecticides , Pyridines , Aedes/virology , Aerosols , Animals , Chikungunya virus , Dengue Virus , Drug Combinations , Housing , Mexico , Mosquito Control/methods , Mosquito Vectors , Zika Virus
5.
BMC Public Health ; 19(1): 669, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31146722

ABSTRACT

BACKGROUND: Thermal fogging of Insecticides is a vector control strategy used by the Medellin Secretary of Health to combat dengue. This method is employed during outbreaks to curb populations of potentially infectious adult mosquitoes and interrupt transmission cycles. While this strategy has been used in Medellin since 2007, in some years it has not reduced dengue cases as expected. Difficulties in the implementation of fumigation strategies, such as lack of opportunity for treatment and public perception may be factors that limit its utility. The objective of this study was to identify barriers that hinder the implementation of thermal fogging, as well as attitudes and beliefs that prevent its acceptance. METHODS: We used a cross-sectional observational study of mixed methods carried out in neighborhoods prioritized for fumigation treatment in Medellin, Colombia. First, we assessed the timeliness of treatment by determining the latency period between reported dengue cases and the implementation of fumigation in response to those cases. Next, we administered structured questionnaires to residents in the area of fumigation treatments (n = 4455 homes) to quantify acceptance and rejection, as well as factors associated with rejection. RESULTS: The median time between notification and treatment was 25 days (IQR 20.0-36.5). Fumigators were only able to treat 53.7% of total households scheduled for treatment; 9.6% rejected treatment, and treatment teams were unable to fumigate the remaining 36.7% of homes due to absent residents, no adults being present, and other reasons. The most frequent causes for rejection were residents being busy at the time of treatment (33.1%) and no interest in the treatment (24.5%). Other reasons for rejection include the perceptions that fumigation does not control pests other than mosquitoes (4.3%), that no mosquitoes were present in the home (3.3%), and that fumigation affects human health (3.1%). CONCLUSIONS: The high percentage of houses where it was not possible to perform fumigation limits control of the vector. Future strategies should consider more flexible treatment schedules and incorporate informational messages to educate residents about the safety and importance of treatment.


Subject(s)
Dengue/prevention & control , Fumigation/statistics & numerical data , Insecticides/administration & dosage , Mosquito Control/methods , Adult , Colombia/epidemiology , Cross-Sectional Studies , Dengue/epidemiology , Family Characteristics , Female , Fumigation/methods , Health Knowledge, Attitudes, Practice , Humans , Male , Middle Aged , Mosquito Vectors , Residence Characteristics , Surveys and Questionnaires
6.
Parasit Vectors ; 9(1): 597, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27881181

ABSTRACT

BACKGROUND: Ultra-low volume (ULV) insecticidal aerosols dispensed from vehicle-mounted cold-foggers are widely considered the method of choice for control of Aedes aegypti and Ae. albopictus during outbreaks of dengue and chikungunya and, more recently, Zika. Nevertheless, their effectiveness has been poorly studied, particularly in Europe. Nearly all published studies of ULV efficacy are bio-assays based on the mortality of caged mosquitoes. In our study we preferred to monitor the direct impact of treatments on the wild mosquito populations. This study was undertaken to evaluate the efficiency of the two widely used space spraying methods to control Ae. albopictus and Ae. aegypti. METHODS: We determined the susceptibility of local Ae. albopictus to deltamethrin by two methods: topical application and the "WHO Tube Test". We used ovitraps baited with hay infusion and adult traps (B-G Sentinel) baited with a patented attractant to monitor the mosquitoes in four residential areas in Nice, southern France. The impact of deltamethrin applied from vehicle-mounted ULV fogging-machines was assessed by comparing trap results in treated vs untreated areas for 5 days before and 5 days after treatment. Four trials were conducted at the maximum permitted application rate (1 g.ha-1). We also made two small-scale tests of the impact of the same insecticide dispensed from a hand-held thermal fogger. RESULTS: Susceptibility to the insecticide was high but there was no discernable change in the oviposition rate or the catch of adult female mosquitoes, nor was there any change in the parous rate. In contrast, hand-held thermal foggers were highly effective, with more than 90% reduction of both laid eggs and females. CONCLUSIONS: We believe that direct monitoring of the wild mosquito populations gives a realistic assessment of the impact of treatments and suggest that the lack of efficacy is due to lack of interaction between the target mosquitoes and the ULV aerosol. We discuss the factors that influence the effectiveness of both methods of spraying in the context of epidemic situations.


Subject(s)
Aedes/drug effects , Aerosols/pharmacology , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Biological Assay , France , Mosquito Control/methods , Temperature
7.
Acta Trop ; 162: 125-132, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27325294

ABSTRACT

In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection pressure would be expected to have led to an increase in frequency of the G1016 allele, it is likely that the relatively stable kdr mutation allele frequencies observed here result from balancing selection, in the form of overdominance for VG/FC genotypes and/or the effects of fluctuating environments that vary in insecticide exposure.


Subject(s)
Aedes/drug effects , Aedes/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Larva/drug effects , Mutation/genetics , Pyrethrins/pharmacology , Adult , Alleles , Animals , Dengue/prevention & control , Female , Gene Frequency , Gene Knockdown Techniques , Genotype , Humans , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL