Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
1.
Int J Biol Macromol ; : 133517, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960251

ABSTRACT

Reducing the risk of wound infection is an urgent issue health priority. Antibacterial polysaccharide-based hydrogels have attracted great attention for infectious wounds, attributed to their safe antimicrobial performance and natural non-toxicity and biodegradability advantages. In this study, the "all-in-one" self-adaptive and injectable cationic guar gum (CG)-based polysaccharide hydrogels (FA-TOB/CG) loaded with bioactive complexes were developed for infectious wound healing. The constructed antioxidant and antibacterial ferulic acid (FA)-tobramycin (TOB) bioactive complexes (FA-TOB) were used as the cross-linking agent and introduced into the CG matrix to construct the FA-TOB/CG hydrogel with a three-dimensional porous structure. The sterilization rates of FA-TOB/CG hydrogel against S. aureus and E. coli reached 98 % and 80 % respectively. In addition, the FA-TOB/CG also exhibits enhanced antioxidant performances (DPPH: > 40 %; ABTS: > 90 %; ·OH: > 50 %). More importantly, FA-TOB/CG hydrogel also showed the ability to sustain the release of FA and TOB. These superiorities of the FA-TOB/CG hydrogel enabled it to provide a moist wound environment and promote wound healing by eliminating bacteria, modulating the local inflammatory response, and accelerating collagen deposition and vascular regeneration. Thus, this study may enlarge a new sight for developing multifunctional dressings by incorporating bioactive complexes into polysaccharide hydrogels for infected wounds.

3.
J Cyst Fibros ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38845269

ABSTRACT

BACKGROUND: The management of cystic fibrosis (CF) requires knowledge of the patient's microbiological status. The serology of anti-Pseudomonas aeruginosa antibodies against exoenzymes or water-soluble antigens has gained diagnostic value, particularly to detect the onset of colonization with P. aeruginosa. However, the diversity and variable expression of these antigens, which was unknown when the ELISAs became common diagnostic procedures at CF clinics, prohibits the quantitative evaluation of bacterial antigen load during intermittent and chronic infection. METHODS: An ELISA was developed to measure the serum IgG antibody levels against P. aeruginosa porin OprF, a species-specific, conserved, immunogenic and constitutively expressed protein present in the outer membrane and extracellular vesicles. RESULTS: Serial serum samples were collected from 310 people with CF (pwCF) over a period of up to 15 years. Compared to a reference of P. aeruginosa - negative CF sera set to 1, OprF antibody titers ranged from 0.3 to 13.2 (median: 1.7) in 56 intermittently colonized patients and from 0.5 to 51.2 (median: 11.8) in 176 chronically colonized pwCF showing higher anti-OprF antibody levels during chronic than during intermittent colonization with P. aeruginosa (P = 0, Z = - 21.7, effect size 0.62). Inhalation with twice daily 80 mg tobramycin decreased OprF antibody titers (P = 5 × 10-5), particularly during the third and fourth year of chronic colonization. CONCLUSION: The OprF ELISA should be an appropriate tool to monitor Pseudomonas serology at all stages of infection and disease severity and to study the impact of short- and long-term therapeutic interventions.

4.
Cureus ; 16(6): e62726, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898897

ABSTRACT

Home medical care faces limitations in the number of doctor and nurse visits, availability of medical devices, and economic factors, making daily injections difficult for in-home patients. We describe two cases of advanced bronchiectasis with Pseudomonas aeruginosa infection treated with inhaled tobramycin in a home setting, demonstrating clinical effectiveness. Using commercially available empty eye drop containers to prepare an aseptic inhalation solution and nebulizers easily usable at home, our experience suggests that this could be a viable therapeutic alternative in home medical care.

5.
Small ; : e2401926, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829185

ABSTRACT

Pseudomonas aeruginosa (PA) is a major healthcare concern due to its tolerance to antibiotics when enclosed in biofilms. Tobramycin (Tob), an effective cationic aminoglycoside antibiotic against planktonic PA, loses potency within PA biofilms due to hindered diffusion caused by interactions with anionic biofilm components. Loading Tob into nano-carriers can enhance its biofilm efficacy by shielding its charge. Polyion complex vesicles (PIC-somes) are promising nano-carriers for charged drugs, allowing higher drug loadings than liposomes and polymersomes. In this study, a new class of nano-sized PIC-somes, formed by Tob-diblock copolymer complexation is presented. This approach replaces conventional linear PEG with brush-like poly[ethylene glycol (methyl ether methacrylate)] (PEGMA) in the shell-forming block, distinguishing it from past methods. Tob paired with a block copolymer containing hydrophilic PEGMA induces micelle formation (PIC-micelles), while incorporating hydrophobic pyridyldisulfide ethyl methacrylate (PDSMA) monomer into PEGMA chains reduces shell hydrophilicity, leads to the formation of vesicles (PIC-somes). PDSMA unit incorporation enables unprecedented dynamic disulfide bond-based shell cross-linking, significantly enhancing stability under saline conditions. Neither PIC-somes nor PIC-micelles show any relevant cytotoxicity on A549, Calu-3, and dTHP-1 cells. Tob's antimicrobial efficacy against planktonic PA remains unaffected after encapsulation into PIC-somes and PIC-micelles, but its potency within PA biofilms significantly increases.

6.
Indian J Med Microbiol ; 49: 100602, 2024.
Article in English | MEDLINE | ID: mdl-38697481

ABSTRACT

PURPOSE: The study explores the impact of significant interpretative breakpoint changes for aminoglycosides and piperacillin-tazobactam in Enterobacterales and Pseudomonas aeruginosa, considering PK/PD, clinical data, and susceptibility on clinical reporting and use. PROCEDURE: Between January 2021 and June 2023, a total of 189,583 samples were processed for bacterial pathogens and antimicrobial susceptibility testing was performed using disc diffusion method/VITEK® 2 Compact system/broth microdilution. WHONET software was utilised to capture and analyse the changes in the interpretation of disc diffusion method, following updates to CLSI M100 documents in comparison to previous editions. Antimicrobial consumption data was collected and interpreted as DDD/100 bed days using AMC tool software. Here, we present data for 13,615 members of Order Enterobacterales and 1793 Pseudomonas aeruginosa isolates. FINDING: Enterobacterales exhibited a significant susceptibility drop of 14.7% for gentamicin and 21.7% for amikacin. Pseudomonas aeruginosa showed an increase in isolates with intermediate tobramycin susceptibility, from 0.6% to 29.7%, with relatively minor changes in piperacillin-tazobactam interpretation. CONCLUSION: The changes indicate a shift toward increased 'resistance' and 'intermediate susceptibility' for these antibiotics, emphasizing the need for cautious use and leveraging PK/PD knowledge for improved antibiotic utilization, patient outcomes, and antimicrobial stewardship.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Piperacillin, Tazobactam Drug Combination , Pseudomonas aeruginosa , Piperacillin, Tazobactam Drug Combination/pharmacology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Humans , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Aminoglycosides/pharmacology , India , Disk Diffusion Antimicrobial Tests/methods , Enterobacteriaceae/drug effects , Microbial Sensitivity Tests , Amikacin/pharmacology
7.
J Clin Med ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731170

ABSTRACT

Introduction: Patients with cystic fibrosis (CF) commonly experience pulmonary exacerbations, and it is recommended by the TOPIC study to treat this with tobramycin at a dose of 10 mg/kg once daily. The aim of this study was to evaluate the target attainment of the current dosing regimen. Methods: A single-center retrospective cohort study of child and adult patients with CF who received tobramycin between 2019 and 2022 was conducted. Descriptive statistics and linear mixed models were used to assess target attainment for tobramycin. Results: In total, 25 patients (53 courses), of which 10 were children (12 courses) and 15 were adults (41 courses), were included. Those 25 patients all received 10 mg/kg/day. The tobramycin peak concentrations were supratherapeutic in 82.9% and therapeutic in 100.0% of adults and children, respectively. The trough concentrations were outside the target range in 0% and 5.1% of children and adults, respectively. We found lower tobramycin concentrations with the same dose in children compared to adults. Conclusions: This study illustrates the need to validate dosing advice in a real-world setting, as supratherapeutic concentrations of tobramycin were prevalent in adults with CF.

8.
BMC Vet Res ; 20(1): 218, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778405

ABSTRACT

BACKGROUND: Commercial tobramycin ophthalmic solution is frequently used empirically to treat ocular disorders in equines, despite being primarily formulated for use in humans. It has been noted that tobramycin MIC90 concentration (minimal inhibitory concentration to 90% of microbial growth) rapidly declined following topical administration. It is hypothesized that adjustment of the pH of the empirically used tobramycin ophthalmic solution -prepared for human use- with the pH of the tears of donkeys, could increase the bioavailability of the drug and subsequently improve its penetration to the aqueous humor. Therefore, this study aimed to evaluate the impact of pH adjustment of the empirically used tobramycin ophthalmic solution on MIC90 concentration in tears and aqueous humor of donkeys (Equus asinus). The study was conducted on six (n = 6) clinically healthy donkeys. In each donkey, one eye was randomly selected to receive 210 µg tobramycin of the commercial tobramycin (CT) and used as a positive control (C group, n = 6). The other eye (treated eye) received 210 µg of the modified tobramycin ophthalmic solution (MT) (T group, n = 6). Tears and aqueous humor samples were collected 5-, 10-, 15-, 30- min, and 1-, 2-, 4-, and 6 h post-instillation. RESULTS: Modifying the pH of the empirically used commercial tobramycin ophthalmic solution in donkeys at a pH of 8.26 enhanced the drug's bioavailability. The MIC90 of the most hazardous bacteria isolated from equines' eyes such as Pseudomonas aeruginosa (MIC90 = 128 µg/ml) and Staphylococcus aureus (MIC90 = 256 µg/ml) was covered early (5 min post-instillation) and over a longer period in donkey tears (239-342 min) and aqueous humor (238-330 min) with the modified tobramycin solution. CONCLUSIONS: Adjustment of the pH of the commercial tobramycin ophthalmic solution, empirically used by veterinarians to treat donkeys' ophthalmic infections at a pH of 8.26, isotonic with the donkeys' tears pH, resulting in higher concentrations of tobramycin in tears and aqueous humor for a longer time.


Subject(s)
Anti-Bacterial Agents , Aqueous Humor , Equidae , Microbial Sensitivity Tests , Ophthalmic Solutions , Tears , Tobramycin , Animals , Tobramycin/pharmacology , Tobramycin/administration & dosage , Tobramycin/pharmacokinetics , Aqueous Humor/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Tears/drug effects , Hydrogen-Ion Concentration
9.
Biomed Mater ; 19(4)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38815605

ABSTRACT

Traditional dressings exhibit several disadvantages, as they frequently lead to bacterial infections, cause severe tissue adhesion and perform a relatively single function. Therefore, in this study, a composite sponge dressing with antibacterial properties and excellent physicochemical properties was developed. Six groups of tobramycin-loaded calcium alginate microspheres were prepared by changing the amount of tobramycin added, and the optimal group was selected. Then, seven groups of tobramycin-loaded calcium alginate microsphere/chitosan composite sponges were fabricated via a solvent blending process and a freeze-drying method. The surface morphology, physicochemical properties,in vitrodegradation properties,in vitrodrug release properties, antibacterial properties and cytotoxicity of the composite sponges were examined. Group 3.0 contained the best microspheres with the largest drug loading capacity, good swelling performance and cumulative drug release rate, obvious and sustained antibacterial activity, and good cytocompatibility. The tobramycin-loaded calcium alginate microsphere/chitosan composite sponges exhibited three-dimensional porous structures, and their porosity, swelling rate, water absorption and water retention rates and water vapor transmission rate met the standards needed for an ideal dressing. The comprehensive performance of the sponge was best when 20 mg of drug-loaded microspheres was added (i.e. group 20). The cumulative drug release rate of the sponge was 29.67 ± 4.14% at 7 d, the diameters of the inhibition zones against the three bacteria were greater than 15 mm, and L929 cell proliferation was promoted. These results demonstrated that the tobramycin-loaded calcium alginate microsphere/chitosan composite sponge with 20 mg of tobramycin-loaded microspheres shows promise as a dressing for infected wounds.


Subject(s)
Alginates , Anti-Bacterial Agents , Bandages , Chitosan , Microspheres , Tobramycin , Wound Healing , Alginates/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tobramycin/pharmacology , Tobramycin/chemistry , Tobramycin/administration & dosage , Animals , Wound Healing/drug effects , Porosity , Mice , Biocompatible Materials/chemistry , Materials Testing , Staphylococcus aureus/drug effects , Cell Line , Drug Liberation , Microbial Sensitivity Tests , Humans , Escherichia coli/drug effects
10.
J Pediatr Pharmacol Ther ; 29(2): 135-139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38596420

ABSTRACT

OBJECTIVES: As cystic fibrosis (CF) lung disease progresses, the airways become infected with opportunistic pathogens, such as Pseudomonas aeruginosa (PA). In October 2019, the US Food and Drug Administration approved elexacaftor/tezacaftor/ivacaftor (ETI), a highly effective modulator therapy (HEMT), for individuals 12 years and older with 1 copy of the F508del cystic fibrosis transmembrane conductance regulator (CFTR) mutation. ETI increases the amount of and function of CFTR in the respiratory epithelium, improving mucociliary clearance and reducing static airway mucus, a major trigger for chronic infection and inflammation. METHODS: A retrospective analysis of inhaled tobramycin (iTOB) prescriptions between January 1, 2016, and December 31, 2021, was performed. This captured data before and after ETI approval at Children's Mercy Kansas City (CMKC). The number of individuals with new PA acquisition and individuals considered -chronically infected was analyzed. RESULTS: The number of eradication prescriptions declined in 2020 and 2021, with 15 (7%) and 12 (5%) -individuals prescribed therapy for those years, respectively. A similar pattern was observed for -prescriptions for chronic infection. A reduction was seen in 2020 and 2021, with 28 (13%) and 20 (9%) individuals -prescribed therapy for the respective years. CONCLUSIONS: The CMKC experienced a decrease in the number of courses of iTOB prescribed during the last 6 years. The reasons for this are likely multifactorial and may include the implementation of standardized PA surveillance and eradication protocols, the effect of HEMT on mucociliary clearance and airway microbiology, and the poorly understood effects of the SARS-CoV-2 pandemic on the epidemiology of respiratory infections.

11.
mBio ; 15(6): e0345123, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38651896

ABSTRACT

The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE: Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.


Subject(s)
Anti-Bacterial Agents , Mucus , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mucus/microbiology , Mucus/metabolism , Humans , Mucins/metabolism , Drug Resistance, Bacterial , Polymers/metabolism , Persistent Infection/microbiology , Lung/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/drug therapy , Adaptation, Physiological
12.
Pathogens ; 13(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668281

ABSTRACT

Hospital-acquired infections (HAIs) remain a significant factor in hospitals, with implant surfaces often becoming contaminated by highly resistant strains of bacteria. Recent studies have shown that electrical plasma discharges can reduce bacterial load on surfaces, and this approach may help augment traditional antibiotic treatments. To investigate this, a cold atmospheric plasma was used to deposit tobramycin sulphate onto various surfaces, and the bacterial growth rate of K. pneumoniae in its planktonic and biofilm form was observed to probe the interactions between the plasma discharge and the antibiotic and to determine if there were any synergistic effects on the growth rate. The plasma-deposited tobramycin was still active after passing through the plasma field and being deposited onto titanium or polystyrene. This led to the significant inhibition of K. pneumoniae, with predictable antibiotic dose dependence. Separate studies have shown that the plasma treatment of the biofilm had a weak antimicrobial effect and reduced the amount of biofilm by around 50%. Combining a plasma pre-treatment on exposed biofilm followed by deposited tobramycin application proved to be somewhat effective in further reducing biofilm growth. The plasma discharge pre-treatment produced a further reduction in the biofilm load beyond that expected from just the antibiotic alone. However, the effect was not additive, and the results suggest that a complex interaction between plasma and antibiotic may be at play, with increasing plasma power producing a non-linear effect. This study may contribute to the treatment of infected surgical sites, with the coating of biomaterial surfaces with antibiotics reducing overall antibiotic use through the targeted delivery of therapeutics.

13.
J Arthroplasty ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631513

ABSTRACT

BACKGROUND: Vancomycin and tobramycin have traditionally been used in antibiotic spacers. In 2020, our institution replaced tobramycin with ceftazidime. We hypothesized that the use of ceftazidime/vancomycin (CV) in antibiotic spacers would not lead to an increase in treatment failure compared to tobramycin/vancomycin (TV). METHODS: From 2014 to 2022, we identified 243 patients who underwent a stage I revision for periprosthetic joint infection. The primary outcome was a recurrent infection requiring antibiotic spacer exchange. We were adequately powered to detect a 10% difference in recurrent infection. Patients who had a prior failed stage I or two-stage revision for infection, acute kidney injury prior to surgery, or end-stage renal disease were excluded. Given no other changes to our spacer constructs, we estimated cost differences attributable to the antibiotic change. Chi-square and t-tests were used to compare the two groups. Multivariable logistic regressions were utilized for the outcomes. RESULTS: The combination of TV was used in 127 patients; CV was used in 116 patients. Within one year of stage I, 9.8% of the TV group had a recurrence of infection versus 7.8% of the CV group (P = .60). By final follow-up, results were similar (12.6 versus 8.6%, respectively, P = .32). Adjusting for potential risk factors did not alter the results. Cost savings for ceftazidime versus tobramycin are estimated to be $68,550 per one hundred patients treated. CONCLUSIONS: Replacing tobramycin with ceftazidime in antibiotic spacers yielded similar periprosthetic joint infection eradication success at a lower cost. While larger studies are warranted to confirm these efficacy and cost-saving results, our data justifies the continued investigation and use of ceftazidime as an alternative to tobramycin in antibiotic spacers.

14.
BMC Ophthalmol ; 24(1): 197, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671418

ABSTRACT

OBJECTIVE: Evaluation of clinical efficacy and safety of tobramycin/dexamethasone eye ointment in treating persistent corneal epithelial dysfunction (PED) after cataract surgery. METHODS: 26 cases diagnosed as PED after cataract surgery accept the tobramycin/dexamethasone ophthalmic ointment and intense pulse light treatment in the Xiamen University of Xiamen eye center between September 2016 and April 2022 were retrospectively analyzed, mainly including clinical manifestations, characteristics of morphological changes imaged by in vivo confocal microscopy, meibomian glands infrared photography, lipid layer thickness (LLT), management and therapeutic effects. RESULTS: There were 26 eyes, include 8(35%) males and 15(65%) females with an average age of 69.6 ± 5.2 years(50 to 78 years). The mean hospitalization time was (18.4 ± 7.5) days after cataract surgery. Twenty patients had meibomian gland dysfunction. Infrared photography revealed varying loss in the meibomian glands, with a mean score of 3.8 ± 1.2 for gland loss. The mean LLT was 61.6 ± 8.4 nm. After treatment, 20 patients were cured, and 3 received amniotic membrane transplantation. After treatment, the uncorrected visual acuity (UCVA) and best-corrected vision activity (BCVA) improved (P < 0.001), and there was no significant difference in intraocular pressure (IOP) before and after treatment (P > 0.05). CONCLUSIONS: The early manifestation of PED after surgery is punctate staining of the corneal epithelium. Tobramycin and dexamethasone eye ointment bandages have a good repair effect. The meibomian gland massage combined with intense pulse light treatment can effectively shorten the course of the disease.


Subject(s)
Dexamethasone , Epithelium, Corneal , Glucocorticoids , Tobramycin , Visual Acuity , Humans , Female , Male , Aged , Middle Aged , Dexamethasone/therapeutic use , Dexamethasone/administration & dosage , Retrospective Studies , Epithelium, Corneal/pathology , Visual Acuity/physiology , Tobramycin/therapeutic use , Glucocorticoids/therapeutic use , Cataract Extraction/adverse effects , Corneal Diseases/etiology , Corneal Diseases/therapy , Corneal Diseases/diagnosis , Corneal Diseases/physiopathology , Anti-Bacterial Agents/therapeutic use , Microscopy, Confocal , Postoperative Complications , Ointments
15.
J Pharm Biomed Anal ; 243: 116071, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38452421

ABSTRACT

Combating antimicrobial resistance is a top priority worldwide involving a concerted action by several high-level institutions and organisations in the health sector. To ensure that a meaningful progress is achieved, several campaigns and political initiatives have been launched targeting the health professionals, the industry, the farmers, and the general public. The Regulation (EU) 2019/4 on medicated feed contains provisions for the limitation and control of the contamination of non-target compound feed with 24 antimicrobials. The purpose of this work was to develop a reliable and effective method for the determination of four aminoglycoside antibiotics (apramycin, paromomycin, tobramycin and neomycin) and spectinomycin in feed at cross-contamination level, where an absolute lack of suitable methods was identified. Four candidate methods described in the literature failed to provide adequate recoveries of all analytes. Therefore, an in-depth investigation was carried out to identify the bottleneck variable. The optimised method was then in-house validated and showed performance features appropriate for the intended purpose. The selected compounds could be analysed by LC-MS/MS in five animal feeds with LOQs between 2.6 and 9.2 µg kg-1 for the AGs and between 28 and 86 µg kg-1 for spectinomycin. Using isotopically labelled internal standards, the recovery rates varied from 63 % to 103 % and the intermediate precision (RSDip) varied from 1.1 % to 14 %. This work represents a step forward in the reliable determination of antibiotics in compound feed as the developed method has shown to be precise and sensitive. It is expected that this method gains wide acceptance and can supplement the legislation with effective control tools for antibiotic residues.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Spectinomycin , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents/analysis , Aminoglycosides , Animal Feed/analysis
16.
Future Microbiol ; 19: 317-334, 2024 03.
Article in English | MEDLINE | ID: mdl-38440893

ABSTRACT

Aims: This work describes the encapsulation of ceftazidime and tobramycin in zein nanoparticles (ZNPs) and the characterization of their antibacterial and antibiofilm activities against Gram-negative bacteria. Materials & methods: ZNPs were synthesized by nanoprecipitation. Cytotoxicity was assessed by MTT assay and antibacterial and antibiofilm assays were performed by broth microdilution and violet crystal techniques. Results: ZNPs containing ceftazidime (CAZ-ZNPs) and tobramycin (TOB-ZNPs) showed drug encapsulation and thermal stability. Encapsulation of the drugs reduced their cytotoxicity 9-25-fold. Antibacterial activity, inhibition and eradication of biofilm by CAZ-ZNPs and TOB-ZNPs were observed. There was potentiation when CAZ-ZNPs and TOB-ZNPs were combined. Conclusion: CAZ-ZNPs and TOB-ZNPs present ideal physical characteristics for in vivo studies of antibacterial and antibiofilm activities.


A nanotechnology product was developed to treat diseases caused by bacteria. This prototype showed the ideal characteristics and could be administered by ingestion through the mouth, aspiration through the nose or injection into the veins. The prototype did not harm or kill human cells. It killed the bacteria and prevented the formation of a type of protection against antibiotics that bacteria can produce, called a biofilm. Nanotechnology products are a promising alternative for the treatment of bacterial infections.


Subject(s)
Nanoparticles , Zein , Ceftazidime/pharmacology , Tobramycin/pharmacology , Zein/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria , Microbial Sensitivity Tests
17.
Article in English | MEDLINE | ID: mdl-38526664

ABSTRACT

Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 µg/mL) in combination with tobramycin (0.05 µg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.

18.
Pharmaceutics ; 16(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543283

ABSTRACT

Accumulation of polymyxins in the lung epithelial cells can lead to increased mitochondrial oxidative stress and pulmonary toxicity. Aminoglycosides and polymyxins are used, via intravenous and pulmonary delivery, against multidrug-resistant Gram-negative pathogens. Our recent in vitro and animal studies demonstrated that the co-administration of polymyxins with aminoglycosides decreases polymyxin-induced pulmonary toxicity. The aim of this study was to investigate the in vitro transport and uptake of polymyxin B and tobramycin in human lung epithelial Calu-3 cells and the mechanism of reduced pulmonary toxicity resulting from this combination. Transport, intracellular localization, and accumulation of polymyxin B and tobramycin were investigated using doses of 30 mg/L polymyxin B, 70 mg/L tobramycin, and the combination of both. Adding tobramycin significantly (p < 0.05) decreased the polymyxin B-induced cytotoxicity in Calu-3 cells. The combination treatment significantly reduced the transport and uptake of polymyxin B and tobramycin in Calu-3 cells, compared to each drug alone, which supported the reduced pulmonary toxicity. We hypothesized that cellular uptake of polymyxin B and tobramycin shared a common transporter, megalin. We further investigated the megalin expression of Calu-3 cells using confocal microscopy and evaluated megalin activity using a megalin substrate, FITC-BSA, and a megalin inhibitor, sodium maleate. Both polymyxin B and tobramycin significantly inhibited FITC-BSA uptake by Calu-3 cells in a concentration-dependent manner. Sodium maleate substantially inhibited polymyxin B and tobramycin transport and cellular accumulation in the Calu-3 cell monolayer. Our study demonstrated that the significantly reduced uptake of polymyxin B and tobramycin in Calu-3 cells is attributed to the mechanism of action that determines that polymyxin B and tobramycin share a common transporter, megalin.

19.
Indian J Orthop ; 58(2): 144-150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312906

ABSTRACT

Purpose: Antimicrobial cement spacer (ACS) placement has been a cornerstone of two-stage management of prosthetic hip and knee infection. Pharmacokinetic modelling has described peak systemic antibiotic concentrations within the first 24-48 h post-operatively, followed by rapid clearance. A few studies have, however, identified detectable tobramycin levels in patients with a post-operative decline in creatinine clearance. Our study sought to determine how frequently detectable serum tobramycin levels occurred within the first 72 h following ACS placement in all patients regardless of baseline or subsequent changes in renal function, whether these levels correlated with tobramycin spacer dosage, creatinine clearance, or potential nephrotoxicity risk factors, and whether any patients developed acute kidney injury within the 14-day post-operative period. Methods: We prospectively enrolled patients with prosthetic hip or knee infections and subsequent ACS placement from October 2017 to February 2020. Patient comorbidities (chronic kidney disease, diabetes mellitus, chronic liver disease, chronic obstructive pulmonary disease, and atrial fibrillation), Charleston Comorbidity Index score, risk factors for post-operative nephrotoxicity (perioperative hypotension and nephrotoxic agent receipt), total tobramycin dosage, post-operative days 1 and 3 serum tobramycin concentrations, and serum creatinine and creatinine clearance throughout a 14-day post-operative period were recorded. Results: A total of 20 patients were enrolled, comprising 20 spacers with a median total tobramycin dosage of 4.80 g with an interquartile range (IQR) of 4.13-7.20 g. Thirteen patients had a median detectable post-operative day 1 serum tobramycin concentration of 0.80 (IQR 0.50-1.60) mcg/mL. Five of these 13 patients had a median detectable post-operative day 3 serum tobramycin concentration of 0.80 (IQR 0.50-1.10) mcg/mL. A correlation was not found between serum tobramycin drug levels and patient comorbidities, receipt of nephrotoxic medications, or baseline and subsequent post-operative creatinine clearance up to day 14. Conclusion: The majority of patients who underwent tobramycin ACS placement had detectable serum tobramycin levels in the immediate post-operative period, but most reached undetectable levels within 72 h. There were no reliable perioperative predictors of detectable drug levels.

20.
Microbiol Spectr ; 12(4): e0230323, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411953

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.


Subject(s)
Pseudomonas Infections , Tobramycin , Humans , Tobramycin/pharmacology , Pseudomonas aeruginosa , Membrane Fluidity , Sigma Factor/genetics , Sigma Factor/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Pseudomonas Infections/drug therapy , Biofilms , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...