Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Geosci Lett ; 11(1): 36, 2024.
Article in English | MEDLINE | ID: mdl-39157275

ABSTRACT

The Indonesian seas, with their complex passages and vigorous mixing, constitute the only route and are critical in regulating Pacific-Indian Ocean interchange, air-sea interaction, and global climate events. Previous research employing remote sensing and numerical simulations strongly suggested that this mixing is tidally driven and localized in narrow channels and straits, with only a few direct observations to validate it. The current study offers the first comprehensive temporal microstructure observations in the south of Lombok Strait with a radius of 0.05° and centered on 115.54oE and 9.02oS. Fifteen days of tidal mixing observations measured potential temperature and density, salinity, and turbulent energy dissipation rate. The results revealed significant mixing and verified the remotely sensed technique. The south Lombok temporal and depth averaged of the turbulent kinetic energy dissipation rate, and the diapycnal diffusivity from 20 to 250 m are ε  = 4.15 ± 15.9) × 10-6 W kg-1 and K ρ = (1.44 ± 10.7) × 10-2 m2s-1, respectively. This K ρ is up to 104 times larger than the Banda Sea [ K ρ  = (9.2 ± 0.55) × 10-6 m2s-1] (Alford et al. Geophys Res Lett 26:2741-2744, 1999) or the "open ocean" K ρ = 0.03 × 10-4 m2s-1 within 2° of the equator to (0.4-0.5) × 10-4 m2s-1 at 50°-70° (Kunze et al. J Phys Oceanogr 36:1553-1576, 2006). Therefore, nonlinear interactions between internal tides, tidally induced mixing, and ITF plays a critical role regulating water mass transformation and have strong implications to longer-term variations and change of Pacific-Indian Ocean water circulation and climate. Supplementary Information: The online version contains supplementary material available at 10.1186/s40562-024-00349-3.

2.
Mar Pollut Bull ; 181: 113822, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35716491

ABSTRACT

Surface carbonate chemistry in the Yellow Sea was investigated based on discrete seawater samples collected from 2017 to 2020 at the Socheongcho Ocean Research Station (S-ORS; 37.423°N, 124.738°E). Records of carbon parameters, including seawater CO2 partial pressure (pCO2), revealed considerable seasonal variations, with amplitudes comparable to those observed across the western part of the Yellow Sea. The study site acted as a modest sink (-0.13 mol C m-2 yr-1) for atmospheric CO2. Biological processes (primary production and respiration) and physical conditions (temperature and degree of stratification) determined seawater pCO2, which fluctuated on an intraseasonal timescale between oversaturated and undersaturated with respect to atmospheric pCO2. Variation in pCO2 was significant in summer, depending on the biological carbon drawdown and tidal mixing-induced upwelling (increased pCO2 up to ~1000 µatm). The intraseasonal variability in seawater pCO2 may bias estimated air-sea CO2 fluxes, if measurements with a coarser (seasonal) time resolution are used.


Subject(s)
Carbon Dioxide , Carbonates , Carbon , Seasons , Seawater
3.
Environ Monit Assess ; 189(2): 89, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28144872

ABSTRACT

Spatial and temporal measurement data describing spring-neap variations of velocity, salinity, and suspended sediment concentration (SSC) in the North Passage Deepwater Navigational Channel (DNC) of the Yangtze Estuary, China, were obtained in the wet season of 2012. These data were collected in the middle of the DNC and apparently document the formation of a rather stable density stratification interface and salt wedge, especially during neap tides and slack waters. The convergent zone of residual currents, salinity transport, and sediment transport during neap and spring tides oscillates in the middle and lower reach of the DNC. It encourages the formation of a near-bed high-SSC layer, which favours siltation in the dredged channel. Both the near-bed gradient Richardson number and the bulk/layer Richardson number vary dramatically from around zero to several hundred from spring to neap tides. Stratification and turbulence damping effects near the estuarine turbidity maximum (ETM) area induce the upper half (near water surface) of the water body to be ebb-dominant and the lower part (near-bed) to be flood-dominant, which is a previously undocumented phenomenon in this region. These data reveal that the residual pattern of currents, salt flux and sediment flux are of critical differences in a stratified estuary, and that the salinity-induced baroclinic pressure gradient is a major factor controlling the vertical velocity structure. In addition, field observations indicate that the salinity and sediment transport of residuals generated by internal tidal asymmetry plays a dominant role in maintaining a stable density stratification interface near the estuarine front.


Subject(s)
Environmental Monitoring , Estuaries , China , Models, Theoretical , Salinity , Seasons , Seawater , Spatio-Temporal Analysis , Tidal Waves
4.
Chemosphere ; 173: 299-306, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28119165

ABSTRACT

Hydrographic observation and biological samplings were conducted to assess the distribution of phytoplankton community over the sloping shelf of the eastern Yellow Sea in May 2012. The concentration of chlorophyll a was determined and phytoplankton was microscopically examined to conduct quantitative and cluster analyses. A cluster analysis of the phytoplankton species and abundance along four observation lines revealed the three-dimensional structure of the phytoplankton community distribution: the coastal group in the mixed region, the offshore upper layer group preferring stable water column, and the offshore lower layer group. The subsurface maximum of phytoplankton abundance and chlorophyll a concentration appeared as far as 64 km away from the tidal front through the middle layer intrusion. The phytoplankton abundance was high in the shore side of tidal front during the spring tide. The phytoplankton abundance was relatively high at 10-m depth in the mixed region while the concentration of chlorophyll a was high below the depth. The disparity between the profiles of the phytoplankton abundance and the chlorophyll a concentration in the mixed region was related to the depth-dependent species change accompanied by size-fraction of the phytoplankton community.


Subject(s)
Chlorophyll/analysis , Eutrophication , Phytoplankton/growth & development , Tidal Waves , Oceans and Seas , Phytoplankton/metabolism , Population Dynamics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL