Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Eur J Health Econ ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780861

ABSTRACT

This article used register data on day-to-day working hours of hospital employees combined with patient characteristics at work unit (wards) level to measure workload and its implications for short, self-certified sickness absences. We measured statistically the average nursing treatment burden of different patient mixes in hospital wards, and then analyzed the overall workload (intensity) of working days by comparing it to the actual available nursing workforce. We found that a significant part of the workload variation occurred between working days, and it was related to unexpected changes in the number of employees. In atypical situations a long work shift was associated with caring for patients with fewer resources. The high workload of a day increased the risk of short sickness absences along the following 3-week period. The results show that managing short-term workload variability should be a key aim from the perspective of well-being at work, and that combining different data sources can provide novel, important insights to the measurement of workload.

2.
Rev. mex. ing. bioméd ; 44(3): e1355, Sep.-Dec. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1560175

ABSTRACT

Abstract: Tinnitus detection and characterization requires a carefully elaborated diagnosis mainly owing to its heterogeneity nature. The present investigation aims to find features in Electroencephalographic (EEG) signals from time and frequency domain analysis that could distinguish between healthy and tinnitus sufferers with different levels of hearing loss. For this purpose, 24 volunteers were recruited and equally divided into four groups: 1) controls, 2) slow tinnitus, 3) middle tinnitus and 4) high tinnitus. EEG signals were registered in two states, with eyes closed and opened for 60 seconds. EEG analysis was focused on two bandwidths: delta and alpha band. For time domain, the EEG features estimated were mean, standard deviation, kurtosis, maximum peak, skewness and shape. For frequency domain, the EEG features obtained were mean, skewness, power spectral density. Normality of EEG data was evaluated by the Lilliefors test, and as a result, the nonparametric technique Kruskal-Wallis H statistic to test significance was applied. Results show that EEG features are more differentiable between tinnitus sufferers and controls in frequency domain than in time domain. EEG features from tinnitus patients with high HL are significantly different from the rest of the groups in alpha frequency band activity when shape and skewness are computed.


Resumen: La detección y caracterización del acúfeno requiere un diagnóstico cuidadosamente elaborado debido principalmente a su naturaleza heterogénea. La presente investigación tiene como objetivo encontrar características en las señales electroencefalográficas (EEG) a partir del análisis del dominio del tiempo y frecuencia que podrían distinguir entre pacientes sanos y con acúfeno con diferentes niveles de pérdida auditiva. Para ello, se reclutaron 24 voluntarios y se dividieron por igual en cuatro grupos: 1) controles, 2) acúfeno bajo, 3) acúfeno medio y 4) acufeno alto. La actividad EEG se registró en reposo en dos condiciones: ojos cerrados y abiertos durante un minuto. El análisis de EEG se centró en anchos de banda delta y alfa. Para el dominio del tiempo, las características del EEG estimadas fueron la media, la desviación estándar, la curtosis, el pico máximo, la asimetría y la forma. Para el dominio de la frecuencia, las características de EEG obtenidas fueron media, asimetría, densidad espectral de potencia. La normalidad de los datos del EEG se evaluó mediante la prueba de Lilliefors y, como resultado, se aplicó la técnica no paramétrica del estadístico H de Kruskal-Wallis para probar la significación. Los resultados muestran que las características del EEG son más diferenciables entre los pacientes con acúfeno y los controles en el dominio de la frecuencia que en el dominio del tiempo. Las características del EEG de los pacientes con acúfeno con alta pérdida de audición son significativamente diferentes del resto de los grupos en la actividad de la banda de alfa cuando se calculan la forma y la asimetría.

3.
Sensors (Basel) ; 21(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062944

ABSTRACT

The economic and personal consequences that a car accident generates for society have been increasing in recent years. One of the causes that can generate a car accident is the stress level the driver has; consequently, the detection of stress events is a highly desirable task. In this article, the efficacy that statistical time features (STFs), such as root mean square, mean, variance, and standard deviation, among others, can reach in detecting stress events using electromyographical signals in drivers is investigated, since they can measure subtle changes that a signal can have. The obtained results show that the variance and standard deviation coupled with a support vector machine classifier with a cubic kernel are effective for detecting stress events where an AUC of 0.97 is reached. In this sense, since SVM has different kernels that can be trained, they are used to find out which one has the best efficacy using the STFs as feature inputs and a training strategy; thus, information about model explain ability can be determined. The explainability of the machine learning algorithm allows generating a deeper comprehension about the model efficacy and what model should be selected depending on the features used to its development.


