Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Biomed Chromatogr ; 38(8): e5899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797863

ABSTRACT

Nanoliposomes (NLs) are ideal carriers for delivering complex molecules and phytochemical products, but ginger by-products, despite their therapeutic benefits, have poor bioavailability due to their low water solubility and stability. Crude ginger extracts (CGEs) and 6-gingerol were individually encapsulated within NLs for in vitro activity assessment. In vitro evaluation of anti-proliferative and anti-inflammatory properties of encapsulated 6-gingerol and CGE was performed on healthy human periodontal ligament (PDL) fibroblasts and MDA-MB-231 breast cancer cells. Encapsulation efficiency and loading capacity of 6-gingerol reached 25.23% and 2.5%, respectively. NLs were found stable for up to 30 days at 4°C with a gradual load loss of up to 20%. In vitro cytotoxic effect of encapsulated 6-gingerol exceeded 70% in the MDA-MB-231 cell line, in a comparable manner with non-encapsulated 6-gingerol and CGE. The effect of CGE with an IC50 of 3.11 ± 0.39, 7.14 ± 0.80, and 0.82 ± 0.55 µM and encapsulated 6-gingerol on inhibiting IL-8 was evident, indicating its potential anti-inflammatory activity. Encapsulating 6-gingerol within NLs enhanced its stability and facilitated its biological activity. All compounds, including vitamin C, were equivalent at concentrations below 2 mg/mL, with a slight difference in antioxidant activity. The concentrations capable of inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) substrate were comparable.


Subject(s)
Anti-Inflammatory Agents , Catechols , Fatty Alcohols , Liposomes , Zingiber officinale , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Humans , Catechols/chemistry , Catechols/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Liposomes/chemistry , Cell Line, Tumor , Zingiber officinale/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects , Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Interleukin-8/metabolism , Cell Proliferation/drug effects
2.
Eur J Pharm Biopharm ; 197: 114233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387849

ABSTRACT

The aim of this study was to develop azithromycin (AZT)-loaded liposomes (LP) and niosomes (NS) useful for the treatment of bacterial skin infections and acne. LP based on phosphatidylcholine from egg yolk (EPC) or from soybean lecithin (SPC), and NS composed of sorbitan monopalmitate (Span 40) or sorbitan monostearate (Span 60) were prepared through the thin film hydration (TFH) and the ethanol injection (EI) methods. The formulations were subsequently characterized for their physico-chemical and functional properties. Vesicles prepared through TFH showed higher average sizes than the corresponding formulations obtained by EI. All the vesicles presented adequate encapsulation efficiency and a negative ζ potential, which assured good stability during the storage period (except for LP-SPC). Formulations prepared with TFH showed a more prolonged AZT release than those prepared through EI, due to their lower surface area and multilamellar structure, as confirmed by atomic force microscopy nanomechanical characterization. Finally, among all the formulations, NS-Span 40-TFH and LP-EPC-TFH allowed the highest drug accumulation in the skin, retained the antimicrobial activity and did not alter fibroblast metabolism and viability. Overall, they could ensure to minimize the dosing and the administration frequency, thus representing promising candidates for the treatment of bacterial skin infections and acne.


Subject(s)
Acne Vulgaris , Liposomes , Humans , Liposomes/chemistry , Excipients/metabolism , Azithromycin/pharmacology , Azithromycin/metabolism , Skin/metabolism , Acne Vulgaris/metabolism
3.
J Colloid Interface Sci ; 661: 1033-1045, 2024 May.
Article in English | MEDLINE | ID: mdl-38335788

ABSTRACT

MOTIVATION: Giant unilamellar vesicles (GUVs), cell-like synthetic micrometer size structures, assemble when thin lipid films are hydrated in aqueous solutions. Quantitative measurements of static yields and distribution of sizes of GUVs obtained from thin film hydration methods were recently reported. Dynamic data such as the time evolution of yields and distribution of sizes, however, is not known. Dynamic data can provide insights into the assembly pathway of GUVs and guidelines for choosing conditions to obtain populations with desired size distributions. APPROACH: We develop the 'stopped-time' technique to characterize the time evolution of the distribution of sizes and molar yields of populations of free-floating GUVs. We additionally capture high resolution time-lapse images of surface-attached GUV buds on the lipid films. We systematically study the dynamics of assembly of GUVs from three widely used thin film hydration methods, PAPYRUS (Paper-Abetted amPhiphile hYdRation in aqUeous Solutions), gentle hydration, and electroformation. FINDINGS: We find that the molar yield versus time curves of GUVs demonstrate a characteristic sigmoidal shape, with an initial yield, a transient, and then a steady state plateau for all three methods. The population of GUVs showed a right-skewed distribution of diameters. The variance of the distributions increased with time. The systems reached steady state within 120 min. We rationalize the dynamics using the thermodynamically motivated budding and merging (BNM) model. These results further the understanding of lipid dynamics and provide for the first-time practical parameters to tailor the production of GUVs of specific sizes for applications.

4.
Saudi Pharm J ; 31(9): 101734, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37649675

ABSTRACT

Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 µg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 µg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.

5.
J Biomater Appl ; 38(4): 509-526, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37632164

ABSTRACT

In the present work, chrysin loaded bilosomes were formulated, characterized and evaluated to enhance the hepatoprotective activity of drug. Accordingly, chrysin loaded bilosomes were prepared by applying the thin film hydration method; also, fractional factorial design was used to optimize the production conditions of nanoformulations. The prepared formulations were subjected to different methods of characterization; then the hepatoprotective activity of the optimized one was evaluated in the CCl4 hepatointoxicated mice model. Optimized chrysin loaded bilosomes showed a spherical shape with a particle size of 232.97 ± 23 nm, the polydispersity index of 0.35 ± 0.01, the zeta potential of -44.5 ± 1.27 mv, the entrapment efficiency of 96.77 ± 0.18%, the drug loading % of 6.46 ± 0.01 and the release efficiency of 42.25 ± 1.04 during 48 h. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assay demonstrated the superiority of the anti-oxidant potential of chrysin loaded bilosomes, as compared to pure chrysin. This was in agreement with histopathological investigations, showing significant improvement in serum hepatic biomarkers of CCl4 intoxicated mice treated with chrysin loaded bilosomes, as compared with free chrysin. These results, thus, showed the potential use of bilosomes to enhance the hepatoprotective activity of chrysin via oral administration.


Subject(s)
Chemical and Drug Induced Liver Injury , Liposomes , Mice , Animals , Liposomes/chemistry , Flavonoids/therapeutic use , Antioxidants/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control
6.
Nanomedicine (Lond) ; 18(2): 89-107, 2023 01.
Article in English | MEDLINE | ID: mdl-37042303

ABSTRACT

Aim: To develop quercetin nanocrystals by a simple approach and to evaluate their in vivo antifibrotic efficacy. Materials & methods: Nanosuspensions were fabricated by a thin-film hydration technique and ultrasonication. The influence of process variables on the average diameter of quercetin nanoparticles was investigated. Moreover, in vivo efficacy was investigated in an established murine CCl4-induced fibrosis model. Results: Nanocrystals showed a particle size of <400 nm. The optimized formulations showed an increase in dissolution rate and solubility. Quercetin nanocrystals markedly prevented fibrotic changes in the liver, as evidenced by mitigated histopathological changes and diminished aminotransferase levels and collagen accumulation. Conclusion: The findings reflect the promising potential of quercetin nanocrystals for liver fibrosis prevention.


Subject(s)
Nanoparticles , Quercetin , Mice , Animals , Quercetin/therapeutic use , Quercetin/chemistry , Solubility , Drug Compounding/methods , Nanoparticles/chemistry , Particle Size
7.
Int J Pharm ; 638: 122917, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37019321

ABSTRACT

Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14 %) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125 %, and cumulative drug release of 88.92 ± 3.78 % over 24 h. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.


