Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.752
Filter
1.
J Physiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980987

ABSTRACT

Growing evidence supports the role of gut microbiota in chronic inflammation, insulin resistance (IR) and sex hormone production in polycystic ovary syndrome (PCOS). Adropin plays a pivotal role in the regulation of glucose and lipid metabolism and is negatively correlated with IR, which affects intestinal microbiota and sex hormones. However, the effect of adropin administration in PCOS has yet to be investigated. The present study aimed to assess the effects of adropin on letrozole (LTZ)-induced PCOS in rats and the potential underlying mechanisms. The experimental groups were normal, adropin, letrozole and LTZ + adropin. At the end of the experiment, adropin significantly ameliorated PCOS, as evidenced by restoring the normal ovarian structure, decreasing the theca cell thickness in antral follicles, as well as serum testosterone and luteinizing hormone levels and luteinizing hormone/follicle-stimulating hormone ratios, at the same time as increasing granulosa cell thickness in antral follicles, oestradiol and follicle-stimulating hormone levels. The ameliorating effect could be attributed to its effect on sex hormone-binding globulin, key steroidogenic genes STAR and CYP11A1, IR, lipid profile, gut microbiota metabolites-brain-ovary axis components (short chain fatty acids, free fatty acid receptor 3 and peptide YY), intestinal permeability marker (zonulin and tight junction protein claudin-1), lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B inflammatory pathway and oxidative stress makers (malondialdehyde and total antioxidant capacity). In conclusion, adropin has a promising therapeutic effect on PCOS by regulating steroidogenesis, IR, lipid profile, the gut microbiota inflammatory axis and redox homeostasis. KEY POINTS: Adropin treatment reversed endocrine and ovarian morphology disorders in polycystic ovary syndrome (PCOS). Adropin regulated the ovarian steroidogenesis and sex hormone-binding globulin in PCOS. Adropin improved lipid profile and decreased insulin resistance in PCOS. Adropin modulated the components of the gut-brain-ovary axis (short chain fatty acids, free fatty acid receptor 3 and peptide YY) in PCOS. Adropin improved intestinal barrier integrity, suppressed of lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B signalling pathway and oxidative stress in PCOS.

2.
Fitoterapia ; 177: 106111, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971330

ABSTRACT

Euphorbia lathyris L. (EL) is a traditional poisonous herbal medicine used to treat dropsy, ascites, amenorrhea, anuria and constipation. Processing to reduce toxicity of EL is essential for its safe and effective application. However, there is little known regarding the molecular mechanism of reducing toxicity after EL processing. This research aimed to screen the differential markers for EL and PEL, explore the differential mechanisms of inflammatory injury induced by EL and processed EL (PEL) to expound the mechanism of alleviating toxicity after EL processing. The results showed that 15 potential biomarkers, mainly belonging to diterpenoids, were screened to distinguish EL from PEL. EL promoted the expressions of TLR4, NLRP3, NF-κB p65, IL-1ß and TNF-α, increased lipid rafts abundance and promoted TLR4 positioning to lipid rafts. Meanwhile, EL decreased LXRα and ABCA1 expression, and reduced cholesterol efflux. In contrast to EL, the effects of PEL on these indicators were markedly weakened. In addition, Euphorbia factors L1, L2, and L3 affected LXRα, ABCA1, TLR4, NLRP3, NF-κB p65, TNF-α and IL-1ß expression, influenced cholesterol efflux and lipid rafts abundance, and interfered with the colocalization of TLR4 and lipid rafts. The inflammatory injury caused by processed EL was significantly weaker than that caused by crude EL, and reduction of Euphorbia factors L1, L2, and L3 as well as attenuation of inflammatory injury participated in processing-based detoxification of EL. Our results provide valuable insights into the attenuated mechanism of EL processing and will guide future research on the processing mechanism of toxic traditional Chinese medicine.

3.
Int J Immunopathol Pharmacol ; 38: 3946320241254083, 2024.
Article in English | MEDLINE | ID: mdl-38869980

ABSTRACT

INTRODUCTION: Corilagin possesses a diverse range of pharmacologic bioactivities. However, the specific protective effects and mechanisms of action of corilagin in the context of atherosclerosis remain unclear. In this study, we investigated the impact of corilagin on the toll-like receptor (TLR)4 signaling pathway in a mouse vascular smooth muscle cell line (MOVAS) stimulated by oxidized low-density lipoprotein (ox-LDL). Additionally, we examined the effects of corilagin in Sprague-Dawley rats experiencing atherosclerosis. METHODS: The cytotoxicity of corilagin was assessed using the CCK8 assay. MOVAS cells, pre-incubated with ox-LDL, underwent treatment with varying concentrations of corilagin. TLR4 expression was modulated by either downregulation through small interfering (si)RNA or upregulation via lentivirus transfection. Molecular expression within the TLR4 signaling pathway was analyzed using real-time polymerase chain reaction (PCR) and Western blotting. The proliferation capacity of MOVAS cells was determined through cell counting. In a rat model, atherosclerosis was induced in femoral arteries using an improved guidewire injury method, and TLR4 expression in plaque areas was assessed using immunofluorescence. Pathological changes were examined through hematoxylin and eosin staining, as well as Oil-Red-O staining. RESULTS: Corilagin demonstrated inhibitory effects on the TLR4 signaling pathway in MOVAS cells pre-stimulated with ox-LDL, consequently impeding the proliferative impact of ox-LDL. The modulation of TLR4 expression, either through downregulation or upregulation, similarly influenced the expression of downstream molecules. In an in vivo context, corilagin exhibited the ability to suppress TLR4 and MyD88 expression in the plaque lesion areas of rat femoral arteries, thereby alleviating the formation of atherosclerotic plaques. CONCLUSION: Corilagin can inhibit the TLR4 signaling pathway in VSMCs, possibly by downregulating TLR4 expression and, consequently, relieving atherosclerosis.


Subject(s)
Atherosclerosis , Glucosides , Hydrolyzable Tannins , Lipoproteins, LDL , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Hydrolyzable Tannins/pharmacology , Signal Transduction/drug effects , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Lipoproteins, LDL/metabolism , Male , Glucosides/pharmacology , Glucosides/therapeutic use , Mice , Cell Line , Rats , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Disease Models, Animal , Myeloid Differentiation Factor 88/metabolism
4.
Metabolism ; 158: 155952, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906371

ABSTRACT

INTRODUCTION: Ammonia is a pathogenic factor implicated in the progression of metabolic-associated steatotic liver disease (MASLD). The contribution of the glutaminase 1 (GLS) isoform, an enzyme converting glutamine to glutamate and ammonia, to hepatic ammonia build-up and the mechanisms underlying its upregulation in metabolic-associated steatohepatitis (MASH) remain elusive. METHODS: Multiplex transcriptomics and targeted metabolomics analysis of liver biopsies in dietary mouse models representing the whole spectra of MASLD were carried out to characterize the relevance of hepatic GLS during disease pathological progression. In addition, the acute effect of liver-specific GLS inhibition in hepatic ammonia content was evaluated in cultured hepatocytes and in in vivo mouse models of diet-induced MASLD. Finally, the regulatory mechanisms of hepatic GLS overexpression related to the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) axis were explored in the context of MASH. RESULTS: In mouse models of diet-induced MASLD, we found that augmented liver GLS expression is closely associated with the build-up of hepatic ammonia as the disease progresses from steatosis to steatohepatitis. Importantly, the acute silencing/pharmacological inhibition of GLS diminishes the ammonia burden in cultured primary mouse hepatocytes undergoing dedifferentiation, in steatotic hepatocytes, and in a mouse model of diet-induced steatohepatitis, irrespective of changes in ureagenesis and gut permeability. Under these conditions, GLS upregulation in the liver correlates positively with the hepatic expression of TLR4 that recognizes LPS. In agreement, the pharmacological inhibition of TLR4 reduces GLS and hepatic ammonia content in LPS-stimulated mouse hepatocytes and hyperammonemia animal models of endotoxemia. CONCLUSIONS: Overall, our results suggest that the LPS/TLR4 axis regulates hepatic GLS expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis.

5.
Pharmacol Rep ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918327

ABSTRACT

Neurodegenerative diseases (NDDs) pose a significant issue in healthcare, needing a thorough knowledge of their complex molecular mechanisms. A diverse set of cell signaling mediators and their interactions play critical roles in neuroinflammation. The release of pro-inflammatory mediators in response to neural dysfunction is detrimental to normal cell survival. Moreover, the important role of nuclear factor-κB (NF-κB) in the central nervous system through Toll-like receptor (TLR) activation has been well established. Therefore, through a comprehensive review of current research and experimentation, this investigation elucidates the interactions between novel pharmacological agents (TLR-4/NF-κB inhibitors) and neurodegeneration encompassing Alzheimer's, Parkinson's, Huntington's disease, amyotrophic lateral sclerosis and stroke. Insights garnered from this exploration underscore the potential of TLR-4 as a therapeutic target. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. This review thus serves as a roadmap, guiding future research endeavors toward innovative strategies for combatting the complex interplay between TLR-4 signaling and NDDs.

6.
Chem Biol Interact ; 398: 111112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38901789

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α2-adrenergic receptor (α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. This study utilized bioinformatics analysis and an LPS-induced ALI model to explore how DEX alleviates lung injury by modulating HSPA12B and inhibiting the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Results indicate that HSPA12B overexpression and DEX pre-treatment markedly mitigated LPS-induced lung injury, which was evaluated by the deterioration of histopathology, histologic scores, the W/D weight ratio, and total protein expression, tumor necrosis factor-alpha (TNF-α), and interleukin-1ß (IL-1ß) in the BALF, and the levels of NO, MDA,SOD and MPO in the lung. Moreover, HSPA12B overexpression and DEX pre-treatment significantly reduces lung injury and inflammation levels by upregulating HSPA12B and inhibiting the activation of the TLR4/NF-κB signaling pathway. On the contrary, when the expression of HSPA12B is inhibited, the protective effect of DEX pre-treatment on lung tissue is significantly weakened.In summary, our research demonstrated that the increased expression of AAV-mediated HSPA12B in the lungs of mice inhibits acute inflammation and suppresses the activation of TLR4/NF-κB pathway in a murine model of LPS-induced ALI. DEX could enhance HSPA12B and inhibit the initiation and development of inflammation through down-regulating TLR4/NF-κB pathway.These findings highlight the potential of DEX as a therapeutic agent for treating ALI and ARDS, offering new strategies for clinical intervention.


Subject(s)
Acute Lung Injury , Dexmedetomidine , HSP70 Heat-Shock Proteins , Lipopolysaccharides , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Animals , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins/metabolism , Mice , Male , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Lung/metabolism , Interleukin-1beta/metabolism
7.
Int Immunopharmacol ; 137: 112500, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38889511

ABSTRACT

Toll-like receptor 4 (TLR4) acts as a double-edged sword in the occurrence and development of periodontitis. While the activation of TLR4 in macrophages aids in clearing local pathogens, it can also disrupt innate immune responses, upsetting microecological balance and accelerating the destruction of periodontal bone tissues. To date, the effects of TLR4 on osteogenesis and osteoclastogenesis in periodontitis have not been comprehensively studied. In this study, we investigated the development of periodontitis in the Tlr4-/- mice by ligating their second molars with silk threads. Compared to wild-type (WT) mice, Tlr4-/- mice demonstrated increased resistance to periodontitis-associated bone destruction, as evidenced by decreased bone resorption and enhanced bone regeneration. Mechanistically, the deletion of Tlr4 not only inhibited osteoclast formation by reducing the expression of NFATc1, CTSK and TRAP, but also enhanced osteogenic abilities through increased expression of OCN, OPN and RUNX2. In conclusion, TLR4 tips the balance of osteoclastogenesis and osteogenesis, thereby promoting periodontal bone destruction in periodontitis.


Subject(s)
Mice, Knockout , Osteoblasts , Osteoclasts , Osteogenesis , Periodontitis , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Periodontitis/immunology , Periodontitis/genetics , Periodontitis/pathology , Osteoclasts/physiology , Osteoclasts/immunology , Mice , Osteoblasts/metabolism , Osteoblasts/immunology , Mice, Inbred C57BL , Male , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Humans , Alveolar Bone Loss/immunology , Alveolar Bone Loss/pathology
8.
Front Cell Infect Microbiol ; 14: 1393680, 2024.
Article in English | MEDLINE | ID: mdl-38938877

ABSTRACT

Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by enterovirus 71 (EV71) that frequently affects children, leading to severe infections in some cases. In general, when infection occurs, the body upregulates inflammatory responses to eliminate pathogenic microorganisms to protect the host from infection. However, EV71 may inhibit host's innate immunity to promote virus infection. At present, it is not fully understood how EV71 hijack the host cells for its own replication. Toll-like receptor 4 (TLR4), a natural immune receptor, historically associated with bacterial endotoxin-induced inflammatory responses. However, it is still unclear whether and how TLR4 is altered during EV71 infection. In this study, we observed a reduction in both TLR4 protein and gene transcript levels in RD, GES-1, and Vero cells following EV71 infection, as detected by RT-qPCR, immunofluorescence staining and western blot. Furthermore, we observed that the TLR4 downstream molecules of MYD88, p-NF-κB p65, p-TBK1 and related inflammatory cytokines were also reduced, suggesting that antiviral innate immune and inflammatory response were suppressed. To determine the impact of TLR4 changes on EV71 infection, we interfered EV71-infected RD cells with TLR4 agonist or inhibitor and the results showed that activation of TLR4 inhibited EV71 replication, while inhibition of TLR4 promote EV71 replication. Besides, EV71 replication was also promoted in TLR4 siRNA-transfected and EV71-infected RD cells. This suggests that down-regulation the expression of TLR4 by EV71 can inhibit host immune defense to promote EV71 self-replication. This novel mechanism may be a strategy for EV71 to evade host immunity.


Subject(s)
Enterovirus A, Human , Immunity, Innate , Signal Transduction , Toll-Like Receptor 4 , Virus Replication , Humans , Cell Line , Chlorocebus aethiops , Cytokines/metabolism , Enterovirus A, Human/immunology , Hand, Foot and Mouth Disease/immunology , Hand, Foot and Mouth Disease/virology , Host-Pathogen Interactions/immunology , Inflammation/metabolism , Inflammation/immunology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Vero Cells , Animals
9.
Pharmaceutics ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38931862

ABSTRACT

ApTOLL, a TLR4 modulator aptamer, has demonstrated cerebroprotective effects in a permanent ischemic stroke mouse model, as well as safety and efficacy in early phase clinical trials. We carried out reverse translation research according to STAIR recommendations to further characterize the effects and mechanisms of ApTOLL after transient ischemic stroke in rats and to better inform the design of pivotal clinical trials. Adult male rats subjected to transient middle cerebral artery occlusion were treated either with ApTOLL or the vehicle intravenously at different doses and time-points. ApTOLL was compared with TAK-242 (a TLR4 inhibitor). Female rats were also studied. After neurofunctional evaluation, brains were removed for infarct/edema volume, hemorrhagic transformation, and histologic determinations. Peripheral leukocyte populations were assessed via flow cytometry. ApTOLL showed U-shaped dose-dependent cerebroprotective effects. The maximum effective dose (0.45 mg/kg) was cerebroprotective when given both before reperfusion and up to 12 h after reperfusion and reduced the hemorrhagic risk. Similar effects occurred in female rats. Both research and clinical ApTOLL batches induced slightly superior cerebroprotection when compared with TAK-242. Finally, ApTOLL modulated circulating leukocyte levels, reached the brain ischemic tissue to bind resident and infiltrated cell types, and reduced the neutrophil density. These results show the cerebroprotective effects of ApTOLL in ischemic stroke by reducing the infarct/edema volume, neurofunctional impairment, and hemorrhagic risk, as well as the peripheral and local immune response. They provide information about ApTOLL dose effects and its therapeutic time window and target population, as well as its mode of action, which should be considered in the design of pivotal clinical trials.

10.
FASEB J ; 38(13): e23781, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38941212

ABSTRACT

Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11ß-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11ß-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3ß, activation of NF-κB, and the GSK-3ß-dependent increases of C3, IL-1ß, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3ß-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11ß-HSD1, NF-κB, C3 and IL-1ß, decreased astrocytic p-Ser9GSK-3ß in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3ß/NF-κB signaling.


Subject(s)
Astrocytes , Glycogen Synthase Kinase 3 beta , Immunity, Innate , Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Toll-Like Receptor 4/metabolism , Immunity, Innate/drug effects , Rats , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides/pharmacology , Adrenal Cortex Hormones/pharmacology , Rats, Sprague-Dawley , Cells, Cultured , Receptors, Mineralocorticoid/metabolism , Aldosterone/metabolism , Aldosterone/pharmacology , Male , NF-kappa B/metabolism , Glycogen Synthase Kinase 3/metabolism , Corticosterone/pharmacology
11.
Placenta ; 154: 1-8, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38824786

ABSTRACT

INTRODUCTION: Toxoplasma gondii is an opportunistic intracellular parasite that is a major pathogenic factor in miscarriage, especially when it occurs early in pregnancy. We have previously demonstrated that the regulation of forkhead box transcription factor (Foxp3) is associated with abortion in early pregnancy caused by excretory-secretory antigen (ESA) of strain China 1. We aimed to reveal the underlying mechanism of miscarriage caused by ESA. METHODS: A TLR4-/- pregnant mouse model was successfully constructed. Pregnant mice at gestational day 5 (G5) were injected with ESA. All animals were sacrificed on G13, pregnancy outcomes were observed, and abortion rates were calculated. Placental status observed by Hematoxylin-eosin staining; gene expression was measured by IHC; flow cytometry analysis was used to determine the number and function of regulatory T cells. In EL4 cells, real-time PCR and Western blot were used to evaluate gene expression and cytokines assay. RESULTS: In vivo studies revealed that ESA injection caused 83% abortion in pregnant mice but only 35% abortion in TLR4-/- pregnant mice. In addition, ESA attenuated the number and function of regulatory T cells, further suppressed Foxp3, FOXO1 levels, and upregulated CD127 expression. TLR4-/- mice partially reversed this inhibitory effect on regulatory T cells. Furthermore, in vitro studies revealed that ESA inhibited TLR4/NF-κB signaling pathway expression and that TLR4 agonists significantly restored the ESA-induced decrease in Foxp3. DISCUSSION: These findings suggest that ESA suppresses Foxp3 expression by blocking TLR4/NF-κB signaling, resulting in miscarriage. More importantly, the results indicated that miscarriage caused by ESA is TLR4 dependent.

12.
Phytomedicine ; 130: 155725, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38772181

ABSTRACT

BACKGROUND: Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE: The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS: DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS: We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1ß, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION: DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.


Subject(s)
Cognitive Dysfunction , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Salvia miltiorrhiza , Sleep Deprivation , Animals , Salvia miltiorrhiza/chemistry , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Cognitive Dysfunction/drug therapy , Male , Drugs, Chinese Herbal/pharmacology , Rats , Gastrointestinal Microbiome/drug effects , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , NF-kappa B/metabolism , Morris Water Maze Test/drug effects , Maze Learning/drug effects
13.
Exp Cell Res ; 439(1): 114091, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38740168

ABSTRACT

Resatorvid (TAK-242), a small-molecule inhibitor of Toll-like receptor 4 (TLR4), has the ability to cross the blood-brain barrier (BBB). In this study, we explored the role of TAK-242 on glioblastoma (GBM) invasion, migration, and proneural-mesenchymal transition (PMT). RNA sequencing (RNA-Seq) data and full clinical information of glioma patients were downloaded from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohorts and then analyzed using R language; patients were grouped based on proneural (PN) and mesenchymal (MES) subtypes. Bioinformatics analysis was used to detect the difference in survival and TLR4-pathway expression between these groups. Cell viability assay, wound-healing test, and transwell assay, as well as an intracranial xenotransplantation mice model, were used to assess the functional role of TAK-242 in GBM in vitro and in vivo. RNA-Seq, Western blot, and immunofluorescence were employed to investigate the possible mechanism. TLR4 expression in GBM was significantly higher than in normal brain tissue and upregulated the expression of MES marker genes. Moreover, TAK-242 inhibited GBM progression in vitro and in vivo via linking with PMT, which could be a novel treatment strategy for inhibiting GBM recurrence.


Subject(s)
Brain Neoplasms , Cell Movement , Epithelial-Mesenchymal Transition , Glioblastoma , Signal Transduction , Sulfonamides , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Humans , Animals , Mice , Sulfonamides/pharmacology , Epithelial-Mesenchymal Transition/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Neoplasm Invasiveness , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation , Xenograft Model Antitumor Assays
14.
J Biol Chem ; 300(6): 107384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762177

ABSTRACT

Antimicrobial resistance poses a serious threat to human health worldwide and its incidence continues to increase owing to the overuse of antibiotics and other factors. Macrolide antibiotics such as erythromycin (EM) have immunomodulatory effects in addition to their antibacterial activity. Long-term, low-dose administration of macrolides has shown clinical benefits in treating non-infectious inflammatory respiratory diseases. However, this practice may also increase the emergence of drug-resistant bacteria. In this study, we synthesized a series of EM derivatives, and screened them for two criteria: (i) lack of antibacterial activity and (ii) ability to suppress tumor necrosis factor-α (TNF-α) production in THP-1 cells stimulated with lipopolysaccharide. Among the 37 synthesized derivatives, we identified a novel 12-membered ring macrolide EM982 that lacked antibacterial activity against Staphylococcus aureus and suppressed the production of TNF-α and other cytokines. The effects of EM982 on Toll-like receptor 4 (TLR4) signaling were analyzed using a reporter assay and Western blotting. The reporter assay showed that EM982 suppressed the activation of transcription factors, NF-κB and/or activator protein 1 (AP-1), in HEK293 cells expressing human TLR4. Western blotting showed that EM982 inhibited the phosphorylation of both IκB kinase (IKK) ß and IκBα, which function upstream of NF-κB, whereas it did not affect the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase, which act upstream of AP-1. These results suggest that EM982 suppresses cytokine production by inhibiting phosphorylation of IKKß and IκBα, resulting in the inactivation of NF-κB.


Subject(s)
Cytokines , I-kappa B Kinase , NF-KappaB Inhibitor alpha , Humans , I-kappa B Kinase/metabolism , Phosphorylation/drug effects , NF-KappaB Inhibitor alpha/metabolism , Cytokines/metabolism , Erythromycin/pharmacology , Erythromycin/chemistry , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Macrolides/pharmacology , Macrolides/chemistry , NF-kappa B/metabolism , Signal Transduction/drug effects , Staphylococcus aureus/drug effects , Toll-Like Receptor 4/metabolism
15.
J Biomed Res ; : 1-15, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807419

