Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Environ Res ; 251(Pt 2): 118740, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38521356

ABSTRACT

Magnetite mining is a significant contributor to land deterioration as well as HM-based soil contamination. The characteristics of magnetite mine tailing were examined in the present study, in addition to the positive and sustainable restoration strategy with Bougainvillaea glabra under the influence of Thiobacillus ferroxidance. The traits of test soil analysis findings demonstrated that the majority of the parameters exceeded the allowable limits (For instance: HMs such as Cr, Cu, Zn, Pb, Fe, and Co were found to be 208 ± 2.3, 131.43 ± 1.6, 185.41 ± 3.3, 312 ± 5.11, 956 ± 5.3, and 26.89 ± 2.43 mg kg-1 respectively). T. ferroxidance exhibited impressive HMs tolerance for as much as 800 g mL-1 concentrations of Cr, Cu, Zn, Pb, Fe, and Co. To prevent HMs toxic effects, the HMs contents in test soil were decreased by diluting with normal soil in the ratios of Ex-3 and Ex-2. A typical greenhouse study was carried out to assess the phytoremediation ability of B. glabra across six setups for experiments (Ex-1 to Ex-6). According to the findings of this research, the HMs tolerant T. ferroxidance from Ex-3 and Ex-2 had an outstanding impact on the growth, biomolecules level (such as chlorophylls: 65.84 & 41.1 mg g-1, proteins: 165.1 & 151.1 mg g-1, as well as carbohydrates: 227.4 & 159.3 mg g-1) as well as phytoremediation potential of B. glabra on magnetite mine soil. These findings indicated that a mixture of B. glabra as well as T. ferroxidance might serve as a valuable sustainable agent for removing HMs from contaminated soil.


Subject(s)
Biodegradation, Environmental , Mining , Soil Pollutants , Soil Pollutants/analysis , Soil Pollutants/metabolism , Ferrosoferric Oxide/chemistry , Soil/chemistry , Metals, Heavy/analysis , Metals, Heavy/metabolism , Bacillaceae/metabolism
2.
Front Microbiol ; 15: 1350164, 2024.
Article in English | MEDLINE | ID: mdl-38529176

ABSTRACT

Pulp-paper mills (PPMs) are known for consistently generating a wide variety of pollutants, that are often unidentified and highly resistant to environmental degradation. The current study aims to investigate the changes in the indigenous bacterial communities profile grown in the sediment co-contaminated with organic and inorganic pollutants discharged from the PPMs. The two sediment samples, designated PPS-1 and PPS-2, were collected from two different sites. Physico-chemical characterization of PPS-1 and PPS-2 revealed the presence of heavy metals (mg kg-1) like Cu (0.009-0.01), Ni (0.005-0.002), Mn (0.078-0.056), Cr (0.015-0.009), Pb (0.008-0.006), Zn (0.225-0.086), Fe (2.124-0.764), Al (3.477-22.277), and Ti (99.792-45.012) along with high content of chlorophenol, and lignin. The comparative analysis of organic pollutants in sediment samples using gas chromatography-mass spectrometry (GC-MS) revealed the presence of major highly refractory compounds, such as stigmasterol, ß-sitosterol, hexadecanoic acid, octadecanoic acid; 2,4-di-tert-butylphenol; heptacosane; dimethyl phthalate; hexachlorobenzene; 1-decanol,2-hexyl; furane 2,5-dimethyl, etc in sediment samples which are reported as a potential toxic compounds. Simultaneously, high-throughput sequencing targeting the V3-V4 hypervariable region of the 16S rRNA genes, resulted in the identification of 1,249 and 1,345 operational taxonomic units (OTUs) derived from a total of 115,665 and 119,386 sequences read, in PPS-1 and PPS-2, respectively. Analysis of rarefaction curves indicated a diversity in OTU abundance between PPS-1 (1,249 OTUs) and PPS-2 (1,345 OTUs). Furthermore, taxonomic assignment of metagenomics sequence data showed that Proteobacteria (55.40%; 56.30%), Bacteoidetes (11.30%; 12.20%), and Planctomycetes (5.40%; 4.70%) were the most abundant phyla; Alphproteobacteria (20.50%; 23.50%), Betaproteobacteria (16.00%; 12.30%), and Gammaproteobacteria were the most recorded classes in PPS-1 and PPS-2, respectively. At the genus level, Thiobacillus (7.60%; 4.50%) was the most abundant genera grown in sediment samples. The results indicate significant differences in both the diversity and relative abundance of taxa in the bacterial communities associated with PPS-2 when compared to PPS-1. This study unveils key insights into contaminant characteristics and shifts in bacterial communities within contaminated environments. It highlights the potential for developing efficient bioremediation techniques to restore ecological balance in pulp-paper mill waste-polluted areas, stressing the importance of identifying a significant percentage of unclassified genera and species to explore novel genes.

3.
Sci Total Environ ; 921: 171091, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387566

ABSTRACT

Denitrifying biofilms, in which autotrophic denitrifiers (AD) and heterotrophic denitrifiers (HD) coexist, play a crucial role in removing nitrate from water or wastewater. However, it is difficult to elucidate the interactions between HD and AD through sequencing-based experimental methods. Here, we developed an individual-based model to describe the interspecies dynamics and priority effects between sulfur-based AD (Thiobacillus denitrificans) and HD (Thauera phenylcarboxya) under different C/N ratios. In test I (coexistence simulation), AD and HD were initially inoculated at a ratio of 1:1. The simulation results showed excellent denitrification performance and a coaggregation pattern of denitrifiers, indicating that cooperation was the predominant interaction at a C/N ratio of 0.25 to 1.5. In test II (invasion simulation), in which only one type of denitrifier was initially inoculated and the other was added at the invasion time, denitrifiers exhibited a stratification pattern in biofilms. When HD invaded AD, the final HD abundance decreased with increasing invasion time, indicating an enhanced priority effect. When AD invaded HD, insufficient organic carbon sources weakened the priority effect by limiting the growth of HD populations. This study reveals the interaction between autotrophic and heterotrophic denitrifiers, providing guidance for optimizing wastewater treatment process.


Subject(s)
Bioreactors , Denitrification , Autotrophic Processes , Heterotrophic Processes , Wastewater , Nitrates , Nitrogen
4.
Braz J Microbiol ; 54(4): 3163-3172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37819610

ABSTRACT

Hydrogen sulfide is a highly toxic gas that causes many economic losses in aquaculture ponds. The application of sulfur-oxidizing bacteria (SOB) to remove hydrogen sulfide is an eco-friendly approach. This study aimed to isolate and identify the most efficient SOBs from the sediment of warm-water fish farms. Enrichment and isolation were performed in three different culture media (Starkey, Postgate, and H-3) based on both mineral and organic carbon. Overall, 27 isolates (14 autotrophic and 13 heterotrophic isolates) were purified based on colony and cell morphology differences. Initial screening was performed based on pH decrease. For final screening, the isolates were assessed based on their efficacy in thiosulfate oxidation and the sulfate production on Starkey liquid medium. Among isolated strains, 3 strains of Iran 2 (FH-13), Iran 3 (FH-21), and Iran 1 (FH-14) that belonged to Thiobacillus thioparus species (identified by 16s rRNA) showed the highest ability in thiosulfate oxidation (413.21, 1362.50, and 4188.03 mg/L for 14 days) and the highest sulfate production (3350, 2075, and 1600 mg/L). In the final phase, the performance of these strains under aquarium conditions showed that Iran 1 and Iran 2 had the highest ability in sulfur oxidation. In conclusion, Iran 1 and 2 strains can be used as effective SOB to remove hydrogen sulfide in fish farms. It is very important to evaluate strains in an appropriate strategy using a combination of different criteria to ensure optimal performance of SOB in farm conditions.


Subject(s)
Hydrogen Sulfide , Thiosulfates , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Sulfates , Sulfur , Oxidation-Reduction
5.
Front Microbiol ; 14: 1190962, 2023.
Article in English | MEDLINE | ID: mdl-37533830

ABSTRACT

Uranium (U) contamination of the environment causes high risk to health, demanding for effective and sustainable remediation. Bioremediation via microbial reduction of soluble U(VI) is generating high fractions (>50%) of insoluble non-crystalline U(IV) which, however, might be remobilized by sulfur-oxidizing bacteria. In this study, the efficacy of Acidithiobacillus (At.) ferrooxidans and Thiobacillus (T.) denitrificans to mobilize non-crystalline U(IV) and associated U isotope fractionation were investigated. At. ferrooxidans mobilized between 74 and 91% U after 1 week, and U mobilization was observed for both, living and inactive cells. Contrary to previous observations, no mobilization by T. denitrificans could be observed. Uranium mobilization by At. ferrooxidans did not cause U isotope fractionation suggesting that U isotope ratio determination is unsuitable as a direct proxy for bacterial U remobilization. The similar mobilization capability of active and inactive At. ferrooxidans cells suggests that the mobilization is based on the reaction with the cell biomass. This study raises doubts about the long-term sustainability of in-situ bioremediation measures at U-contaminated sites, especially with regard to non-crystalline U(IV) being the main component of U bioremediation.