Subject(s)
Dyslipidemias , Poloxamer , Rats , Animals , Administration, Cutaneous , Atorvastatin/pharmacology , Drug Delivery Systems/methods , Rats, Wistar , Skin/metabolism , Lecithins/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Biological Availability , Particle Size
8.
Antibiotics (Basel) ; 12(4)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37107069

ABSTRACT

Treatment of dermatophytosis is quite challenging. This work aims to investigate the antidermatophyte action of Azelaic acid (AzA) and evaluate its efficacy upon entrapment into transethosomes (TEs) and incorporation into a gel to enhance its application. Optimization of formulation variables of TEs was carried out after preparation using the thin film hydration technique. The antidermatophyte activity of AzA-TEs was first evaluated in vitro. In addition, two guinea pig infection models with Trichophyton (T.) mentagrophytes and Microsporum (M.) canis were established for the in vivo assessment. The optimized formula showed a mean particle size of 219.8 ± 4.7 nm and a zeta potential of -36.5 ± 0.73 mV, while the entrapment efficiency value was 81.9 ± 1.4%. Moreover, the ex vivo permeation study showed enhanced skin penetration for the AzA-TEs (3056 µg/cm2) compared to the free AzA (590 µg/cm2) after 48 h. AzA-TEs induced a greater inhibition in vitro on the tested dermatophyte species than free AzA (MIC90 was 0.01% vs. 0.32% for T. rubrum and 0.032% for T. mentagrophytes and M. canis vs. 0.56%). The mycological cure rate was improved in all treated groups, specially for our optimized AzA-TEs formula in the T. mentagrophytes model, in which it reached 83% in this treated group, while it was 66.76% in the itraconazole and free AzA treated groups. Significant (p < 0.05) lower scores of erythema, scales, and alopecia were observed in the treated groups in comparison with the untreated control and plain groups. In essence, the TEs could be a promising carrier for AzA delivery into deeper skin layers with enhanced antidermatophyte activity.

9.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902057

ABSTRACT

The current study focuses on the development of innovative and highly-stable curcumin (CUR)-based therapeutics by encapsulating CUR in biocompatible poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) micelles. State-of-the-art methods were used to investigate the encapsulation of CUR in PnBA-b-POEGA micelles and the potential of ultrasound to enhance the release of encapsulated CUR. Dynamic light scattering (DLS), attenuated total reflection Fourier transform infrared (ATR-FTIR), and ultraviolet-visible (UV-Vis) spectroscopies confirmed the successful encapsulation of CUR within the hydrophobic domains of the copolymers, resulting in the formation of distinct and robust drug/polymer nanostructures. The exceptional stability of the CUR-loaded PnBA-b-POEGA nanocarriers over a period of 210 days was also demonstrated by proton nuclear magnetic resonance (1H-NMR) spectroscopy studies. A comprehensive 2D NMR characterization of the CUR-loaded nanocarriers authenticated the presence of CUR within the micelles, and unveiled the intricate nature of the drug-polymer intermolecular interactions. The UV-Vis results also indicated high encapsulation efficiency values for the CUR-loaded nanocarriers and revealed a significant influence of ultrasound on the release profile of CUR. The present research provides new understanding of the encapsulation and release mechanisms of CUR within biocompatible diblock copolymers and has significant implications for the advancement of safe and effective CUR-based therapeutics.


Subject(s)
Antineoplastic Agents , Curcumin , Curcumin/chemistry , Polymers/chemistry , Micelles , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Polyethylene Glycols/chemistry
10.
Methods Mol Biol ; 2622: 57-63, 2023.
Article in English | MEDLINE | ID: mdl-36781749

ABSTRACT

One of the simplest ways to prepare liposomes in a research laboratory is the thin-film hydration method followed by extrusion. This method involves making a thin lipid film in a round-bottom flask by the removal of organic solvent. Upon the addition and agitation of the dispersion medium, heterogeneous liposomes are formed. Finally, after extrusion through polycarbonate membranes, homogeneous small liposomes are obtained.


Subject(s)
Liposomes , Liposomes/chemical synthesis
11.
Methods Mol Biol ; 2622: 191-196, 2023.
Article in English | MEDLINE | ID: mdl-36781761

ABSTRACT

Liposomes are usually defined as spherically shaped microscopic vesicles that consist of one or more phospholipid bilayer membranes. They are widely used in drug delivery due to their biocompatibility, biodegradability, and stability. In recent years, a growing body of research shows that folic acid (FA)-modified liposomes can be targeted to deliver therapeutics to tumor and inflammation sites via receptor-mediated endocytosis between FA and folate receptor (FR). Taking this advantage, FA-modified liposomes are usually used in the targeted treatment of cancer, atherosclerosis, and arthrosis. In this chapter, we provided a classical thin-film hydration method to prepare FA-modified liposomes. We expect that our strategies would provide new opportunities for the development of FA-modified liposomes for research and clinical uses.


Subject(s)
Liposomes , Neoplasms , Humans , Folic Acid , Drug Delivery Systems , Cell Line, Tumor
12.
Drug Deliv Transl Res ; 13(4): 1153-1168, 2023 04.
Article in English | MEDLINE | ID: mdl-36585559

ABSTRACT

Rasagiline mesylate (RM) is a monoamine oxidase inhibitor that is commonly used to alleviate the symptoms of Parkinson's disease. However, it suffers from low oral bioavailability due to its extensive hepatic metabolism in addition to its hydrophilic nature which limits its ability to pass through the blood-brain barrier (BBB) and reach the central nervous system where it exerts its pharmacological effect. Thus, this study aims to form RM-loaded spanlastic vesicles for intranasal (IN) administration to overcome its hepatic metabolism and permit its direct delivery to the brain. RM-loaded spanlastics were prepared using thin film hydration (TFH) and modified spraying technique (MST). A 23 factorial design was constructed to study and optimize the effects of the independent formulation variables, namely, Span type, Span: Brij 35 ratio, and sonication time on the vesiclesá¾½ characteristics in each preparation technique. The optimized system prepared using MST (MST 2) has shown higher desirability factor with smaller PS and higher EE%; thus, it was selected for further in vivo evaluation where it revealed that the extent of RM distribution from the intranasally administered spanlastics to the brain was comparable to that of the IV drug solution with significantly high brain-targeting efficiency (458.47%). These results suggest that the IN administration of the optimized RM-loaded spanlastics could be a promising, non-invasive alternative for the efficient delivery of RM to brain tissues to exert its pharmacological activities without being dissipated to other body organs which subsequently may result in higher pharmacological efficiency and better safety profile.


Subject(s)
Brain , Drug Carriers , Drug Carriers/metabolism , Particle Size , Brain/metabolism , Administration, Intranasal , Mesylates/metabolism , Mesylates/pharmacology , Drug Delivery Systems/methods
13.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38256853

ABSTRACT

Valsartan (Val) is an important antihypertensive medication with poor absorption and low oral bioavailability. These constraints are due to its poor solubility and dissolution rate. The purpose of this study was to optimize a mixed micelle system for the transdermal delivery of Val in order to improve its therapeutic performance by providing prolonged uniform drug levels while minimizing drug side effects. Thin-film hydration and micro-phase separation were used to produce Val-loaded mixed micelle systems. A variety of factors, including the surfactant type and drug-to-surfactant ratio, were optimized to produce micelles with a low size and high Val entrapment efficiency (EE). The size, polydispersity index (PDI), zeta potential, and drug EE of the prepared micelles were all measured. The in vitro drug release profiles were assessed using dialysis bags, and the permeation through abdominal rat skin was assessed using a Franz diffusion cell. All formulations had high EE levels exceeding 90% and low particle charges. The micellar sizes ranged from 107.6 to 191.7 nm, with average PDI values of 0.3. The in vitro release demonstrated a uniform slow rate that lasted one week with varying extents. F7 demonstrated a significant (p < 0.01) transdermal efflux of 68.84 ± 3.96 µg/cm2/h through rat skin when compared to the control. As a result, the enhancement factor was 16.57. In summary, Val-loaded mixed micelles were successfully prepared using two simple methods with high reproducibility, and extensive transdermal delivery was demonstrated in the absence of any aggressive skin-modifying enhancers.

14.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430294

ABSTRACT

The aim of this research was to prepare novel block copolymer-surfactant hybrid nanosystems using the triblock copolymer Pluronic 188, along with surfactants of different hydrophilic to lipophilic balance (HLB ratio-which indicates the degree to which a surfactant is hydrophilic or hydrophobic) and thermotropic behavior. The surfactants used were of non-ionic nature, of which Tween 80® and Brij 58® were more hydrophilic, while Span 40® and Span 60® were more hydrophobic. Each surfactant has unique innate thermal properties and an affinity towards Pluronic 188. The nanosystems were formulated through mixing the pluronic with the surfactants at three different ratios, namely 90:10, 80:20, and 50:50, using the thin-film hydration technique and keeping the pluronic concentration constant. The physicochemical characteristics of the prepared nanosystems were evaluated using various light scattering techniques, while their thermotropic behavior was characterized via microDSC and high-resolution ultrasound spectroscopy. Microenvironmental parameters were attained through the use of fluorescence spectroscopy, while the cytotoxicity of the nanocarriers was studied in vitro. The results indicate that the combination of Pluronic 188 with the above surfactants was able to produce hybrid homogeneous nanoparticle populations of adequately small diameters. The different surfactants had a clear effect on physicochemical parameters such as the size, hydrodynamic diameter, and polydispersity index of the final formulation. The mixing of surfactants with the pluronic clearly changed its thermotropic behavior and thermal transition temperature (Tm) and highlighted the specific interactions that occurred between the different materials, as well as the effect of increasing the surfactant concentration on inherent polymer characteristics and behavior. The formulated nanosystems were found to be mostly of minimal toxicity. The obtained results demonstrate that the thin-film hydration method can be used for the formulation of pluronic-surfactant hybrid nanoparticles, which in turn exhibit favorable characteristics in terms of their possible use in drug delivery applications. This investigation can be used as a road map for the selection of an appropriate nanosystem as a novel vehicle for drug delivery.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Surface-Active Agents/chemistry , Poloxamer/chemistry , Excipients , Polysorbates , Polymers/chemistry , Lipoproteins
15.
Pharm Res ; 39(11): 2761-2780, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36171346

ABSTRACT

PURPOSE: Cancer is one of the most common and fatal disease, chemotherapy is the major treatment against many cancer types. The anti-apoptotic BCL-2 protein's expression was increased in many cancer types and Venetoclax (VLX; BCL-2 inhibitor) is a small molecule, which selectively inhibits this specified protein. In order to increase the clinical performance of this promising inhibitor as a repurposed drug, polymeric mixed micelles formulations approach was explored. METHODS: The Venetoclax loaded polymeric mixed micelles (VPMM) were prepared by using Pluronic® F-127 and alpha tocopherol polyethylene glycol 1000 succinate (TPGS) as excipients by thin film hydration method and characteristics. The percentage drug loading capacity, entrapment efficiency and in-vitro drug release studies were performed using HPLC method. The cytotoxicity assay, cell uptake and anticancer activities were evaluated in two different cancer cells i.e. MCF-7 (breast cancer) and A-549 (lung cancer). RESULTS: Particle size, polydispersity index and zeta potential of the VPMM was found to be 72.88 ± 0.09 nm, 0.078 ± 0.009 and -4.29 ± 0.24 mV, respectively. The entrapment efficiency and %drug loading were found to be 80.12 ± 0.23% and 2.13% ± 0.14%, respectively. The IC50 of VLX was found to be 4.78, 1.30, 0.94 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 1.24, 0.68, and 0.314 µg/ml at 24, 48, and 72 h, respectively in A549 cells. Whereas, IC50 of VPMM was found to be 0.42, 0.29, 0.09 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 0.85, 0.13, 0.008 µg/ml at 24, 48 and 72 h in A549 cells, respectively, indicating VPMM showing better anti-cancer activity compared to VLX. The VPMM showed better cytotoxicity which was further proven by other assays and explained the anti-cancer activity is shown through the generation of ROS, nuclear damage,apoptotic cell death and expression of caspase-3,7, and 9 activities in apoptotic cells. CONCLUSION: The current investigation revealed that the Venetoclax loaded polymeric mixed micelles (VPMM) revealed the enhanced therapeutic efficacy against breast and lung cancer in vitro models.


