ABSTRACT
This work analyzes the production of total lipids and the content of CoQ9 and CoQ10 in the biomass of Thraustochytrium sp. RT2316-16 grown in media containing a single amino acid at a concentration of 1 g L-1 as the sole nitrogen source; glucose (5 g L-1) was used as the carbon source. Biomass concentration and the content of total lipids and CoQ were determined as a function of the incubation time; ten amino acids were evaluated. The final concentration of the total biomass was found to be between 2.2 ± 0.1 (aspartate) and 3.9 ± 0.1 g L-1 (glutamate). The biomass grown in media containing glutamate, serine or phenylalanine reached a content of total lipids higher than 20% of the cell dry weight (DW) after 72, 60 and 72 h of incubation, respectively. The highest contents of CoQ9 (39.0 ± 0.7 µg g-1 DW) and CoQ10 (167.4 ± 3.4 mg g-1 DW) in the biomass of the thraustochytrid were obtained when glutamate and cysteine were used as the nitrogen source, respectively. Fatty acid oxidation, which decreased the total lipid content during the first 12 h of incubation, and the oxidation of hydrogen sulfide when cysteine was the nitrogen source, might be related to the content of CoQ10 in the biomass of the thraustochytrid.
ABSTRACT
Marine thraustochytrids produce metabolically important lipids such as the long-chain omega-3 polyunsaturated fatty acids, carotenoids, and sterols. The growth and lipid production in thraustochytrids depends on the composition of the culture medium that often contains yeast extract as a source of amino acids. This work discusses the effects of individual amino acids provided in the culture medium as the only source of nitrogen, on the production of biomass and lipids by the thraustochytrid Thraustochytrium sp. RT2316-16. A reconstructed metabolic network based on the annotated genome of RT2316-16 in combination with flux balance analysis was used to explain the observed growth and consumption of the nutrients. The culture kinetic parameters estimated from the experimental data were used to constrain the flux via the nutrient consumption rates and the specific growth rate of the triacylglycerol-free biomass in the genome-scale metabolic model (GEM) to predict the specific rate of ATP production for cell maintenance. A relationship was identified between the specific rate of ATP production for maintenance and the specific rate of glucose consumption. The GEM and the derived relationship for the production of ATP for maintenance were used in linear optimization problems, to successfully predict the specific growth rate of RT2316-16 in different experimental conditions.
Subject(s)
Models, Biological , Stramenopiles , Stramenopiles/metabolism , Stramenopiles/genetics , Culture Media/chemistry , Culture Media/metabolism , Metabolic Networks and Pathways/genetics , Amino Acids/metabolism , Biomass , Lipid Metabolism , Nutrients/metabolism , Adenosine Triphosphate/metabolismABSTRACT
Coenzyme Q (CoQ; ubiquinone) is an essential component of the respiratory chain. It is also a potent antioxidant that prevents oxidative damage to DNA, biological membranes, and lipoproteins. CoQ comprises a six-carbon ring with polar substituents that interact with electron acceptors and donors, and a hydrophobic polyisoprenoid chain that allows for its localization in cellular membranes. Human CoQ has 10 isoprenoid units (CoQ10) within the polyisoprenoid chain. Few microorganisms produce CoQ10. This work shows that Thraustochytrium sp. RT2316-16 produces CoQ10 and CoQ9. The CoQ10 content in RT2316-16 depended strongly on the composition of the growth medium and the age of the culture, whereas the CoQ9 content was less variable probably because it served a different function in the cell. Adding p-hydroxybenzoic acid to the culture media positively influenced the CoQ10 content of the cell. The absence of some B vitamins and p-aminobenzoic acid in the culture medium negatively affected the growth of RT2316-16, but reduced the decline in CoQ10 that otherwise occurred during growth. The highest content of CoQ9 and CoQ10 in the biomass were 855 µg g-1 and 10 mg g-1, respectively. The results presented here suggest that the thraustochytrid RT2316-16 can be a potential vehicle for producing CoQ10. Metabolic signals that trigger the synthesis of CoQ10 in RT2316-16 need to be determined for optimizing culture conditions.
Subject(s)
Antioxidants , Ubiquinone , Humans , Antioxidants/metabolism , Mitochondrial Membranes/metabolism , Oxidative Stress , Cell Membrane/metabolismABSTRACT
Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.
Subject(s)
Squalene , Stramenopiles , Squalene/metabolism , Plant Oils , Stramenopiles/genetics , Stramenopiles/metabolism , SterolsABSTRACT
Thraustochytrids are unicellular heterotrophic marine protists that have been described as producing a high content of polyunsaturated fatty acids (PUFAs). Among them, arachidonic acid (ARA) stands out as a precursor of several mediators of pivotal importance for the immune system. However, the biotechnological potential of thraustochytrids for ARA production has not been developed. The objective of this study is to isolate and identify native strains from different Chilean coastal environments and evaluate in vitro the effect of culture parameters such as C/N ratio (19 and 33) and temperature (15 °C and 23 °C) on biomass production and arachidonic acid content. A total of nine strains were identified and classified into four genera of the Thraustochitridae family. The Lng2 strain with 99% identity belongs to the species Ulkenia visurgenis and was the most prominent one for ARA production. Temperature had an effect on the PUFA profile but not on the ARA content nor on the biomass yield. Additionally, the C/N ratio has been identified as a key parameter. The ARA productivity increased by 92% (from 0.6 to 8.3 ARA mg/g-DW) and its total biomass by 62.7% (from 1.9 to 5.1 g/L) at a high C/N ratio (33) as compared to the control.
ABSTRACT
The carotenogenic thraustochytrid Thraustochytrium sp. RT2316-16 was grown in batch and repeated-batch cultures using different feeds containing glucose, or glycerol, and yeast extract, for the production of lipids, phospholipids and carotenoids. RT2316-16 produced canthaxanthin, astaxanthin and ß-carotene. The effects of biotin, ascorbic acid, light and temperature were evaluated in some of the experiments. In 2-day-old batch cultures, the combined mass percentage of eicosapentaenoic acid and docosahexaenoic acid in total lipids was between 16.5% (glycerol-based medium in the dark; biomass concentration = 4.2 ± 1.1 g L-1) and 42.6% (glucose-based medium under light; biomass concentration = 3.3 ± 0.1 g L-1), decreasing to 3.8% and 6.1%, respectively, after day 4. In repeated-batch cultures, the total lipids in the biomass increased after glucose or glycerol was fed alone, whereas the total carotenoids (168 ± 7 µg g-1 dry weight (DW)) and phospholipids in the biomass increased after feeding with yeast extract. The biomass with the highest content of phospholipids (28.7 ± 4.3 mg g-1 DW) was obtained using a feed medium formulated with glycerol, yeast extract and ascorbic acid. Glycerol was the best carbon source for the production of a biomass enriched with total lipids (467 ± 45 mg g-1 DW). The composition of carotenoids depended strongly on the composition of the feed. Repeated-batch cultures fed with yeast extract contained canthaxanthin as the main carotenoid, whereas in the cultures fed only with glucose, the biomass contained mainly ß-carotene.
Subject(s)
Batch Cell Culture Techniques , Stramenopiles , Ascorbic Acid , Biomass , Canthaxanthin , Carotenoids , Glucose , Glycerol , Phospholipids , beta CaroteneABSTRACT
Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4-63.9 µg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 µg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were ß-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A ß-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.
Subject(s)
Carotenoids/chemistry , Fatty Acids, Omega-3/chemistry , Stramenopiles , Animals , Antarctic Regions , Aquatic OrganismsABSTRACT
The thraustochytrid are marine heterotrophic protists that are widely distributed in the marine world. They are characterized by producing and accumulating great amount of lipids in their cells, especially long chain polyunsaturated fatty acids (LC-PUFA), highlighting the docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3) and arachidonic acid (ARA, 20:4, n-6), as well as pigments of interest for human health and animal nutrition, such as carotenoids. Therefore, the objective of this study was to isolate and characterize three natives isolated of thraustochytrids and assess the potential of the by-products of the manufacture of beer (RB) and protein extraction of Lupine flour (RL) as complex carbon sources to produce biomass, lipid and polyunsaturated fatty acids. Three native strains of thraustochytrid (AS5-B2, IQ81 y VAL-B1), isolated from Chilean coastal waters were morphologically and genetically identified as thraustochytrid. For the determination of biomass production cultures were quantified by gravimetry and the fatty acids quantification and identification were carried out by gas chromatography (GC-FID). Our results show that the culture with any sources of complex carbon used, increased significantly the production of both biomass and total lipids in the strains IQ81 and VAL-B1, compared to glucose as pure carbon source. On the other hand, strain AS5-B2 showed a decrease in the total production of lipids in RB compared to the pure carbon source. For the production of fatty acids, the strains IQ81 and VAL-B1 showed a significant increase in DHA when growing in RB. In conclusion strains IQ81 and VAL-B1 can be used to biotransform industrial waste, such as RB and RL, into a more valuable product such as DHA, EPA, ARA and lipids.
ABSTRACT
Oblongichytrium RT2316-13 synthesizes lipids rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The content of these fatty acids in the total lipids depended on growth temperature. Sequencing technology was used in this work to examine the thraustochytrid's response to a decrease in growth temperature from 15 °C to 5 °C. Around 4% (2944) of the genes were differentially expressed (DE) and only a few of the DE genes (533 upregulated; 206 downregulated) had significant matches to those in the SwissProt database. Most of the annotated DE genes were related to cell membrane composition (fatty acids, sterols, phosphatidylinositol), the membrane enzymes linked to cell energetics, and membrane structure (cytoskeletal proteins and enzymes). In RT2316-13, the synthesis of long-chain polyunsaturated fatty acids occurred through ω3- and ω6-pathways. Enzymes of the alternative pathways (Δ8-desaturase and Δ9-elongase) were also expressed. The upregulation of the genes coding for a Δ5-desaturase and a Δ5-elongase involved in the synthesis of EPA and DHA, explained the enrichment of total lipid with these two long-chain fatty acids at the low temperature. This molecular response has the potential to be used for producing microbial lipids with a fatty acids profile similar to that of fish oils.