6.
J Appl Microbiol ; 134(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37491695

ABSTRACT

Sulfur (S) deficiency is becoming more common in agro-ecosystems worldwide due to factors such as agronomic practices, high biomass production, reduced sulfur emissions, and the use of non-sulfur fertilizers. This review explores the natural occurrence and commercial exploitation of sulfur pools in nature, the mineralization and immobilization of sulfur, the physiological role of sulfur in plants, and its deficiency symptoms. Additionally, the organic and inorganic forms of sulfur in soil, their transformations, and the process of microbiological oxidation of sulfur are discussed. The review also addresses the diversity of sulfur-oxidizing bacteria (SOB) and the various biochemical mechanisms involved in their role in plant productivity and soil reclamation. The measurement of S oxidation rate in soil and the variables that influence the process are also examined. Typically, the rate of oxidation of added elemental S is around 40%-51%, which is available for plant uptake. These characteristics of SOB demonstrate their potential as bioinoculants for increasing plant growth, indicating their use as biofertilizers for sustainable crop production in agro-ecosystems.


Subject(s)
Bacteria , Ecosystem , Bacteria/genetics , Plants/microbiology , Oxidation-Reduction , Soil
7.
Environ Res ; 231(Pt 1): 116047, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37149031

ABSTRACT

In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.


Subject(s)
Denitrification , Electrons , Sulfur , Autotrophic Processes , Sulfides , Bioreactors , Nitrogen
8.
Environ Pollut ; 328: 121592, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37044254

ABSTRACT

The widespread distribution of nanoplastics and dissolved organic matter (DOM) in sewage raises concerns about the potential impact of DOM on the bioavailability of nanoplastics. In this study, the effects of different sizes (100 nm and 350 nm) of polystyrene nanoplastics (PS-NPs, 50 mg/L) and combined with 10 mg/L or 50 mg/L DOMs (fulvic acid, humic acid and sodium alginate) on the growth and denitrification ability of Thiobacillus denitrificans were investigated. Results showed that 100 nm PS-NPs (50 mg/L) cause a longer delay in the nitrate reduction (3 days) of T. denitrificans than 350 nm PS-NPs (2 days). Furthermore, the presence of DOM exacerbated the adverse effect of 100 nm PS-NPs on denitrification, resulting in a delay of 1-4 days to complete denitrification. Fulvic acid (50 mg/L) and humic acid (50 mg/L) had the most significant adverse effect on increasing 100 nm PS-NPs (50 mg/L), causing a reduction of 20 mmol/L nitrate by T. denitrificans in nearly 7 days. It is noteworthy that the presence of DOM did not modify the adverse effect of 350 nm PS-NPs on denitrification. Further analysis of toxicity mechanism of PS-NPs revealed that they could induce reactive oxygen species (ROS) and suppressed denitrification gene expression. The results suggested that DOM may assist in the cellular internalization of PS-NPs by inhibiting PS-NPs aggregation, leading to the increased ROS levels and accelerated T. denitrificans death. This study highlights the potential risk of nanoplastics to autotrophic denitrifying bacteria in the presence of DOM and provides new insights for the treatment of nitrogen-containing wastewater by T. denitrificans.


Subject(s)
Thiobacillus , Thiobacillus/metabolism , Dissolved Organic Matter , Microplastics/metabolism , Reactive Oxygen Species/metabolism , Nitrates/toxicity , Nitrates/metabolism , Polystyrenes/metabolism
9.
Environ Technol ; 44(6): 841-852, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34559602

ABSTRACT

A high rate of elemental sulfur (S0) accumulation from sulfide-containing wastewater has great significance in terms of resource recovery and pollution control. This experimental study used Thiobacillus denitrificans and denitrifying bacteria incorporated with signal molecules (C6 and OHHL) for simultaneous sulfide (S2-) and nitrate (NO3-) removal in synthetic wastewater. Also, the effects on S0 accumulation due to changes in organic matter composition and bacteria proportion through signal molecules were analyzed. The 99.0% of S2- removal and 99.3% of NO3- was achieved with 66% of S0 accumulation under the active S2- removal group. The S0 accumulation, S2- and NO3- removal mainly occurred in 0-48 h. The S0 accumulation in the active S2- removal group was 2.0-6.3 times higher than the inactive S2- removal groups. In addition, S0/SO42- ratio exhibited that S0 conversion almost linearly increased with reaction time under the active S2- removal group. The proportion of Thiobacillus denitrificans and H+ consumption showed a positive correlation with S0 accumulation. However, a very high or low ratio of H+/S0 is not suitable for S0 accumulation. The signal molecules greatly increased the concentration of protein-I and protein-II, which resulted in the high proportion of Thiobacillus denitrificans. Therefore, high S0 accumulation was achieved as Thiobacillus denitrificans regulated the H+ consumption and electron transfer rate and provided suppressed oxygen environment. This technology is cost-effective and commercially applicable for recovering S0 from wastewater.


Subject(s)
Thiobacillus , Wastewater , Denitrification , Bioreactors/microbiology , Sulfur , Sulfides , Bacteria
10.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683266

ABSTRACT

Environmental pollution has particular implications for the whole geosystem and increases the global risk to human and ecological health. In this regard, investigations were carried out on soil samples to perform the quality status assessment by determining: pH, texture, structure and metal concentration, as well as carrying out an assessment of anthropogenic activity by determining pollution indices: Cf (contamination factor), Cd (degree of contamination), PLI (pollution load index), Er (ecological risk index) and PERI (potential ecological risk index). Analyses on soil samples showed high concentrations of metals (Cu: 113-2996 mg kg-1; Pb: 665-5466 mg kg-1; Cr: 40-187 mg kg-1; Ni: 221-1708 mg kg-1). The metal extraction experiments were carried out by bioleaching using Thiobacillusferrooxidans, microorganisms at different amounts of bioleaching solution (20 mL and 40 mL 9K medium) and a stirring time of up to 12 h. The results on the degree of contamination, pollution loading index PLI (2.03-57.23) and potential ecological risk index PERI (165-2298) indicate that the soils in the studied area have a very high degree of pollution. The decontamination procedure by bioleaching showed a decrease, but at the end of the test (12 h), the followed indices indicate high values, suggesting that bioleaching should continue. The depollution yield after 12 h of treatment is, however, encouraging: Cu 29-76%, Pb: 10-32%, Cr: 39-72% and Ni 44-68%. The use of yield-time correlation equations allows the identification of the optimal exposure time on the bioleaching extraction process to obtain optimal results. The aim of the research is to determine the soil quality, soil environmental risk, extraction of metals from polluted soils by bioleaching and to identify influencing factors in achieving high remediation yields.

11.
Environ Sci Technol ; 56(7): 4632-4641, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35319876

ABSTRACT

The biogeochemical fates of dissolved organic matter (DOM) show important environmental significance in aqueous ecosystems. However, the current understanding of the trophic relationship between DOM and microorganisms limits the ability of DOM to serve as a heterotrophic substrate or electron shuttle for microorganisms. In this work, we provide the first evidence of photoelectrophy, a new trophic linkage, that occurs between DOM and nonphototrophic microorganisms. Specifically, the photoelectrotrophic denitrification process was demonstrated in a Thiobacillus denitrificans-DOM coupled system, in which DOM acted as a microbial photosensitizer to drive the model denitrifier nitrate reduction. The reduction of nitrate followed a pseudo-first-order reaction with a kinetic constant of 0.06 ± 0.003 h-1, and the dominant nitrogenous product was nitrogen. The significant upregulated (p < 0.01) expression of denitrifying genes, including nar, nir, nor, and nos, supported that the conversion of nitrate to nitrogen was the microorganism-mediated process. Interestingly, the photoelectrophic process triggered by DOM photosensitization promotes humification of DOM itself, an almost opposite trend of pure DOM irradiation. The finding not only reveals a so far overlooked role of DOM serving as the microbial photosensitizer in sunlit aqueous ecosystems but also suggests a strategy for promoting sunlight-driven denitrification in surface environments.