Subject(s)
Lung Neoplasms , Micelles , Humans , Cell Line, Tumor , Polyethylene Glycols , Polymers , Particle Size , Proto-Oncogene Proteins c-bcl-2 , Drug Carriers , Vitamin E
16.
J Food Sci Technol ; 59(9): 3669-3682, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35875240

ABSTRACT

The main aim of this study was to deliver green tea catechins with enhanced bioavailability using niosomal system. Catechins-loaded niosomes were prepared using food grade surfactant, Tween 60 and membrane stabilizers namely, lauryl alcohol, cetyl alcohol and cholesterol by thin film hydration technique. Catechins-loaded niosomes exhibited a hydrodynamic diameter of 58.48 nm with a narrow size distribution (PDI = 0.13) and zeta potential of - 31.75 mV, suggestive for homogeneity and good stability. Niosomes entrapped about 85.82% of catechin and showed sustained release under simulated GI conditions. Morphology of niosomal vesicles were carried out using scanning electron microscopy-energy X-ray dispersion spectroscopy, transmission electron microscopy and atomic force microscopy. Fourier-transform infrared spectroscopy and High-performance liquid chromatography analysis confirmed successful encapsulation of catechins. Antioxidant activity of catechins was retained in the niosomal form. Fortification of milk with catechins loaded niosomes showed no significant changes on sensory, physicochemical properties and exhibited higher antioxidant property.

17.
AAPS PharmSciTech ; 23(6): 188, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35799076

ABSTRACT

This study was proposed to develop an optimized sertraline hydrochloride (SER)-loaded bilosomal system and evaluate its potential for enhancement of drug oral bioavailability. A full 23 factorial design was used to prepare SER-loaded bilosomal dispersions by thin film hydration using span 60, cholesterol (CHL), and sodium deoxycholate (SDC). The investigated factors included the total concentration of span 60 and CHL (X1), span 60:CHL molar ratio (X2), and SER:SDC molar ratio (X3). The studied responses were entrapment efficiency (EE%) (Y1), zeta potential (Y2), particle size (Y3), and in vitro % drug released at 2 (Y4), 8 (Y5), and 24 h (Y6). The selected optimal bilosomal dispersion (N1) composition was 0.5% w/v (X1), 1:1 (X2), and 1:2 (X3). Then, N1 was freeze dried into FDN1 that compared with pure SER for in vitro drug release, ex vivo permeation through rabbit intestine, and in vivo absorption in rats. Moreover, storage effect on FDN1 over 3 months was assessed. The optimal dispersion (N1) showed 68 ± 0.7% entrapment efficiency, - 41 ± 0.78 mV zeta potential, and 377 ± 19 nm particle size. The freeze-dried form (FDN1) showed less % drug released in simulated gastric fluids with remarkable sustained SER release up to 24 h compared to pure SER. Moreover, FDN1 showed good stability, fivefold enhancement in SER permeation through rabbit intestine, and 222% bioavailability enhancement in rats' in vivo absorption study compared to pure SER. The SER-loaded bilosomal system (FDN1) could improve SER oral bioavailability with minimization of gastrointestinal side effects.


Subject(s)
Drug Carriers , Sertraline , Administration, Cutaneous , Animals , Biological Availability , Drug Delivery Systems , Drug Liberation , Particle Size , Rabbits , Rats
18.
Molecules ; 27(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268637

ABSTRACT

This study aimed to produce thermosensitive liposomes (TSL) by applying the quality by design (QbD) concept. In this paper, our research group collected and studied the parameters that significantly impact the quality of the liposomal product. Thermosensitive liposomes are vesicles used as drug delivery systems that release the active pharmaceutical ingredient in a targeted way at ~40-42 °C, i.e., in local hyperthermia. This study aimed to manufacture thermosensitive liposomes with a diameter of approximately 100 nm. The first TSLs were made from DPPC (1,2-dipalmitoyl-sn-glycerol-3-phosphocholine) and DSPC (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine) phospholipids. Studies showed that the application of different types and ratios of lipids influences the thermal properties of liposomes. In this research, we made thermosensitive liposomes using a PEGylated lipid besides the previously mentioned phospholipids with the thin-film hydration method.


Subject(s)
Liposomes , Phospholipids , Drug Delivery Systems , Drug Development , Temperature
19.
Pharm Nanotechnol ; 10(1): 56-68, 2022.
Article in English | MEDLINE | ID: mdl-35209832

ABSTRACT

BACKGROUND: Acne is the pilosebaceous units' disorder. The most important cause of acne is the colonization of bacteria in the follicles. Among antibiotics, doxycycline hyclate kills a wide range of bacteria. OBJECTIVES: The study aims to prevent oral administration's side effects, overcome the barriers of conventional topical treatment, and improve the therapeutic effectiveness; this drug was loaded into niosomal nanocarriers for topical application. METHODS: Doxycycline hyclate was loaded into four niosomal formulations prepared by the thinfilm hydration method with different percentages of constituents. Drug-containing niosomal systems were evaluated for morphological properties via scanning electron microscopy, particle size, drug entrapment efficiency, zeta potential, in vitro drug release, physical stability after 60 days, in vitro drug permeation through rat skin, in vitro drug deposition in rat skin, toxicity on human dermal fibroblasts (HDF) by MTT method after 72 hours, and antibacterial properties against the main acne-causing bacteria via antibiogram test. RESULTS: The best formulation had the appropriate particle size of 362.88 ± 13.05 nm to target follicles, entrapment efficiency of 56.3 ± 2.1%, the zeta potential of - 24.46±1.39 mV, in vitro drug release of 54.93 ± 1.99% after 32 hours, and the lowest permeation of the drug through the rat skin among all other formulations. Improved cell viability, increased antibacterial activity, and an approximately three-fold increase in drug deposition were the optimal niosomal formulation features relative to the free drug. CONCLUSION: This study demonstrated the ability of nano-niosomes containing doxycycline hyclate to treat skin acne compared with the free drug.


Subject(s)
Acne Vulgaris , Liposomes , Acne Vulgaris/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Doxycycline/pharmacology , Doxycycline/therapeutic use , Drug Delivery Systems/methods , Rats
20.
Methods ; 199: 9-15, 2022 03.
Article in English | MEDLINE | ID: mdl-34000392

ABSTRACT

Development of nanocarriers has opened new avenues for the delivery of therapeutics of various pharmacological activities with improved targeting properties and reduced side effects. Niosomes, non-ionic-based vesicles, have drawn much interest in various biomedical applications, owing to their unique characteristics and their ability to encapsulate both hydrophilic and lipophilic cargoes. Niosomes share structural similarity with liposomes while overcoming limitations associated with stability, sterilization, and large-scale production of liposomes. Different methods for preparation of niosomes have been described in the literature, each having its own merits and a great impact on the sizes and characteristics of the formed niosomes. In this article, procedures involved in the thin-film hydration method, a commonly used method for the preparation of niosomes, are described in detail, while highlighting precautions that should be considered for consistent and reproducible construction of niosomes.


Subject(s)
Drug Delivery Systems , Liposomes , Drug Delivery Systems/methods , Liposomes/chemistry , Particle Size , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...