Subject(s)
Aquatic Organisms/genetics , Eukaryota/genetics , Gene Expression Regulation , Lipid Metabolism/genetics , Temperature , Transcriptome , Antarctic Regions , Aquatic Organisms/growth & development , Aquatic Organisms/metabolism , Delta-5 Fatty Acid Desaturase , Eukaryota/growth & development , Eukaryota/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids, Unsaturated/biosynthesisABSTRACT
Production of biomass and lipids in batch cultures of the Antarctic thraustochytrid Oblongichytrium sp. RT2316-13, is reported. The microorganism proved capable of producing nearly 67% docosahexaenoic acid (DHA) and 15% eicosapentaenoic acid (EPA) in its total lipid fraction. Biomass with a maximum total lipid content of 33.5% (wt/wt) could be produced at 15°C in batch culture using a medium containing glucose (20 g/L), yeast extract (10.5 g/L), and other minor components. A lower culture temperature (5°C) reduced biomass and lipid productivities compared to culture at 15°C, but enhanced the DHA and EPA content of the lipids by 6.4- and 3.3-fold, respectively. Both a simple minimally structured mathematical model and a more complex genome-scale metabolic model (GEM) allowed the fermentation profiles in batch cultures to be satisfactorily simulated, but the GEM provided much greater insight in the biochemical and physiological phenomena underlying the observed behavior. Unlike the simpler model, the GEM could be interrogated for the possible effects of various external factors such as oxygen supply, on the expected outcomes. In silico predictions of oxygen effects were consistent with literature observations for DHA producing thraustochytrids.
Subject(s)
Aquatic Organisms/metabolism , Biotechnology/methods , Culture Media/chemistry , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Fermentation , Stramenopiles/metabolism , Antarctic Regions , Aquatic Organisms/growth & development , Aquatic Organisms/isolation & purification , Biomass , Cold Temperature , Docosahexaenoic Acids/analysis , Eicosapentaenoic Acid/analysis , Stramenopiles/growth & development , Stramenopiles/isolation & purificationABSTRACT
ABSTRACT Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1-19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24-48% and 6.1-9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10 °C and 25 °C). The growth in glucose at a temperature of 10 °C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels.
Subject(s)
Seawater/microbiology , Fatty Acids/metabolism , Stramenopiles/metabolism , Phylogeny , Biotechnology , Fatty Acids/chemistry , Stramenopiles/isolation & purification , Stramenopiles/classification , Stramenopiles/genetics , Antarctic RegionsABSTRACT
ABSTRACT Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1-19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24-48% and 6.1-9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10 °C and 25 °C). The growth in glucose at a temperature of 10 °C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels.(AU)
Subject(s)
Genetic Code , Fatty Acid Synthases/analysis , BiotechnologyABSTRACT
Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1-19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24-48% and 6.1-9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10°C and 25°C). The growth in glucose at a temperature of 10°C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels.
Subject(s)
Fatty Acids/metabolism , Seawater/microbiology , Stramenopiles/metabolism , Antarctic Regions , Biotechnology , Fatty Acids/chemistry , Phylogeny , Stramenopiles/classification , Stramenopiles/genetics , Stramenopiles/isolation & purificationABSTRACT
The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30 g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22 g/L, and fed-batch system experiments in which 0.14 g/L of glucose and 0.0014 g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9 g/L) was obtained after 96 h of cultivation in the batch system using initial concentrations of 0.22 g/L total nitrogen and 30 g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6 g/L), with docosahexaenoic acid and docosapentaenoic acid 6 concentrations reaching 2.54 and 0.80 g/L, respectively.(AU)
Subject(s)
Docosahexaenoic Acids/biosynthesis , Fatty Acids, Unsaturated , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , MicroalgaeABSTRACT
Abstract The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30 g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22 g/L, and fed-batch system experiments in which 0.14 g/L of glucose and 0.0014 g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9 g/L) was obtained after 96 h of cultivation in the batch system using initial concentrations of 0.22 g/L total nitrogen and 30 g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6 g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80 g/L, respectively.
Subject(s)
Carbon/metabolism , Docosahexaenoic Acids/metabolism , Stramenopiles/metabolism , Nitrogen/metabolism , Biomass , Culture Media/chemistry , Stramenopiles/growth & developmentABSTRACT
The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively.