Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Phytochemistry ; 226: 114219, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997098

ABSTRACT

Eight previously undescribed sesquiterpene lactones (1-8), together with six known ones (9-14) were isolated from the aerial parts of Tithonia diversifolia (Hemsl.) A. Gray. The absolute configurations of these compounds were elucidated using HRMS, NMR spectroscopy, optical rotation measurements, X-ray crystallography, and ECD. Among them, sesquiterpene lactones 2-4 share a unique carbon skeleton with a rare C-3/C-4 ring-opened structure. Compounds 1 and 8 showed moderate inhibitory effects toward CT26 murine colon carcinoma cells by promoting lipid ROS production, highlighting their potential as ferroptosis inducers.

2.
Saudi J Biol Sci ; 31(7): 104006, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38813263

ABSTRACT

Phytate content in feed ingredients can negatively impact digestibility and palatability. To address this issue, it is necessary to study microbes capable of breaking down phytate content. This study aimed to isolate and characterize phytase-producing bacteria from decaying materials rich in phytic acid. The research was conducted in several stages. The first stage involved isolating phytase-producing bacteria from the acidification of Tithonia diversifolia using growth media containing Na-phytate. Bacterial isolates that produced clear zones were then tested for their activity and ability to produce several enzymes, specifically phytase, cellulase, and protease. The next step was to test the morphological characteristics of the bacterial isolate. The final stage of bacterial identification consisted of DNA isolation, followed by PCR amplification of the 16S rRNA gene, DNA sequence homology analysis, and construction of a phylogenetic tree. Based on research, three isolates were found to produce clear phytase zones: isolates R5 (20.3 mm), R7 (16.1 mm) and R8 (31.7 mm). All isolates were able to produce the enzymes phytase (5.45-6.54 U/ml), cellulase (2.60-2.92 U/ml), and protease (22.2-23.4 U/ml). Metagenomic testing identified isolate R7 and R8 as Alcaligenes faecalis and isolate R5 as Achromobacter xylosoxidans. The isolation and characterization of phytase-producing bacteria from Tithonia diversifolia acidification resulted in the identification of two promising candidates that can be applied as sources of phytase producers. Phytase-producing bacteria can be utilized to improve digestibility and palatability in animal feed.

3.
Plant Divers ; 46(2): 265-273, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807905

ABSTRACT

To determine the invasiveness of invasive plants, many studies have compared photosynthetic traits or strategies between invasive and native species. However, few studies have compared the photosynthetic dynamics between invasive and native species during light fluctuations. We compared photosynthetic induction, relaxation dynamics and leaf traits between the invasive species, Tithonia diversifolia and two native species, Clerodendrum bungei and Blumea balsamifera, in full-sun and shady habitats. The photosynthetic dynamics and leaf traits differed among species. T. diversifolia showed a slower induction speed and stomatal opening response but had higher average intrinsic water-use efficiency than the two native species in full-sun habitats. Thus, the slow induction response may be attributed to the longer stomatal length in T. diversifolia. Habitat had a significant effect on photosynthetic dynamics in T. diversifolia and B. balsamifera but not in C. bungei. In shady habitat, T. diversifolia had a faster photosynthetic induction response than in full-sun habitat, leading to a higher average stomatal conductance during photosynthetic induction in T. diversifolia than in the two native species. In contrast, B. balsamifera had a larger stomatal length and slower photosynthetic induction and relaxation response in shady habitat than in full-sun habitat, resulting in higher carbon gain during photosynthetic relaxation. Nevertheless, in both habitats, T. diversifolia had an overall higher carbon gain during light fluctuations than the two native species. Our results indicated that T. diversifolia can adopt more effective response strategies under fluctuating light environments to maximize carbon gain, which may contribute to its successful invasion.

4.
J Adv Vet Anim Res ; 11(1): 146-152, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38680792

ABSTRACT

Objective: This study aims to investigate the nutritional composition and rumen fermentation attributes of the tithonia plant (Tithonia diversifolia) treated with Lactobacillus bulgaricus bacteria at different fermentation durations and doses. Materials and Methods: In this research, an experimental approach employed a factorial pattern with two factors as treatments with three replications using a complete randomized design. The primary factor was the dose of L. bulgaricus inoculum, with concentrations at 2% and 3%. The secondary factor examined during the study revolved around the duration of fermentation, offering three time frames of 1 day, 3 days, and 5 days for analysis. The inoculum of L. bulgaricus contained 65 × 1015 CFU/ml. Results: The use of L. bulgaricus bacteria on tithonia plants (T. diversifolia) with different inoculum doses and fermentation times demonstrated a highly significant effect and significant disparities (p < 0.05). In phytic acid content, nutrient content (crude protein (CP), crude fiber, crude fat, and dry matter (DM)), and in vitro digestibility, which includes DM, organic matter (OM), CP, volatile fatty acids (VFA), NH3, and gas production. However, it did not show any significant interaction between pH and OM content. Conclusion: The optimal results of nutrient profiling and in vitro digestibility, including DM, OM, CP, rumen pH, VFA, NH3 (ammonia), and gas production, were observed when the tithonia plant (T. diversifolia) was fermented using L. bulgaricus with 3% inoculum doses and a fermentation time of 5 days.

5.
Animals (Basel) ; 13(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067053

ABSTRACT

The present study aims to evaluate the nutritional value of different tree and shrub leaves in Brazilian ruminant production systems. Eight potentially edible trees and shrubs were identified from interviews with 30 ruminant producers: Aroeira (ARO; Lithraea molleoides), Black Mulberry (BMU; Morus nigra), Candeia (CAN; Eremanthus erythropappus), Jatobá (JAT; Hymenaea courbaril), Gliricídia (GLI; Gliricidia sepium), Santa Bárbara tree (SBT; Mélia azedarach), Tithonia (TIT; Tithonia diversifolia), and White Mulberry (WMU; Morus alba). Four leaf samples of each edible tree were sampled, and chemical analyses and in vitro assays were performed. Edible trees (except CAN and JAT) had lower neutral detergent fiber content than Mombasa grass. In addition, SBT, BMU, WMU, and TIT had lower fiber content than the other evaluated edible trees. Consequently, SBT, TIT, BMU, and WMU had improved dry matter degradation. Among the edible trees and shrubs, SMW and WMU increased the potential for gas production (a parameter). On the other hand, CAN decreased the estimated gas production 48 h after incubation. Furthermore, TIT decreased methane production up to 24 h after in vitro fermentation. Thus, except ARO, CAN, and JAT, the edible trees evaluated in the present study are potential feeds in moderate- to high-producing animals. Additionally, TIT fermentation reduces in vitro methane production.

6.
BMC Microbiol ; 23(1): 50, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36859170

ABSTRACT

BACKGROUND: Thermophilic composting is a promising method of sanitizing pathogens in manure and a source of agriculturally important thermostable enzymes and microorganisms from organic wastes. Despite the extensive studies on compost prokaryotes, shifts in microbial profiles under the influence of various green materials and composting days are still not well understood, considering the complexity of the green material sources. Here, the effect of regimens of green composting material on the diversity, abundance, and metabolic capacity of prokaryotic communities in a thermophilic compost environment was examined. METHODS: Total community 16S rRNA was recovered from triplicate compost samples of Lantana-based, Tithonia-based, Grass-based, and mixed (Lantana + Tithonia + Grass)- based at 21, 42, 63, and 84 days of composting. The 16S rRNA was sequenced using the Illumina Miseq platform. Bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 (DADA2) R version 4.1 and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States version 2 (PICRUSt2) pipelines for community structure and metabolic profiles, respectively. In DADA2, prokaryotic classification was done using the Refseq-ribosomal database project (RDP) and SILVA version 138 databases. RESULTS: Our results showed apparent differences in prokaryotic community structure for total diversity and abundance within the four compost regimens and composting days. The study showed that the most prevalent phyla during composting included Acidobacteriota, Actinobacteriota, Bacteroidota, Chloroflexi, and Proteobacteria. Additionally, there were differences in the overall diversity of metabolic pathways but no significant differences among the various compost treatments on major metabolic pathways like carbohydrate biosynthesis, carbohydrate degradation, and nitrogen biosynthesis. CONCLUSION: Various sources of green material affect the succession of compost nutrients and prokaryotic communities. The similarity of amounts of nutrients, such as total Nitrogen, at the end of the composting process, despite differences in feedstock material, indicates a significant influence of composting days on the stability of nutrients during composting.


Subject(s)
Composting , RNA, Ribosomal, 16S , Phylogeny , Prokaryotic Cells , Carbohydrates
7.
J Chem Ecol ; 49(3-4): 142-154, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36763248

ABSTRACT

Secondary plant chemistry mediates a variety of communication signals among species, playing a fundamental role in the evolutionary diversification of communities and ecosystems. Herein, we explored diet-mediated host plant effects on development and immune response of a generalist insect herbivore. Vanessa cardui (Nymphalidae) caterpillars were reared on leaves of three host plants that vary in secondary metabolites, Plantago lanceolata (Plantaginaceae), Taraxacum officinale (Asteraceae) and Tithonia diversifolia (Asteraceae). Insect development was evaluated by larval and pupal viabilities, survivorship, and development rate. Immune response was measured as phenoloxidase (PO) activity. Additionally, chemical profiles of the host plants were obtained by liquid chromatograph-mass spectrometry (LC-MS) and the discriminant metabolites were determined using a metabolomic approach. Caterpillars reared on P. lanceolata exhibited the highest larval and pupal viabilities, as well as PO activity, and P. lanceolata leaves were chemically characterized by the presence of iridoid glycosides, phenylpropanoids and flavonoids. Taraxacum officinale leaves were characterized mainly by the presence of phenylpropanoids, flavones O-glycoside and germacranolide-type sesquiterpene lactones; caterpillars reared on this host plant fully developed to the adult stage, however they exhibited lower larval and pupal viabilities compared to individuals reared on P. lanceolata. Conversely, caterpillars reared on T. diversifolia leaves, which contain phenylpropanoids, flavones and diverse furanoheliangolide-type sesquiterpene lactones, were not able to complete larval development and exhibited the lowest PO activity. These findings suggested that V. cardui have adapted to tolerate potentially toxic metabolites occurring in P. lanceolata (iridoid glycosides), however caterpillars were not able to cope with potentially detrimental metabolites occurring in T. diversifolia (furanoheliangolides). Therefore, we suggest that furanoheliangolide-type sesquiterpene lactones were responsible for the poor development and immune response observed for caterpillars reared on T. diversifolia.


Subject(s)
Butterflies , Flavones , Sesquiterpenes , Humans , Animals , Herbivory , Ecosystem , Insecta/metabolism , Larva , Iridoid Glycosides/metabolism , Flavones/pharmacology , Lactones/pharmacology , Sesquiterpenes/pharmacology
8.
Z Naturforsch C J Biosci ; 78(1-2): 65-72, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36321958

ABSTRACT

Three sesquiterpene lactones (1-3) were isolated from the aerial part of Tithonia diversifolia (Hemsl.) A. Gray grown in the Hoa Binh province in Viet Nam. The structures of these three sesquiterpene lactones were identified as tagitinin A (1), 1ß-hydroxytirotundin 3-O-methyl ether (2), and tagitinin C (3) by analyzing spectroscopic data. For the first time, compound 2 was isolated from T. diversifolia growing in Viet Nam. Furthermore, contrary to existing literature, we determined that compound 1 was the major isolate. Compounds 1 and 3 significantly decreased numbers of acute myeloid leukemia OCI-AML3 cells by promoting apoptosis and causing cell cycle arrest at G0/G1 phase at concentrations as low as 2.5 µg/mL (compound 1) and 0.25 µg/mL (compound 3). Additionally, all three compounds showed cytotoxic activity against five human cancer cell lines (A549, T24, Huh-7, 8505, and SNU-1), with IC50 values ranging from 1.32 ± 0.14 to 46.34 ± 2.74 µM. Overall, our findings suggest that compounds 1 and 3 may be potential anti-cancer therapeutics and thus warrant further study.


Subject(s)
Asteraceae , Leukemia, Myeloid, Acute , Sesquiterpenes , Humans , Tithonia , Asteraceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis , Leukemia, Myeloid, Acute/drug therapy , Cell Division , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistry
9.
Front Pharmacol ; 13: 1055765, 2022.
Article in English | MEDLINE | ID: mdl-36506583

ABSTRACT

In present study, the acute and sub-acute toxicities of Dihydro-p-coumaric acid isolated from the leaves of Tithonia diversifolia (Hemsl.) A. Gray was studied for safety issues in mammals. For acute toxicity tests, isolated compound was administered orally in both male and female BALB/c mice at the doses of 200, 800, and 1,600 mg/kg body weight for 7 days. In sub-acute toxicity study 50 and 500 mg/kg bw of the compound was orally administered for 14 days. Toxicity induced behavioural changes, haematological parameters, biochemical markers and histopathological sections were studied after Dihydro-p-coumaric acid administration. The vital organs like heart, kidney, uterus and testis revealed no adverse effects at doses of upto 1,600 mg/kg bw and 500 mg/kg bw. Slight hepatotoxicity was however demonstrated by ALT and AST assay but histopathological section did not concur as much. The study demonstrated insignificant difference in the percentage of feed intake, water intake, weight gain, haematological parameters and histopathological changes, with no toxicity signs and mortality. Dihydro-p-coumaric acid can be regarded as safe in both acute and sub-acute toxicity assay in both sexes. This indicates Dihydro-p-coumaric acid as a viable alternative to synthetic pesticides.

10.
Malays J Med Sci ; 29(3): 43-53, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35846491

ABSTRACT

Background: In this study, we examined the anti-diabetic activity of standardised extracts of Tithonia diversifolia (Hemsley) A Gray (T. diversifolia) leaves for their effects on insulin resistance and mitochondrial DNA (mtDNA) copy number. Methods: T. diversifolia leaves were extracted using an ultrasound-assisted method and standardised using Tagitinin C. There were six groups: i) normal control; ii) diabetic group; iii) metformin group (300 mg/kg) and iv) groups treated with three different doses of extract (50 mg/kg, 100 mg/kg and 150 mg/kg). Blood samples were taken before and after 28 days of treatment for fasting plasma glucose (FPG) and insulin analysis, which were used for a Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) calculation. The soleus and gastrocnemius muscles were harvested after 28 days of treatment for the measurement of mtDNA copy number. Results: The results showed an improvement in blood glucose levels and HOMA-IR scores in all treatment groups. The results of mtDNA copy number analysis also revealed significant improvement with the highest number observed at an extract dose of 100 mg/kg in which the mtDNA copy number increased up to 3 times in the soleus muscles (P < 0.001). Conclusion: T. diversifolia extract has the potential to be used as an anti-diabetic agent that improves insulin resistance, possibly by increasing mtDNA content.

11.
Heliyon ; 8(6): e09570, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35677419

ABSTRACT

Cassava cultivation causes serious soil fertility depletion in Cameroon. Organic manures can contribute to maintaining the productivity and sustainability of cassava production systems due to their availability and cheapness. This study was conducted during two successive cropping seasons (2016/2017 and 2017/2018) in the Southern Cameroon, to determine the effects of organic manures on soil physical properties, and cassava growth and yield. Tithonia diversifolia fresh biomass (TB) and poultry manure (PM) were used as organic manures. Different treatments were used, namely: (i) control (no amendment), (ii) mineral fertilizer (MF (450 kg ha-1 13-13-23 NPK + 100 kg ha-1 Urea)), (iii) two rates of TB (applied at 10 and 20 t ha-1), (iv) two rates of PM (applied at 10 and 20 t ha-1) and (v) two rates of the mixture of TB and PM (applied at 5 and 10 t ha-1 each). The experimental designed was randomized complete block with three replicates per treatment. The application of TB, PM and TB + PM (mixture) lowered bulk density by 14-22.6%, 21.5-26.2% and 18.2-25%, respectively. While total porosity and water holding capacity were increased with manure application by 9.8-15.1% and 13.3-30.3%, respectively. The mineral fertilizer had no significant effect on these soil physical parameters. Application of TB and PM either solely or mixed significantly improved growth of cassava. Stem height, stem diameter and canopy diameter increased by 34.3-60%, 17.4-30.4% and 19.7-32.7%, respectively. Organic manures performed better than the mineral fertilizer. Aboveground dry biomass and fresh tubers yield increased by 21.7-59.6 and 76.6-112.2% with organic manures, and by 23.2 and 68.5% with mineral fertilizer, respectively. The best performance of cassava in terms of fresh tubers yield (51.78 t ha-1) occurred with the mixture of TB and PM applied at 10 t ha-1 each. The study revealed that fresh biomass of Tithonia diversifolia and poultry manure can be used to improve cassava production and sustain soil productivity in the humid forest zone of Southern Cameroon.

12.
Pestic Biochem Physiol ; 184: 105116, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715055

ABSTRACT

For the well-being of human health as well as ecological concerns and the development of insect resistance to conventional chemical insecticides, efforts have increased worldwide, to find eco-friendly, effective and safer insect control agents which are of natural origin. A bioactive biofumigant molecule named dihydro-p-coumaric acid was isolated and characterized from the leaves of Tithonia diversifolia Hemsl. A. Gray following laboratory bioassays against the rice weevil, Sitophilus oryzae L (Coleoptera: Curculionidae); the lesser grain borer, Rhyzopertha dominica F (Coleoptera: Bostrichidae) and the rust-red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). The isolated compound acted as a fumigant, toxic to adults of stored grain insect pests with LC50 values of 17.86, and 11.49 µg/L (S. oryzae), 19.80 and 10.29 µg/L (R. dominica) and 24.41 and 17.80 µg/L air (T. casatneum) respectively. Further, in vivo data reveal that the percentage of inhibition of acetyl cholinesterase (AChE) was dose-dependent and in vitro results showed potent AChE inhibitor. The isolated compound acts as an efficient biofumigant against the stored grain insect pests and has no adverse effect on seed germination. From this study, we assume that the isolated biofumigant molecule has the ability for used in IPM programs for stored-grain pests because of its biofumigant activity.


Subject(s)
Coleoptera , Insecticides , Tribolium , Weevils , Animals , Edible Grain , Insect Control , Insecta , Insecticides/pharmacology , Tithonia
13.
Prev Nutr Food Sci ; 27(1): 63-69, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35465110

ABSTRACT

This study aimed to evaluate the effect of Tithonia diversifolia extract (TDE) on leptin, adiponectin, and insulin receptor (IR) concentrations in diabetic rats. Twenty-four Wistar rats were divided into a control and treatment groups (n=6 per group). The control group received normal saline, and the treatment groups received 0.25% sodium carboxymethyl cellulose, TDE at 100 mg/kg body weight (bw), and catechin at 10 mg/kg bw for 7 days. On day 8, the rats were sacrificed, blood samples were obtained, and leptin, adiponectin, and insulin concentrations were measured using avidinhorseradish peroxidase sandwich-enzyme-linked immunosorbent assay. A calorimetric method was used to measure blood glucose (BG) and total serum cholesterol concentrations. The pancreas and kidneys were collected for the measurement of renal IR and macrophage cluster of differentiation (CD)14 levels using immunohistochemical staining. Acute type 2 diabetes mellitus (T2DM) with elevated BG and total serum cholesterol concentrations was observed in the treatment groups administered streptozotocin. The administration of TDE at 100 mg/kg bw significantly decreased leptin and increased adiponectin concentrations (P≤0.05). Furthermore, TDE treatment significantly increased renal IR and decreased macrophage CD14 levels (P<0.05). Therefore, TDE decreased leptin and BG concentrations by increasing IR levels. TDE also suppressed the necrosis of pancreatic tissues by inhibiting macrophage CD14 expression in diabetic rats. However, further research is necessary to determine the effect of TDE on interleukin and IR levels in the related tissues of patients with T2DM.

14.
Heliyon ; 7(11): e08332, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34825074

ABSTRACT

A major constraint to crop production in Sub-Saharan Africa is nutrient deficiency, especially phosphorus (P) deficiency. Phosphorus plays a crucial role in photosynthesis but is usually deficient in acidic soils since it is converted to less available forms, affecting crop yields. There is a need to improve phosphorus availability to crops for maximum production. This study assessed Minjingu phosphate rock fertilizer's impact on maize yields, soil chemical composition, and cost-effectiveness in acidic humic nitisols of Tharaka Nithi County, Upper Eastern Kenya. A field experiment in a randomized complete block design (RCBD) was set during long rains (SR2017) and Short rains (LR2018) seasons. The treatments were Minjingu phosphate rock, manure, Tithonia diversifolia, Minjingu phosphate rock + manure, Tithonia diversifolia + Minjingu phosphate rock, Calcium Ammonium Nitrate (CAN) + Triple Superphosphate (TSP), and a control. Soil samples were collected at a depth of 0-20 cm before and at the end of the experiment for pH, P-sorption, and other soil nutrient determinations. Other auxiliary data collected included labor and input costs besides output prices. The CAN+TSP treatment had significantly higher grain yields (6.86 Mg ha-1), while Minjingu phosphate rock on its own had the second-lowest than the control treatment (3.0 Mg ha-1). Also, a similar trend in the stover yields was observed. Minjingu phosphate rock combined with either manure or Tithonia diversifolia led to a significant increase (over 100%) in the phosphorous levels. Sole application of Minjingu phosphate rock increased soil iron levels while magnesium, copper, and zinc levels decreased significantly. Other than the control, all treatments significantly lowered the P-sorption levels. However, CAN+TSP had the highest P-sorption (913 mg kg-1)while Tithonia diversifolia had the lowest (744 mg kg-1). During the LR2018 season, all treatments reached a break-even point, and the net benefit was significantly higher at P < 0.05. Conclusively, the use of phosphate rock, either solely or in combination with organic elements, improved yields, soil chemical composition, P-sorption and was very cost-effective.

15.
Heliyon ; 7(9): e08005, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34585016

ABSTRACT

Water harvesting technologies and soil conservation measures promote water-nutrient synergy and increase agricultural production in the dryland zones of sub-Saharan Africa. To alleviate water stress, soil fertility decline and reduce runoff, soil and water conservation measures are promising options whose impact on agricultural productivity has not been fully explored. The objective of the study was to assess the effect of using zai pits in combination with selected soil fertility ammendments. An experiment was conducted in Tharaka Nithi County, Kenya to assess effects of using Zai pits in combination with selected amendments on sorghum production. The experiment was set up in a Randomized Complete Block Design (RCBD) involving 12 soil and water conservation treatments with three replications per block. Experimental data were subjected to analysis of variance and mean separation done using least significant difference (LSD) at p < 0.05. Zai pit in combination with tithonia amendment had the highest yields of 4.30 Mg ha-1 during short rains season of 2013 while Zai pit in combination with cattle manure had the highest yield of 4.18 Mg ha-1 during short rains season of 2014. Conventional planting with full rate NPK had the highest benefit-cost ratio (BCR) of 3.58 while Zai pit without input had the least BCR of 0.99. The experiment showed that Zai pit technology contributed to increments of yields in comparison to conventional planting although its BCR was lower than conventional planting with similar amendments. However, both Zai pit and conventional practices should be used in combination with organic and inorganic amendments to enhance yields in sorghum production.

16.
Heliyon ; 7(3): e06371, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33869823

ABSTRACT

Soil acidity and phosphorus deficiency are some of the constraints hampering agricultural production in tropical regions. The prevalence of soil acidity is associated with phosphorus (P) insufficiency and aluminum saturation. We conducted a two-seasons experiment to evaluate soil phosphorus availability and exchangeable aluminum in response to phosphate rock and organic inputs in acidic humic nitisols. The field experiment was installed in Tharaka Nithi County in the Central Highlands of Kenya. The experimental design was a randomized complete block design with treatments replicated thrice. The treatments were: Green manure (Tithonia diversifolia Hemsl.) (60 kg P ha-1), phosphate rock (60 kg P ha-1), goat manure (60 kg P ha-1), Tithonia diversifolia (20 kg P ha-1) combined with phosphate rock (40 kg P ha-1), manure (20 kg P ha-1) combined with phosphate rock (40 kg P ha-1), Triple Super Phosphate combined with Calcium Ammonium Nitrate (TSP + CAN) (60 kg P ha-1) and a control (no input). During the long rains of the 2018 season (LR2018), Tithonia diversifolia + phosphate rock had a significantly higher reduction (67%) of exchangeable aluminum than the sole use of Tithonia diversifolia. Grain yield under TSP + CAN was the highest, followed by the sole organics during the LR2018. Tithonia diversifolia + phosphate rock resulted in a 99% and a 90% increase in NaHCO3-Pi compared to sole phosphate rock and sole Tithonia diversifolia, respectively. Tithonia diversifolia led to 14% and 62% higher resin-Pi and NaOH-Pi, respectively, compared to manure in the short rains of 2017 (SR2017). The increase in NaOH-Po after the two seasons was statistically significant in sole TSP + CAN. Based on the observed reduced exchangeable aluminum and additional nutrients like Ca, Mg, and K in the soil, sole organic inputs or in combination with phosphate rock treatments are feasible alternatives for sustaining soil phosphorus. Our findings underscore an integrated approach utilizing organic amendments combined with phosphate rock in acidic humic nitisols' phosphorus nutrient management.

17.
Heliyon ; 7(4): e06759, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33898846

ABSTRACT

Fallowing is considered an important management strategy for the restoration of soil productivity. Therefore, a three-year fallow of pigeon pea (Cajanus cajan), mexican sunflower (Tithonia diversifolia) and elephant grass (Pennisetum purpureum) was established at Landmark University, Nigeria between 2016 - 2019. Leaf nutrient concentrations of maize (Zea mays) planted with soils taken from each fallowed plots after three years were also determined. The experimental design was a randomized complete block design with three replications. Soil samples were collected from each fallow plots for physical and chemical analysis (bulk density, porosity, moisture content, particle size, dispersion ratio, soil erosion loss, soil organic matter (SOM), total N, available P, exchangeables K, Ca, Mg, CEC and pH.) before and at the end of the experiment. Means of data collected were separated using Tukey's HSD test at p = 0.05. Tithonia fallow improved soil properties and leaf nutrient concentration of maize compared with Pennisetum and Cajanus fallows. The order was Tithonia > Pennisetum > Cajanus. This was adduced to the regular return of plant residues to the soil in Tithonia fallow which resulted in high SOM (Tithonia increased SOM by about 23%, 7.5%, and 20%, respectively, compared with the initial soil, Pennisetum and Cajanus fallows) and increases soil N, P, K, Ca, Mg, CEC and pH and also stabilized soil structure by increasing porosity, moisture content and reducing bulk density, dispersion ratio, and soil loss. Therefore, plant species of high nutrient contents and high return of biomass to the soil are necessary for quick restoration of soil productivity in a derived savanna ecology.

18.
Metabolites ; 11(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669112

ABSTRACT

Balanced nutritional intake is essential to ensure that insects undergo adequate larval development and metamorphosis. Integrative multidisciplinary approaches have contributed valuable insights regarding the ecological and evolutionary outcomes of plant-insect interactions. To address the plant metabolites involved in the larval development of a specialist insect, we investigated the development of Chlosyne lacinia caterpillars fed on Heliantheae species (Tithonia diversifolia, Tridax procumbens and Aldama robusta) leaves and determined the chemical profile of plants and insects using a metabolomic approach. By means of LC-MS and GC-MS combined analyses, 51 metabolites were putatively identified in Heliantheae species and C. lacinia caterpillars and frass; these metabolites included flavonoids, sesquiterpene lactones, monoterpenoids, sesquiterpenoids, diterpenes, triterpenes, oxygenated terpene derivatives, steroids and lipid derivatives. The leading discriminant metabolites were diterpenes, which were detected only in A. robusta leaves and insects that were fed on this plant-based diet. Additionally, caterpillars fed on A. robusta leaves took longer to complete their development to the adult phase and exhibited a greater diapause rate. Hence, we hypothesized that diterpenes may be involved in the differential larval development. Our findings shed light on the plant metabolites that play roles in insect development and metabolism, opening new research avenues for integrative studies of insect nutritional ecology.

19.
J Basic Clin Physiol Pharmacol ; 32(6): 1137-1143, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33561913

ABSTRACT

OBJECTIVES: Tithonia diversifolia (Asteraceae) is used in Cameroonian traditional medicine for the treatment of several diseases amongst which are hepatic disorders. Anti-inflammatory, analgesic and anti-diabetic properties have been reported but, there is no scientific information on its hepato-protective effects. The aim of this study was to evaluate the curative effects of the Tithonia diversifolia (T. diversifolia) leaves aqueous extract on ethanol induced-hepatotoxicity in rats. METHODS: Ethanol 40° (4 g/kg) was administered daily by intragastric gavage for 21 days, and then the extract was administered concomitantly with ethanol for two more weeks. Some biochemical serum and tissue parameters were evaluated. Histopathologic analysis of the liver was carried out. RESULTS: The ingestion of ethanol induced a significant reduction of body weight and a significant increase in some markers of hepatic function (Alanine Amino-transferase, Aspartate Amino-transferase, alkaline phosphatase, gamma glutamyl-transferase, total bilirubin and albumin). These alterations were accompanied by a significant increase in the levels of serum triglycerides (p<0.001). Intoxicated animals were also characterized by a significant decrease of reduced glutathione and nitrites concentrations, catalase and superoxide dismutase activities as well as an increase of malondialdehyde levels. The histopathological examination showed vascular congestion, disorganized parenchyma, liver inflammation and dilation of sinusoid. The extract at the doses of 60 and 120 mg/kg reversed ethanol-induced adverse effects. CONCLUSION: Our study found that, the aqueous extract of T. diversifolia leaves has hepato-protective activity against ethanol-induced liver damages due partly to its antioxidant effect. This result justifies its empirical use for the treatment of liver problems.


Subject(s)
Asteraceae , Chemical and Drug Induced Liver Injury , Animals , Antioxidants/pharmacology , Asteraceae/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Ethanol/pharmacology , Liver , Plant Extracts/chemistry , Rats , Tithonia
20.
Nat Prod Res ; 35(22): 4286-4294, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31872778

ABSTRACT

The methanolic extract of aerial parts of Tithonia tubaeformis showed significant antioxidant activity in DPPH assay. It was subjected to bioassay guided fractionation affording more active ethyl acetate fraction which on further purification led to the isolation and identification of a series of bioactive phenolic compounds having important biosynthetic relationship. Of these, 4-hydroxyphenethyl henicosanoate (tithonoid) is a new compound. Moreover, in the carrageenan induced paw edema test, significant attenuation of inflammation was also produced by the extract at 50-200 mg/kg. The structures of all the constituents were determined through spectroscopic methods. It is the first systematic biological and chemical investigation on T. tubaeformis, which showed that phenolics may play an important role in the antioxidant and anti-inflammatory activity of the plant, probably through synergism.


Subject(s)
Antioxidants , Tithonia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carrageenan , Edema/drug therapy , Phenols/pharmacology , Phenols/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Tyrosine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...