Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Microb Pathog ; 193: 106716, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848932

ABSTRACT

The yellow spot disease caused by the virus species Orthotospovirus iridimaculaflavi (Iris yellow spot virus-IYSV), belonging to the genus Orthotospovirus, the family Tospoviridae, order Bunyavirales and transmitted by Thrips tabaci Lindeman. At present, emerging as a major threat in onion (Allium cepa) in Tamil Nadu, India. The yellow spot disease incidence was found to be 53-73 % in six districts out of eight major onion-growing districts surveyed in Tamil Nadu during 2021-2023. Among the onion cultivars surveyed, the cultivar CO 5 was the most susceptible to IYSV. The population of thrips was nearly 5-9/plant during vegetative and flowering stages. The thrips infestation was 34-60 %. The tospovirus involved was confirmed as IYSV through DAS-ELISA, followed by molecular confirmation through RT-PCR using the nucleocapsid (N) gene. The predominant thrips species present in onion crops throughout the growing seasons was confirmed as Thrips tabaci based on the nucleotide sequence of the MtCOI gene. The mechanical inoculation of IYSV in different hosts viz., Vigna unguiculata, Gomphrena globosa, Chenopodium amaranticolor, Chenopodium quinoa and Nicotiana benthamiana resulted in chlorotic and necrotic lesion symptoms. The electron microscopic studies with partially purified sap from onion lesions revealed the presence of spherical to pleomorphic particles measuring 100-230 nm diameter. The transmission of IYSV was successful with viruliferous adult Thrips tabaci in cowpea (Cv. CO7), which matured from 1st instar larva fed on infected cowpea leaves (24 h AAP). Small brown necrotic symptoms were produced on inoculated plants after an interval of four weeks. The settling preference of non-viruliferous and viruliferous T. tabaci towards healthy and infected onion leaves resulted in the increased preference of non-viruliferous thrips towards infected (onion-61.33 % and viruliferous thrips towards healthy onion leaves (75.33 %). The study isolates shared 99-100 % identity at a nucleotide and amino acid level with Indian isolates of IYSV in the N gene. The multiple alignment of the amino acid sequence of the N gene of IYSV isolates collected from different locations and IYSV isolates from the database revealed amino acid substitution in the isolate ITPR4. All the IYSV isolates from India exhibited characteristic amino acid substitution of serine at the 6th position in the place of threonine in the isolates from Australia, Japan and USA. The phylogenetic analysis revealed the monophyletic origin of the IYSV isolates in India.


Subject(s)
Onions , Plant Diseases , Thysanoptera , Tospovirus , India , Thysanoptera/virology , Animals , Onions/virology , Onions/parasitology , Plant Diseases/virology , Tospovirus/genetics , Tospovirus/isolation & purification , Tospovirus/physiology , Tospovirus/pathogenicity , Phylogeny , Insect Vectors/virology , Insect Vectors/parasitology
2.
J Morphol ; 285(6): e21712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798246

ABSTRACT

Although the monophyly of Paraneoptera (=hemipteroid orders or Acercaria, composed of Psocodea, Thysanoptera and Hemiptera) has been widely accepted morphologically, the results from molecular phylogenetic and phylogenomic analyses contradict this hypothesis. In particular, phylogenomic analyses provide strong bootstrap support for the sister group relationship between Psocodea and Holometabola, that is, paraphyly of Paraneoptera. Here, we examined the pterothoracic musculature of Paraneoptera, as well as a wide range of other neopterous insect orders, and analysed its phylogenetic implication. By using the synchrotron microcomputed tomography (µCT) and parsimony-based ancestral state reconstruction, several apomorphic conditions suggesting the monophyly of Paraneoptera, such as the absence of the II/IIItpm7, IIscm3, IIIspm2 and IIIscm3 muscles, were identified. In contrast, no characters supporting Psocodea + Holometabola were recovered from the thoracic muscles. These results provide additional support for the monophyly of Paraneoptera, together with the previously detected morphological apomorphies of the head, wing base, and abdomen.


Subject(s)
Neoptera , Phylogeny , X-Ray Microtomography , Animals , Neoptera/anatomy & histology , Neoptera/genetics , Neoptera/classification , Muscles/anatomy & histology , Thorax/anatomy & histology
3.
Insect Mol Biol ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676396

ABSTRACT

The western flower thrips, Frankliniella occidentalis, poses a significant challenge in global agriculture as a notorious pest and a vector of economically significant orthotospoviruses. However, the limited availability of genetic tools for F. occidentalis hampers the advancement of functional genomics and the development of innovative pest control strategies. In this study, we present a robust methodology for generating heritable mutations in F. occidentalis using the CRISPR/Cas9 genome editing system. Two eye-colour genes, white (Fo-w) and cinnabar (Fo-cn), frequently used to assess Cas9 function in insects were identified in the F. occidentalis genome and targeted for knockout through embryonic microinjection of Cas9 complexed with Fo-w or Fo-cn specific guide RNAs. Homozygous Fo-w and Fo-cn knockout lines were established by crossing mutant females and males. The Fo-w knockout line revealed an age-dependent modification of eye-colour phenotype. Specifically, while young larvae exhibit orange-coloured eyes, the colour transitions to bright red as they age. Unexpectedly, loss of Fo-w function also altered body colour, with Fo-w mutants having a lighter coloured body than wild type, suggesting a dual role for Fo-w in thrips. In contrast, individuals from the Fo-cn knockout line consistently displayed bright red eyes throughout all life stages. Molecular analyses validated precise editing of both target genes. This study offers a powerful tool to investigate thrips gene function and paves the way for the development of genetic technologies for population suppression and/or population replacement as a means of mitigating virus transmission by this vector.

4.
Zookeys ; 1192: 197-212, 2024.
Article in English | MEDLINE | ID: mdl-38425444

ABSTRACT

Hitherto, only two species of the thysanopteran suborder Terebrantia have been reported from mid-Cretaceous Kachin amber (Myanmar). This is here expanded through the discovery of two new genera and species, described and figured as Parallelothripsseparatusgen. et sp. nov. and Didymothripsabdominalisgen. et sp. nov., both of the family Stenurothripidae. Both taxa have key apomorphies of the Stenurothripidae, allowing for a confident assignment as to family. Both species have characteristic comb-like anteromarginal setae, which are discussed along with structural differences between the two sexes. Cycad pollen was found on the thrips' bodies, providing further evidence that Thysanoptera were pollinators of gymnosperms during the mid-Cretaceous.

5.
Braz. j. biol ; 84: e246460, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1350310

ABSTRACT

Abstract Field survey study was conducted season (2017). Soybeans and weeds were weekly sampled randomly. Thrips adults were identified and counted. Detection of the virus isolate and the natural incidence was determined using; Mechanical transmission, host range, DAS-ELISA, RT-PCR. The natural incidence thrips individuals was detected depending on the SVNV% in thrips individuals and weeds hosts. Ten thrips species were associated with soybean plants in the field. The most abundant species was T. tabaci, average 256.5 average no.of individuals, followed by F. occidentalis (142.5 average no. of individuals), then N. variabilis (86.6/ average no. of individuals). Fourteen thrips species occurred on 5 legumes field crops and 41 weed plant species within soybean field. The highest average number 40.6.of individuals were recorded on Ammi majus. While the lowest one 3.3 average no. of individuals were on Urtica urens. Only 21diagnostic plant species were susceptible to infection with SVNV. G. max and Vigna radiate, were the highest percentage of infection 80% followed by V. unguilata & N. benthamiana, 75%. Egyptian isolate of Soybean vein necrosis virus (SVNV) in this study showed a high degree of similarity and it is closely related to TSWV from Egypt (DQ479968) and TCSV from USA (KY820965) with nucleotide sequence identity of 78%. Four thrips species transmitted SVNV (F. fusca 4.0%, F. schultzei 4.3%, F. tritici 3.3% and N. variabilis 68.0% transmission). Both C. phaseoli and M. sjostedti can acquire the virus but unable to transmit it. The following species; T. tabaci, F. occidentalis, S. dorsallis and T. palmi cannot acquire or transmit SVNV. The incidence of SVNV in the field started by the end of July then increased gradualy from 12.7 to 71.3% by the end of the season. In conclusion, few thrips individuals invaded soybean crops are enough to transmit high rate of SVNV within the crop. Furthermore, several vector species are also abundant on weeds, which are the major sources of soybean viruses transmitted to the crops. This information might be important for control and reduce the incidence of SVNV infection.


Resumo O estudo de pesquisa de campo foi realizado na temporada (2017). A soja e as ervas daninhas foram amostradas semanalmente de forma aleatória. Tripes adultos foram identificados e contados. A detecção do vírus isolado e a incidência natural foram determinadas usando transmissão mecânica, gama de hospedeiros, DAS-ELISA, RT-PCR. A incidência natural de tripes em indivíduos foi detectada dependendo da % de SVNV em tripes e hospedeiros infestantes. Dez espécies de tripes foram associadas a plantas de soja no campo. A espécie mais abundante foi T. tabaci, com média de 256,5 número médio de indivíduos, seguida por F. occidentalis (142,5) e N. variabilis (86,6 / número médio de indivíduos). Catorze espécies de tripes ocorreram em 5 culturas de leguminosas e 41 espécies de plantas daninhas dentro de campos de soja. O maior número médio de 40,6 indivíduos foi registrado em Ammi majus. Enquanto o mais baixo, 3,3 número médio de indivíduos, foi no Urtica urens. Apenas 21 espécies de plantas diagnosticadas foram suscetíveis à infecção com SVNV. G. max e Vigna radiate foram os maiores percentuais de infecção, 80%, seguidos por V. unguilata e N. benthamiana, 75%. O isolado egípcio neste estudo mostrou um alto grau de similaridade e está intimamente relacionado ao TSWV do Egito (DQ479968) e ao TCSV dos EUA (KY820965), com identidade de sequência de nucleotídeos de 78%. Quatro espécies de tripes transmitiram SVNV (F. fusca 4,0%, F. schultzei 4,3%, F. tritici 3,3% e N. variabilis 68,0% de transmissão). Tanto C. phaseoli quanto M. sjostedti podem adquirir o vírus, mas não podem transmiti-lo. As seguintes espécies, T. tabaci, F. occidentalis, S. dorsallis e T. palmi não podem adquirir ou transmitir SVNV. A incidência de SVNV no campo, iniciada no final de julho, aumentou gradativamente de 12,7 para 71,3% no final da temporada. Em conclusão, poucos indivíduos de tripes invadiram a cultura da soja e são suficientes para transmitir alta taxa de SVNV dentro da cultura. Além disso, várias espécies de vetores também abundam em ervas daninhas, que são as principais fontes dos vírus da soja transmitidos às lavouras. Essas informações podem ser importantes para controlar e reduzir a incidência de infecção por SVNV.


Subject(s)
Humans , Tospovirus , Plant Diseases , Glycine max , Incidence , Urticaceae , Egypt/epidemiology , Plant Weeds , Necrosis
6.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469268

ABSTRACT

Abstract Field survey study was conducted season (2017). Soybeans and weeds were weekly sampled randomly. Thrips adults were identified and counted. Detection of the virus isolate and the natural incidence was determined using; Mechanical transmission, host range, DAS-ELISA, RT-PCR. The natural incidence thrips individuals was detected depending on the SVNV% in thrips individuals and weeds hosts. Ten thrips species were associated with soybean plants in the field. The most abundant species was T. tabaci, average 256.5 average no.of individuals, followed by F. occidentalis (142.5 average no. of individuals), then N. variabilis (86.6/ average no. of individuals). Fourteen thrips species occurred on 5 legumes field crops and 41 weed plant species within soybean field. The highest average number 40.6.of individuals were recorded on Ammi majus. While the lowest one 3.3 average no. of individuals were on Urtica urens. Only 21diagnostic plant species were susceptible to infection with SVNV. G. max and Vigna radiate, were the highest percentage of infection 80% followed by V. unguilata & N. benthamiana, 75%. Egyptian isolate of Soybean vein necrosis virus (SVNV) in this study showed a high degree of similarity and it is closely related to TSWV from Egypt (DQ479968) and TCSV from USA (KY820965) with nucleotide sequence identity of 78%. Four thrips species transmitted SVNV (F. fusca 4.0%, F. schultzei 4.3%, F. tritici 3.3% and N. variabilis 68.0% transmission). Both C. phaseoli and M. sjostedti can acquire the virus but unable to transmit it. The following species; T. tabaci, F. occidentalis, S. dorsallis and T. palmi cannot acquire or transmit SVNV. The incidence of SVNV in the field started by the end of July then increased gradualy from 12.7 to 71.3% by the end of the season. In conclusion, few thrips individuals invaded soybean crops are enough to transmit high rate of SVNV within the crop. Furthermore, several vector species are also abundant on weeds, which are the major sources of soybean viruses transmitted to the crops. This information might be important for control and reduce the incidence of SVNV infection.


Resumo O estudo de pesquisa de campo foi realizado na temporada (2017). A soja e as ervas daninhas foram amostradas semanalmente de forma aleatória. Tripes adultos foram identificados e contados. A detecção do vírus isolado e a incidência natural foram determinadas usando transmissão mecânica, gama de hospedeiros, DAS-ELISA, RT-PCR. A incidência natural de tripes em indivíduos foi detectada dependendo da % de SVNV em tripes e hospedeiros infestantes. Dez espécies de tripes foram associadas a plantas de soja no campo. A espécie mais abundante foi T. tabaci, com média de 256,5 número médio de indivíduos, seguida por F. occidentalis (142,5) e N. variabilis (86,6 / número médio de indivíduos). Catorze espécies de tripes ocorreram em 5 culturas de leguminosas e 41 espécies de plantas daninhas dentro de campos de soja. O maior número médio de 40,6 indivíduos foi registrado em Ammi majus. Enquanto o mais baixo, 3,3 número médio de indivíduos, foi no Urtica urens. Apenas 21 espécies de plantas diagnosticadas foram suscetíveis à infecção com SVNV. G. max e Vigna radiate foram os maiores percentuais de infecção, 80%, seguidos por V. unguilata e N. benthamiana, 75%. O isolado egípcio neste estudo mostrou um alto grau de similaridade e está intimamente relacionado ao TSWV do Egito (DQ479968) e ao TCSV dos EUA (KY820965), com identidade de sequência de nucleotídeos de 78%. Quatro espécies de tripes transmitiram SVNV (F. fusca 4,0%, F. schultzei 4,3%, F. tritici 3,3% e N. variabilis 68,0% de transmissão). Tanto C. phaseoli quanto M. sjostedti podem adquirir o vírus, mas não podem transmiti-lo. As seguintes espécies, T. tabaci, F. occidentalis, S. dorsallis e T. palmi não podem adquirir ou transmitir SVNV. A incidência de SVNV no campo, iniciada no final de julho, aumentou gradativamente de 12,7 para 71,3% no final da temporada. Em conclusão, poucos indivíduos de tripes invadiram a cultura da soja e são suficientes para transmitir alta taxa de SVNV dentro da cultura. Além disso, várias espécies de vetores também abundam em ervas daninhas, que são as principais fontes dos vírus da soja transmitidos às lavouras. Essas informações podem ser importantes para controlar e reduzir a incidência de infecção por SVNV.

7.
BMC Genom Data ; 24(1): 46, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587406

ABSTRACT

Thysanoptera, commonly known as thrips, are diverse tiny insects whose earliest fossil record dates back to the Triassic period. Since there are few studies on the divergence time of taxa under Thysanoptera, this study used 13 mitochondrial coding protein genes to reconstruct the phylogenetic tree with divergence time of 26 species of this order and show a reliable phylogenetic relationship of thrips species. The time tree of this study shows that most extant thrips diverged in the early Tertiary period, while the fossil records also support that most extinct thrips appeared in this period. This study expands our understanding of the evolution of thrips and provides a feasible way of using multiple mitochondrial genes to establish robust phylogenetic relationships and explore divergence time between species.


Subject(s)
Thysanoptera , Animals , Thysanoptera/genetics , Phylogeny , Extinction, Psychological , Fossils , Genes, Mitochondrial , Mitochondrial Proteins
8.
Arch Insect Biochem Physiol ; 114(2): 1-15, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36915951

ABSTRACT

Thrips parvispinus is a serious sucking pest on a number of economically important crops in the oriental region. It has gained importance recently for its drastic range extension distribution as an invasive pest. Here, the complete mitochondrial genome (15,067 bp) of Thrips parvispinus was sequenced and characterized. It possesses 37 genes and the putative noncoding region is duplicated. Comparative analyses of nucleotide diversity, skewness, codon usage bias, and selection pressure in mitochondrial protein-coding genes of the available 31 thrips mitogenomes (24 Terebrantia + 7 Tubulifera) were performed. Phylogenetic analysis showed a sister relationship of T. parvispinus to the clade (T. florum + T. hawaiiensis). Phylogenetic analyses formed the monophyly of subfamilies Phlaeothripinae and Idolothripinae within the family Phlaeothripidae (Suborder Tubulifera). Low nucleotide diversity was indicative of reversal of strand asymmetry in the Tubulifera. Neutrality analysis showed that directional mutation plays a major role in shaping codon usage bias in both suborders. Principal component analysis indicated distinct codon usage patterns in each suborder. Our data suggested weaker selection constrains on Terebrantia than in the Tubulifera. More tubuliferan mitogenomes are required to resolve previous classification hypotheses and elucidate genome evolution in these two suborders.


Subject(s)
Genome, Mitochondrial , Thysanoptera , Animals , Thysanoptera/genetics , Phylogeny , Base Sequence , Nucleotides
9.
Mitochondrial DNA B Resour ; 8(2): 204-206, 2023.
Article in English | MEDLINE | ID: mdl-36761102

ABSTRACT

Rice thrips, Stenchaetothrips biformis (Bagnall, 1913), are one of the destructive pests of rice. Here, the complete mitochondrial genome of S. biformis was sequenced using high-throughput sequencing. The mitogenome is 15,359 bp long with an A + T content of 76.94%, which contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNAs), 2 ribosomal RNA genes (rRNAs) and 2 putative control regions (CRs). The phylogenetic analysis showed that S. biformis is closely related to Thrips imaginis and Thrips palmi. This new mitochondrial genome data can be better used to provide a basis for studies of the mitochondrial evolution of Thysanoptera.

10.
Neotrop Entomol ; 52(2): 263-272, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35831705

ABSTRACT

Thrips (Thysanoptera, Thripidae) are pests of several crops and their chemical control is mainly hindered by their thigmotactic habits, which in turn allows the use of biological control agents with similar habits. Orius (Hemiptera: Anthocoridae) are effective control agents for thrips and are commercialized in many countries. Habitat overlap exists between Doru luteipes (Scudder) (Dermaptera: Forficulidae) and thrips, making D. luteipes a potential predator in the control of these insects. Our goals were to confirm the predatory ability of D. luteipes when exposed to thrips, Caliothrips phaseoli (Hood), and to evaluate the interaction between D. luteipes and Orius insidiosus Say for the control of thrips using behavioral and feeding preference tests. The ability of D. luteipes and O. insidiosus to prey on thrips at all stages was tested by predation bioassays; adults of D. luteipes consumed 210.9 ± 23.2 thrips per day, while adults of O. insidiosus consumed 32.4 ± 3.6 thrips per day. Intraguild predation was absent, and the predatory behavior feeding of the two predatory species was not altered in the presence of the other predator. In addition, these predators forage at different times-O. insidiosus during the day and D. luteipes at night, indicating that both predators do not interact negatively, allowing the use of both in a biological pest control program for thrips.


Subject(s)
Hemiptera , Heteroptera , Thysanoptera , Animals , Insecta , Neoptera , Ecosystem , Predatory Behavior
11.
Biodivers Data J ; 11: e106860, 2023.
Article in English | MEDLINE | ID: mdl-38318519

ABSTRACT

This biography describes the life and professional work of entomologist and industrialist Richard Siddoway Bagnall (1884-1962). This work significantly expands on the biographical notes of Laurence Mound in his paper "A review of R. S. Bagnall's Thysanoptera Collections". Bagnall's life and entomological career is described in detail, including a clarification of his birth date. This biography was written to complement the recent digitisation of Bagnall's Thysanoptera slides at The Natural History Museum, London, and it is hoped that this biography will be of benefit to future workers upon his material. In addition to Thysanoptera, Bagnall also worked on Collembola, Coleoptera, Myriapoda and other groups.

12.
Insect Biochem Mol Biol ; 149: 103843, 2022 10.
Article in English | MEDLINE | ID: mdl-36113709

ABSTRACT

Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.


Subject(s)
Thysanoptera , Tospovirus , Animals , Female , Flowers , Male , Plant Diseases , Plants , Proteome/metabolism , Proteomics , Salivary Glands , Thysanoptera/metabolism , Tospovirus/physiology
13.
Mitochondrial DNA B Resour ; 7(6): 1177-1179, 2022.
Article in English | MEDLINE | ID: mdl-35783057

ABSTRACT

Megalurothrips usitatus is a serious pest on Vigna unguiculata. In this study, the complete mitochondrial genome sequence of M. usitatus was characterized and its phylogenetic relationship within the Order Thysanoptera was determined. The mitochondrial genome of M. usitatus was a circular molecule of 15426 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and the control region. It showed the typical insect mitochondrial genome arrangement. The AT content of the whole genome was 77.69% and the length of the control region was 567 bp with 78.66% AT content. The Maximum likelihood (ML) phylogenetic analysis based on mitochondrial protein-coding genes of 17 insect speciesshowed that M. usitatus is closest to Frankliniella occidentalis.

14.
Insects ; 13(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893025

ABSTRACT

Strong winds, fire, and subsequent forest management impact arthropod communities. We monitored the diversity and changes in the community structure of forest thrips assemblages in the context of secondary succession and anthropogenic impact. There were eight study plots that were affected to varying degrees by the mentioned disturbances that were selected in the Central European spruce (Picea abies (L.) Karst.) forests in Slovakia. The soil photoeclectors were used to obtain thrips in the study plots during two vegetation seasons. The thrips assemblages and their attributes were analyzed by non-metric multidimensional scaling (NMDS). The significant changes in community structure, composition, stratification, species richness, and diversity of thrips assemblages that were caused by natural- (wind) and human-induced disturbance (forestry and fire) were observed in our research. Our analyses revealed a clear relationship between different thrips assemblages and impacted environment. Moreover, our results indicate that silvicolous thrips species may be useful for indicating changes and disturbances in forest ecological systems.

15.
Insects ; 13(7)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35886761

ABSTRACT

Extensive gene rearrangement is characteristic in the mitogenomes of thrips (Thysanoptera), but the historical process giving rise to the contemporary gene rearrangement pattern remains unclear. To better understand the evolutionary processes of gene rearrangement in the mitogenomes of thrips, we sequenced the mitogenome of the banded thrip species Aeolothrips xinjiangensis. First, we found a novel mitochondrial gene order in this species. This mitogenome is 16,947 bp in length and encodes the typical 37 coding genes (13 protein-coding genes, 22 tRNA genes, and two rRNA genes) of insects. The gene arrangement was dramatically different from the putative ancestral mitogenome, with 26 genes being translocated, eight of which were inverted. Moreover, we found a novel, conserved gene block, trnC-trnY, which has not been previously reported in the mitogenomes of thrips. With this newly assembled mitogenome, we compared mitogenome sequences across Thysanoptera to assess the evolutionary processes giving rise to the current gene rearrangement pattern in thrips. Seven identical gene blocks were shared by two sequenced banded thrip mitogenomes, while the reversal of ND2 combined with TDRL events resulted in the different gene orders of these two species. In phylogenetic analysis, the monophyly of the suborders and families of Thysanoptera was well supported. Across the gene orders of 14 thrips, only two conserved gene blocks, ATP8-ATP6 and ND4-ND4L, could be found. Correlation analysis showed that the degree of gene rearrangement was positively correlated with the non-synonymous substitution rate in thrips. Our study suggests that the mitogenomes of thrips remain stable over long evolutionary timescales after massive rearrangement during early diversification.

16.
Proc Natl Acad Sci U S A ; 119(15): e2120081119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35380896

ABSTRACT

Plastid-mediated RNA interference (PM-RNAi) has emerged as a promising strategy for pest control. Expression from the plastid genome of stable double-stranded RNAs (dsRNAs) targeted against essential insect genes can effectively control some herbivorous beetles, but little is known about the efficacy of the transplastomic approach in other groups of pest insects, especially nonchewing insects that do not consume large amounts of leaf material. Here we have investigated the susceptibility of the western flower thrip (WFT, Frankliniella occidentalis), a notorious pest in greenhouses and open fields, to PM-RNAi. We show that WFTs ingest chloroplasts and take up plastid-expressed dsRNAs. We generated a series of transplastomic tobacco plants expressing dsRNAs and hairpin RNAs (hpRNAs) targeted against four essential WFT genes. Unexpectedly, we discovered plastid genome instability in transplastomic plants expressing hpRNAs, suggesting that dsRNA cassettes are preferable over hpRNA cassettes when designing PM-RNAi strategies. Feeding studies revealed that, unlike nuclear transgenic plants, transplastomic plants induced a potent RNAi response in WFTs, causing efficient suppression of the targeted genes and high insect mortality. Our study extends the application range of PM-RNAi technology to an important group of nonchewing insects, reveals design principles for the construction of dsRNA-expressing transplastomic plants, and provides an efficient approach to control one of the toughest insect pests in agriculture and horticulture.


Subject(s)
Pest Control, Biological , Plastids , RNA Interference , RNA, Plant , Thysanoptera , Animals , Pest Control, Biological/methods , Plastids/genetics , RNA, Double-Stranded , RNA, Plant/genetics , Thysanoptera/genetics , Nicotiana/genetics , Nicotiana/parasitology
17.
Int J Acarol, v. 48, n. 6, p. 433-441, jun. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4416

ABSTRACT

The family Erythraeidae has 60 genera worldwide, of which Charletonia Oudemans has 86 described species, only two of which are recorded in Brazil. Here, we redescribe one of these species based on the holotype, Charletonia rocciai Treat and Flechtmann, and newly collected material. The material represents new records from four different localities in São Paulo State and one in Santa Catarina State. In addition, we provide SEM images of the morphological structures to improve the diagnosis and redescription, an updated distribution map, including biological data, and new host-associations of C. rocciai with the following orders of insects, Coleoptera and Thysanoptera, and with an order of Arachnida – Araneae.

18.
EFSA J ; 19(11): e06888, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765032

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation of the black vine thrips, Retithrips syriacus (Thysanoptera: Thripidae), for the EU territory. This species is not included in EU Commission Implementing Regulation 2019/2072. This polyphagous species feeds, among others, on apple, avocado, banana, cotton, grapevine, persimmon, pear, walnut and other plants cultivated in the EU. R. syriacus occurs in several African and Asian countries and in Florida (USA), the Caribbean and Brazil, in a range of climates some of which also occur in the EU. It can complete up to seven generations per year. It overwinters at the adult stage in the soil. Adult females lay up to 60 eggs in 5-10 days in the leaf tissue or less frequently on the leaf surface. Larvae and adults feed usually on the lower side of leaves. Larvae then drop down, enter the soil, and pupate. Potential entry pathways for R. syriacus, such as plants for planting, cut flowers and fruits, exist. Soil can be considered as a closed pathway. The pest is not known to be present in the EU territory and there are no reports of interceptions. Should R. syriacus arrive in the EU, the availability of hosts and occurrence of potentially suitable climates would be conducive for establishment. Should this species establish in the EU, yield and quality losses in several fruit trees production is anticipated. R. syriacus satisfies the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest.

19.
BMC Genomics ; 22(1): 810, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34758725

ABSTRACT

BACKGROUND: The gut is the first barrier to infection by viruses that are internally borne and transmitted persistently by arthropod vectors to plant and animal hosts. Tomato spotted wilt virus (TSWV), a plant-pathogenic virus, is transmitted exclusively by thrips vectors in a circulative-propagative manner. Frankliniella occidentalis (western flower thrips), the principal thrips vector of TSWV, is transmission-competent only if the virus is acquired by young larvae. To begin to understand the larval gut response to TSWV infection and accumulation, a genome-assisted, transcriptomic analysis of F. occidentalis gut tissues of first (early L1) and second (early L2 and late L2) instar larvae was conducted using RNA-Seq to identify differentially-expressed transcripts (DETs) in response to TSWV compared to non-exposed cohorts. RESULTS: The larval gut responded in a developmental stage-dependent manner, with the majority of DETs (71%) associated with the early L1 stage at a time when virus infection is limited to the midgut epithelium. Provisional annotations of these DETs inferred roles in digestion and absorption, insect innate immunity, and detoxification. Weighted gene co-expression network analysis using all assembled transcripts of the gut transcriptome revealed eight gene modules that distinguish larval development. Intra-module interaction network analysis of the three most DET-enriched modules revealed ten central hub genes. Droplet digital PCR-expression analyses of select network hub and connecting genes revealed temporal changes in gut expression during and post exposure to TSWV. CONCLUSIONS: These findings expand our understanding of the developmentally-mediated interaction between thrips vectors and orthotospoviruses, and provide opportunities for probing pathways for biomarkers of thrips vector competence.


Subject(s)
Thysanoptera , Tospovirus , Animals , Larva/genetics , Plant Diseases , Thysanoptera/genetics , Tospovirus/genetics , Transcriptome
20.
Mitochondrial DNA B Resour ; 6(7): 2033-2034, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34212088

ABSTRACT

Gynaikothrips ficorum (Marchal 1908) is a major pest of bonsai ficus and poses a considerable economic threat to gardening industry. The mitochondrial genome of G. ficorum was sequenced and annotated in this study. Its whole mitogenome was 15,313 bp in length, including 37 typical genes in animal mitogenomes. ATN was used as start codon in most of the PCGs except for nad4l, which used TTG. All PCGs used TAA as termination codon except atp8 and atp6 which were ended with an incomplete T and TAG, respectively. A phylogenetic tree based on complete mitochondrial genomes of 17 species (15 Thysanoptera species and two outgroups) showed that the monophyly of Phlaeothripidae was supported and G. ficorum and G. uzeli formed a sister group.

SELECTION OF CITATIONS
SEARCH DETAIL
...