Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(30): 26559-26570, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31267742

ABSTRACT

Recently, the scientific community has shown considerable interest in engineering tissues with organized compositional and structural gradients to mimic hard-to-soft tissue interfaces. This effort is hindered by an incomplete understanding of the construction of native tissue interfaces. In this work, we combined Raman microscopy and confocal elastography to map compositional, structural, and mechanical features across the stiff-to-compliant interface of the attachments of the meniscus in the knee. This study provides new insight into the methods by which biology mediates multiple orders of magnitude changes in stiffness over tens of microns. We identified how the nano- to mesoscale architecture mediates complex microscale transitional regions across the interface: two regions defined by chemical composition, five distinguished by structural features, and three mechanically distinct regions. We identified three major components that lead to a robust interface between a soft tissue and bone: mobile collagen fiber units, a continuous interfacial region, and a local stiffness gradient. This tissue architecture allows for large displacements of collagen fibers in the attachments, enabling meniscal movement without localizing strains to the soft tissue-to-bone interface. The interplay of these regions reveals a method relying on hierarchical structuring across multiple length scales to minimize stress concentrators between highly dissimilar materials. These insights inspire new design strategies for synthetic soft tissue-to-bone attachments and biomimetic material interfaces.


Subject(s)
Biomimetic Materials/therapeutic use , Knee Joint/physiology , Meniscus/physiology , Tendons/physiology , Bone and Bones/physiology , Extracellular Matrix/physiology , Humans , Tissue Engineering , Tissue Scaffolds
2.
Rev. biol. trop ; 66(4): 1469-1480, oct.-dic. 2018. tab, graf
Article in English | LILACS | ID: biblio-1003338

ABSTRACT

Abstract Gall-inducing insects manipulate the structural, histochemical and physiological profiles of host-plant tissues to develop galls. We evaluated galls induced by Eugeniamyia dispar on the leaves of Eugenia uniflora in an attempt to answer the following questions: (i) How does this gall-inducing insect change the structural and histochemical profiles of the host-plant organ? (ii) Despite structural changes, can gall tissues maintain photosynthetic activity? Starch, proteins, reducing sugars and reactive oxygen species were detected mainly in the nutritive tissue surrounding the larval chamber. Despite structural changes, the galls induced by E. dispar on E. uniflora retain chlorophyllous tissue, although its amount and photosynthetic activity are less than that of non-galled leaves. This reduced photosynthetic activity, in association with the presence of large intercellular spaces, could improve gas diffusion and, consequently, avoid hypoxia and hypercarbia in gall tissue.(AU)


Resumen Los insectos que inducen las agallas manipulan los perfiles estructurales, histoquímicos y fisiológicos de los tejidos de la planta hospedera para su desarrollo. Nosotros evaluamos las agallas inducidas por Eugeniamyia dispar en las hojas de Eugenia uniflora en un intento de responder las siguientes preguntas: (i) ¿Cómo este insecto inductor de agallas cambia los perfiles estructurales e histoquímicos en el órgano de la planta hospedera? (ii) A pesar de las modificaciones estructurales, ¿pueden los tejidos de la agalla mantener la actividad fotosintética? El almidón, las proteínas, los azúcares reductores y las especies reactivas de oxígeno se detectaron principalmente en la capa de tejido nutritivo que rodea a la cavidad larval. A pesar de las modificaciones estructurales, las agallas inducidas por E. dispar en E. uniflora retienen su tejido clorofílico, aunque su cantidad y actividad fotosintética son menores que en las hojas no agalladas. Esta actividad fotosintética reducida, asociado a la presencia de grandes espacios intercelulares, pueden mejorar la difusión de gases y, en consecuencia, evitar la hipoxia y la hipercapnia en los tejidos de las agallas.(AU)


Subject(s)
Photosynthesis , Diptera , Eugenia , Chlorophyll A , Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL
...