Subject(s)
Denitrification , Photosensitizing Agents , Bioreactors , Dissolved Organic Matter , Ecosystem
12.
Chemosphere ; 296: 133969, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35181436

ABSTRACT

In the present study, to improve nitrate removal rate, a sulfur-based carrier was applied for autotrophic denitrification, and the removal rate was evaluated for advanced wastewater treatment without adding any external organic carbon source. Based on the results, an increased PAC concentration affected the removal efficiency of NO3--N, and the optimal concentration of PAC was at 15 wt%. During the 60 d operation of a pilot process with a capacity of 1 m3/d, the removal of T-N was 81.2% and 50.2% in reactors with and without sulfur-based carrier, respectively. The removal efficiency of NO3--N exhibited a similar trend to that of T-N. According to the results, the removal of T-N and NO3--N was noticeably enhanced to approximately 30% by adding a sulfur-based carrier to the A2O pilot system. In addition, microbial community in both reactors was dominated by Thiobacillus, which is an autotrophic microorganism, displaying a dominant denitrification status. The present study compared the relative efficiencies of nitrate removal in A2O pilot reactors with and without sulfur-based carriers for its successful application in real-scale autotrophic denitrification.


Subject(s)
Nitrogen , Wastewater , Autotrophic Processes , Bioreactors , Denitrification , Nitrates , Sulfur
13.
Environ Technol ; 43(1): 42-50, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32552558

ABSTRACT

The purpose of this study is to clarify the mechanism of the coupled hydrion with biology polysulfide in the simultaneous denitrification and desulfurization process. The coupled hydrion with biology polysulfide, uncoupled hydrion with biology polysulfide and no polysulfide experiments were performed in wastewater with two kinds of sulfide loads (100 and 200 mg/L). When the concentration of thiosulfate was suitable, the free H+ concentration (74.2 and 91.0 mg/L) and the proportion of Thiobacillus denitrificans (85.4% and 59.7%) were both higher under the two kinds of sulfide loading conditions (100 and 200 mg/L), and coupled hydrion with biology polysulfide was realized (the production of elemental sulfur is as high as 33 and 101 mg/L). Further analysis shown that the way of coupled hydrion with biology polysulfide were both: 2.0S2-+6.4NO3-+30.1H++21.7e-→1.0S2-+1.0SO42-+3.2N2+15.0H2O. In addition, for the coupled hydrion with biology polysulfide, more nitrates could be utilized to produce elemental sulfur S0, and the lower ratio of H+/S0 and SO42-/S0 were observed (S2- = 100 mg/L: 2.3 and 0.9; S2- = 200 mg/L: 0.9 and 0.03), which could promote the growth of Thiobacillus denitrificans and increase the proportion of Thiobacillus denitrificans. This maybe one of the reasons why coupled hydrion with biology polysulfide could be achieved.


Subject(s)
Thiobacillus , Water Purification , Biology , Bioreactors , Denitrification , Nitrates , Sulfides
14.
Environ Sci Pollut Res Int ; 29(14): 20398-20408, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34738215

ABSTRACT

Among the many extraction technologies for recovering metal resources from tailings, bioleaching technology is gradually showing its momentum. In our research, the enhanced effect of biochar on the bioleaching of stone coal tailings by Thiobacillus ferrooxidans (T. ferrooxidans) has been explored. In the static bioleaching experiment for 10 days, the leaching rate of vanadium (V) and copper (Cu) increased by 26.8% and 21.0% respectively after adding 5 g/L biochar. The dynamic bioleaching experiment further verified that under the promotion of biochar, the 44 day cumulative leaching rate of V and Cu increased by 15.3% and 14.5%, respectively. The promoting effect of biochar on T. ferrooxidans was mainly reflected in two aspects. The unique porous structure of biochar created a microenvironment for free microorganisms for inhabitation, while storing abundant nutrients. Biochar can also act as an excellent electronic medium to promote electron transfer, improving the oxidation ability of T. ferrooxidans on Fe2+. Furthermore, the presence of biochar may effectively inhibit the formation of jarosite precipitation on tailings in bioleaching, thereby improving the dissolution of tailings and the release of metal elements. This study demonstrates that biochar-enhanced bioleaching may be an efficient and environmentally friendly method for recovering metal resources from tailings.


