Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Plants (Basel) ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616276

ABSTRACT

Biflavonoids are flavonoid dimers that are much less studied than monomeric flavonoids. Their precise distribution among plants and their role in plants is still unknown. Here, we have developed a HPLC-DAD method that allows us to separate and simultaneously determine the five major biflavonoids (amentoflavone, bilobetin, ginkgetin, isoginkgetin, and sciadopitysin) in ginkgo (Ginkgo biloba L.). We performed tissue-specific profiling of biflavonoids in ten different plant parts: tree bark, twigs bark, twigs without bark, buds, leaf petioles, leaf blades, seed stalks, sarcotesta, nutshells, and kernels. We did not detect biflavonoids in plant parts not in direct contact with the environment (twigs without bark, nutshells, and kernels). We found the highest total biflavonoids content in leaves, where sciadopitysin was predominant. In contrast, in the bark, amentoflavone was the predominant biflavonoid, suggesting that more methylated biflavonoids accumulate in leaves and seeds. This is probably related to their biological function, which remains to be determined.

2.
Curr Issues Mol Biol ; 43(2): 605-617, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34287278

ABSTRACT

Untranslated gene regions (UTRs) play an important role in controlling gene expression. 3'-UTRs are primarily targeted by microRNA (miRNA) molecules that form complex gene regulatory networks. Cancer genomes are replete with non-coding mutations, many of which are connected to changes in tumor gene expression that accompany the development of cancer and are associated with resistance to therapy. Therefore, variants that occurred in 3'-UTR under cancer progression should be analysed to predict their phenotypic effect on gene expression, e.g., by evaluating their impact on miRNA target sites. Here, we analyze 3'-UTR variants in DICER1 and DROSHA genes in the context of myelodysplastic syndrome (MDS) development. The key features of this analysis include an assessment of both "canonical" and "non-canonical" types of mRNA-miRNA binding and tissue-specific profiling of miRNA interactions with wild-type and mutated genes. As a result, we obtained a list of DICER1 and DROSHA variants likely altering the miRNA sites and, therefore, potentially leading to the observed tissue-specific gene downregulation. All identified variants have low population frequency consistent with their potential association with pathology progression.


Subject(s)
3' Untranslated Regions , DEAD-box RNA Helicases/genetics , Gene Expression Regulation , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Ribonuclease III/genetics , Genetic Variation , Humans , Mesenchymal Stem Cells/metabolism , Organ Specificity/genetics , Polymorphism, Single Nucleotide
3.
Chin J Nat Med ; 15(5): 392-400, 2017 May.
Article in English | MEDLINE | ID: mdl-28558875

ABSTRACT

Aristolochiae Fructus, a Chinese herbal medicine derived from the fruit of Aristolochia contorta Bge., contains nephrotoxic aristolochic acid analogues (AAAs). According to ancient medical texts, various medicinal parts of the fruit of A. contorta were ever used. In order to reveal which part could be safely and effectively used, it is necessary to analyze the chemical profiles of different medicinal parts. Herein we compared the chemical compositions and determined aristolochic acid I (AA-I) and aristolochic acid II (AA-II) in the four parts viz. outer pericarp, inner pericarp, septum, and seed. Ultra-high performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was applied for chemical profiling. Ultra-high performance liquid coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) was employed to quantify AA-I and AA-II in different parts. It was found that the chemical compositions of the four parts varied both qualitatively and quantitatively. A total of 10 AAAs, including 5 aristolochic acids and 5 aristolactams, together with 3 alkaloids, were unambiguously or tentatively identified by UHPLC-QTOF-MS. The quantitatively analytical results obtained by UHPLC-QqQ-MS showed that AA-I and AA-II exclusively accumulate in the seeds of A. contorta. These findings provide supporting data for the rational selection of medicinal parts.


Subject(s)
Aristolochia/chemistry , Aristolochic Acids/chemistry , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid , Fruit/chemistry , Molecular Structure , Tandem Mass Spectrometry
4.
Article in English | WPRIM (Western Pacific) | ID: wpr-812101

ABSTRACT

Aristolochiae Fructus, a Chinese herbal medicine derived from the fruit of Aristolochia contorta Bge., contains nephrotoxic aristolochic acid analogues (AAAs). According to ancient medical texts, various medicinal parts of the fruit of A. contorta were ever used. In order to reveal which part could be safely and effectively used, it is necessary to analyze the chemical profiles of different medicinal parts. Herein we compared the chemical compositions and determined aristolochic acid I (AA-I) and aristolochic acid II (AA-II) in the four parts viz. outer pericarp, inner pericarp, septum, and seed. Ultra-high performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was applied for chemical profiling. Ultra-high performance liquid coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) was employed to quantify AA-I and AA-II in different parts. It was found that the chemical compositions of the four parts varied both qualitatively and quantitatively. A total of 10 AAAs, including 5 aristolochic acids and 5 aristolactams, together with 3 alkaloids, were unambiguously or tentatively identified by UHPLC-QTOF-MS. The quantitatively analytical results obtained by UHPLC-QqQ-MS showed that AA-I and AA-II exclusively accumulate in the seeds of A. contorta. These findings provide supporting data for the rational selection of medicinal parts.


Subject(s)
Aristolochia , Chemistry , Aristolochic Acids , Chemistry , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Chemistry , Fruit , Chemistry , Molecular Structure , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...