Subject(s)
Automobiles , Support Vector Machine , Algorithms , Electromyography , Machine Learning
4.
Healthcare (Basel) ; 8(4)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121038

ABSTRACT

Cardiovascular disease has become one of the main diseases threatening human life and health. This disease is very common and troublesome, and the existing medical resources are scarce, so it is necessary to use a computer-aided automatic diagnosis to overcome these limitations. A computer-aided diagnostic system can automatically diagnose through an electrocardiogram (ECG) signal. This paper proposes a novel deep-learning method for ECG classification based on adversarial domain adaptation, which solves the problem of insufficient-labeled training samples, improves the phenomenon of different data distribution caused by individual differences, and enhances the classification accuracy of cross-domain ECG signals with different data distributions. The proposed method includes three modules: multi-scale feature extraction F, domain discrimination D, and classification C. The module F, constitutive of three different parallel convolution blocks, is constructed to increase the breadth of features extracted from this module. The module D is composed of three convolutional blocks and a fully connected layer, which is to solve the problem of low model layers and low-feature abstraction. In the module C, the time features and the deep-learning extraction features are concatenated on the fully connected layer to enhance feature diversity. The effectiveness of the proposed method is verified by experiments, and the classification accuracy of the experimental electrical signals reaches 92.3%.

5.
J Med Syst ; 43(6): 168, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31056720

ABSTRACT

Cardiovascular disease is the leading cause of death in the world, and its early detection is a key to improving long-term health outcomes. The auscultation of the heart is still an important method in the medical process because it is very simple and cheap. To detect possible heart anomalies at an early stage, an automatic method enabling cardiac health low-cost screening for the general population would be highly valuable. By analyzing the phonocardiogram signals, it is possible to perform cardiac diagnosis and find possible anomalies at an early-term. Therefore, the development of intelligent and automated analysis tools of the phonocardiogram is very relevant. In this work, we use simultaneously collected electrocardiograms and phonocardiograms from the Physionet Challenge database with the main objective of determining whether a phonocardiogram corresponds to a "normal" or "abnormal" physiological state. Our main contribution is the methodological combination of time domain features and frequency domain features of phonocardiogram signals to improve cardiac disease automatic classification. This novel approach is developed using both features. First, the phonocardiogram signals are segmented with an algorithm based on a logistic regression hidden semi-Markov model, which uses electrocardiogram signals as a reference. Then, two groups of features from the time and frequency domain are extracted from the phonocardiogram segments. One group is based on motifs and the other on Mel-frequency cepstral coefficients. After that, we combine these features into a two-dimensional time-frequency heat map representation. Lastly, a binary classifier is applied to both groups of features to learn a model that discriminates between normal and abnormal phonocardiogram signals. In the experiments, three classification algorithms are used: Support Vector Machines, Convolutional Neural Network, and Random Forest. The best results are achieved when both time and Mel-frequency cepstral coefficients features are considered using a Support Vector Machines with a radial kernel.


Subject(s)
Algorithms , Heart Diseases/diagnosis , Phonocardiography/methods , Signal Processing, Computer-Assisted , Heart Sounds , Humans , Neural Networks, Computer
6.
Healthc Technol Lett ; 6(6): 266-270, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32038869

ABSTRACT

The possibility of axillary lymph node metastasis differs in different breast cancer patients and is the strongest prognostic indicator in breast cancer. The existing studies mainly explored the relationship of axillary ultrasound imaging and axillary lymph node metastasis, without exploring whether ultrasound imaging of breast tumour can affect and perform axillary lymph node prediction. Therefore, this Letter proposes a novel particle space-time distribution model to find the correlation between contrast-enhanced ultrasonography of breast tumour and axillary lymphatic metastasis. Starting from the imaging principle of dynamic contrast-enhanced ultrasonography, the particle space-time distribution model not only comprises space-time features of contrast-enhanced ultrasonography with an encoder-decoder network, but also the flow field information of microbubble particles is integrated into the space-time features that better serves the metastasis prediction by enhancing the particle distribution information. Extensive experiments on real patients have demonstrated that dynamic contrast-enhanced ultrasonography of breast tumour can be used to predict the probability of lymphatic metastasis. This conclusion can be interpretable from the clinical and pathological perspectives.

SELECTION OF CITATIONS
SEARCH DETAIL
...