Subject(s)
Copper , Vanadium , Acidithiobacillus , Charcoal , Coal
15.
Sci Total Environ ; 811: 152360, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34919932

ABSTRACT

Compared to autotrophic and heterotrophic denitrification process, the integrated autotrophic and heterotrophic denitrification (IAHD) shows wider foreground of applications in the actual wastewaters with organic carbon, nitrogen and sulfur co-existing. The efficient co-removal of sulfur, nitrogen, and carbon in the IAHD system is guaranteed by the interaction between heterotrophic and autotrophic denitrificans. In order to further explore the interaction between functional bacteria, Pseudomonas C27 and Thiobacillus denitrifcans were selected as typical heterotrophic and autotrophic bacteria, and their characteristics metabolic responses to different sulfide concentrations were studied. Pseudomonas C27 had higher metabolic activity than T. denitrificans in the IAHD medium with sulfide concentration of 3.12-15.62 mmol/L. Moreover, the fastest sulfide removal rate (0.35 mmol/L·h) was achieved with a single inoculation of Pseudomonas C27. Meanwhile, in mixed inoculant conditions, the interaction between Pseudomonas C27 and T. denitrificans (P:T = 3:1, P:T = 1:1 and P:T = 1:3) yielded the highest sulfide removal efficiency (more than 85%) when sulfide concentration was 6.25-12.5 mmol/L. Additionally, the sulfide removal rate increased with the inoculation proportion of Pseudomonas C27. Thus, this apparent interaction provided a theoretical basis for further understanding and guidance on the efficient operation of IAHD system.


Subject(s)
Thiobacillus , Bioreactors , Denitrification , Nitrates , Nitrogen , Pseudomonas
16.
Bioresour Technol ; 342: 125960, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34560437

ABSTRACT

The effect of Fe2+ on the performance of sulfur-driven autotrophic denitrification (SDAD) using S0 as electron donor was evaluated. The experimental results showed that as initial Fe2+ concentration increased, nitrate (NO3-) removal rate significantly decreased. Fe2+ ion (0.1 mM and 1 Mm) inhibited SDAD rate (approximately 10% and 50%) and resulted in an accumulation of nitrite (NO2-) and nitrous oxide (N2O). The relative abundance of Thiobacillus was positively correlated with NO3- removal rate, whereas negatively correlated with Fe2+ concentration, suggesting that Fe2+ inhibited the sulfur-oxidizing denitrifying bacteria. Moreover, the abundance of bacterial 16S rRNA, denitrifying genes (narG, nirS, nirK and nosZ) and sulfur-oxidizing genes (soxB and dsrA) decreased with the increase of Fe2+ concentration, among them nosZ and soxB were the most sensitive genes to Fe2+, and nosZ/narG, soxB/(bacterial 16S rRNA) and soxB/nirK had influence on NO3- removal rate, while nosZ/(bacterial 16S rRNA) affected N2O accumulation rate.


Subject(s)
Denitrification , Microbiota , Autotrophic Processes , Iron , Nitrates , Nitrous Oxide , RNA, Ribosomal, 16S/genetics , Sulfur
17.
Heliyon ; 7(6): e07215, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34159272

ABSTRACT

Cement is widely used as a construction material in the construction industry. However, there are challenges affecting its durability efficacy. Cement mortar/concrete is subject to degradation by aggressive ions such as sulphates and chlorides. Sulphates can be introduced into the concrete or mortar by Sulphur producing bacteria of the species Thiobacilli. Microbiologically induced CaCO3 precipitation (MICP) has found its application in bioremediating cement based materials. It has been found to be environmental friendly. However, no work has been reported on bioremediation of biodegraded cement based materials. This paper presents findings of possible bioremediation of mortars after undergoing biodegradation. Bacillus flexus, a beneficial bacterium was used. The control mortars were prepared using Ordinary Portland Cement (OPC). The test mortars were prepared and cured in a solution of Thiobacillus thioparus, a Sulphur oxidizing bacteria, deleterious bacterium for 14, 28, 56 and 90 days. Compressive strength analysis was conducted on the 14th, 28th, 56th and 90th day of curing. Results showed that the lowest compressive strength was recorded on the 90th day as 31.02 MPa. This was a 34.17 % loss in compressive strength. Another category of mortar cured in Thiobacillus thioparus for 28 days was bioremediated for 28 days using Bacillus flexus solution. Compressive strength and Scanning Electron Microscopy (SEM) analyses were then done. The results show a compressive strength of 45.83 MPa at the 56th day. This represents a 99.91 % strength recovery from biodeterioration. The SEM analysis results revealed a denser material. This was due to massive precipitation of calcium carbonate in the mortar matrix and pores/voids for bioremediated mortars as opposed to the biodegraded mortars. The results further revealed reduced ettringite crystals on the bioremediated mortars. Bacillus flexus could perhaps be used in restoring lost compressive strength as well as in sealing voids in degraded concrete in sewer lines and other cement based materials. This could improve on its efficacy with minimal repair.

18.
Bioresour Technol ; 335: 125280, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34015567

ABSTRACT

The sulfur(thiosulfate)-driven autotrophic denitrification coupled with Anammox (SDDA) process is proposed as an emerging technology for wastewater containing NH4+-N and NO3--N. However, the influence of organic matter on the SDDA process is not fully understood. A long-term experiment has shown that a moderate organic (acetate) (<140 mg/L COD) can accelerate the heterotrophic/autotrophic denitrification and Anammox activity, to reach as high as 92.8% ± 0.3% total nitrogen at a loading rate of 1.34 kg-N/(m3·d). Batch test results showed that Anammox made the largest contribution to the removal of nitrogen, even in an SDDA system with COD addition. Additionally, organics can promote the bioavailability of solid sulfur through reaction with sulfide to form polysulfides, which increased nitrite accumulation to forward Anammox process. Sulfur-oxidizing bacteria (e.g., Thiobacillus and Denitratisoma) coexisted with Anammox bacteria (e.g., Ca. Brocadia and Ca. Kuenenia) in the SDDA system despite the addition of exogenous COD.


Subject(s)
Denitrification , Thiosulfates , Bioreactors , Carbon , Nitrogen/analysis , Oxidation-Reduction , Sulfur , Wastewater/analysis
19.
Sci Total Environ ; 772: 145513, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33581520

ABSTRACT

In this study, two lab-scale Moving Bed Membrane Bioreactors (MBMBR) were setup and operated in parallel to study the effect of coarse and fine bubble aeration on the performances of membrane filtration and denitrification treating domestic wastewater. The bacterial populations in the two MBMBRs were further analyzed to investigate the mechanisms involved in the different denitrification performances. The results showed that coarse bubble aeration could effectively mitigate membrane fouling by decreasing the formation of cake layer, although smaller sizes of bio-flocs were induced. In addition, coarse bubble aeration could also maintain dissolved oxygen (DO) at a relatively lower level without compromising the moving of bio-carriers, which achieved 10% higher total nitrogen removal rate due to anoxic zone created at inner layers of biofilms on bio-carriers. Accumulation of denitrifier (Thiobacillus denitrificans) on the bio-carriers was found under the coarse bubble aeration system, which can explain its superior denitrification performance.


Subject(s)
Denitrification , Membranes, Artificial , Bioreactors , Nitrogen , Waste Disposal, Fluid , Wastewater
20.
Chemosphere ; 271: 129539, 2021 May.
Article in English | MEDLINE | ID: mdl-33434821

ABSTRACT

Rhamnolipid was proved to increase the abundance of Thiobacillus denitrificans in the mixotrophic denitrification biofilm while its microscopic mechanism remains to be explored. Effect of rhamnolipids on deposition of macromolecular substances and adhesion of Thiobacillus denitrificans at room (20 °C) and low temperature (10 °C) were systematically investigated by the quartz crystal microbalance with dissipation monitoring (QCM-D) for the first time. Results showed that low concentration of rhamnolipids (20-80 mg/L) could promote the deposition of macromolecular substances by reducing hydraulic repulsion force, with the maximum deposition amount increased by 4.28 times than that of the control at room temperature. Deposition amount of microorganisms could be improved by increasing its concentration at room temperature while it didn't work at low temperature. Meanwhile, low temperature could significantly inhibit adhesion of Thiobacillus denitrificans (p < 0.05) and deposited layers under low concentration of rhamnolipids were generally rigid, resulting in the negative feedback effect on the microorganisms' adhesion. While high concentration of rhamnolipids (120-200 mg/L) could regulate the biofilm from rigid to viscoelastic and significantly promote the initial adhesion of Thiobacillus denitrificans on SiO2 surface (p < 0.05). This study demonstrated the microscopic mechanism of rhamnolipids on the initial biofilm formation, that is, the reduction of hydration repulsion force was responsible for the enhanced deposition of macromolecules while the regulation of biofilm properties was account for the promoted adhesion of Thiobacillus denitrificans.


Subject(s)
Thiobacillus , Glycolipids , Quartz Crystal Microbalance Techniques , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...