ABSTRACT

Ischemia-reperfusion injury (IRI) remains inevitable in liver surgeries, macrophages play a critical role in the development of IRI, but little is known about the macrophages regulate pathogenesis of IRI. Based on target-guided screening, we identified a small 3 kDa peptide (SjDX5-271) from various schistosome egg-derived peptides that induced M2 macrophage polarization. SjDX5-271 treatment protected the mice against liver IRI through promoting M2 macrophage polarization, the protective effect was abrogated when the macrophages were depleted. Transcriptomic sequencing showed that the TLR signaling pathway was significantly inhibited in macrophages derived from the SjDX5-271 treatment group. We further identified that SjDX5-271 promotes M2 macrophage polarization by inhibiting the TLR4/MyD88/NF-κB signaling pathway and further alleviates hepatic inflammation in liver IRI. Collectively, SjDX5-271 exhibits promising therapeutic effects in IRI and represents a novel therapeutic approach for IRI, even in immune-related diseases. This study revealed the development of a new biologic from the parasite and enhanced our understanding of host-parasite interplay, providing a blueprint for future therapies for immune-related diseases.

16.
Zhen Ci Yan Jiu ; 49(5): 456-462, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764116

ABSTRACT

OBJECTIVES: To observe effects of acupuncture at "Die E acupoint" on the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB (NF-κB), transcription factor T-bet (T-bet), and GATA-binding protein-3 (GATA-3) in the nasal mucosa and the serum contents of related inflammatory cytokines in rats with allergic rhinitis, so as to explore the mechanism of acupuncture in treating allergic rhinitis. METHODS: Twenty-four healthy SD rats were randomly divided into blank, model, acupuncture, and sham acupuncture groups, with 6 rats in each group. The rat model of allergic rhinitis was established by using ovalbumin induction. The rats in the acupuncture group received bilateral acupuncture at the "Die E acupoint" with a depth of 15-20 mm, while the rats in the sham acupuncture group received only sham acupuncture (light and shallow acupunture of the skin at the "Die E acupoint" ). Both interventions were performed once daily for a total of 6 days. Behavioral scores of rats in each group were recorded. Pathological changes of nasal mucosa were observed by H.E. staining. Serum contents of IgE, ovalbumin-specific IgE (OVA-sIgE), interferon(IFN)-γ, interleukin(IL)-4, IL-10 and IL-17 were measured by ELISA and the protein expression levels of T-bet, GATA-3, TLR4, MyD88 and NF-κB p65 in the nasal mucosa were detected by Western blot. RESULTS: After modeling, compared with the blank group, rats in the model group showed increased behavioral scores, serum IgE, OVA-sIgE, IL-4, and IL-17 contents, and nasal mucosal GATA-3, TLR4, MyD88, and NF-κB p65 protein expression levels (P<0.05), whereas the contents of serum IFN-γ, IL-10 and the protein expression level of T-bet in the nasal mucosa were decreased (P<0.05). Comparison between the EA and model groups showed that acupuncture intervention can decrease the behavioral scores of rats with allergic rhinitis, the contents of serum IgE, OVA-sIgE, IL-4, IL-17, and the protein expression levels of GATA-3, TLR4, MyD88, and NF-κB p65 in the nasal mucosa (P<0.05), and up-regulate the contents of serum IFN-γ, IL-10, and the nasal mucosal T-bet protein expression level. Sham acupuncture did not have a significant modulating effect on the above indicators. Inflammatory infiltration of nasal mucosa was seen in the model group and sham acupuncture, and the inflammatory reaction was milder in the acupuncture group. CONCLUSIONS: Acupuncture at "Die E acupoint" can alleviate the symptoms of allergic rhinitis and suppress the inflammation of nasal mucosa in rats, which may be related to inhibiting the TLR4/MyD88/NF-κB signaling and balancing the levels of cytokines of Th1/Th2 and Treg/Th17, and T-bet/GATA-3.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Myeloid Differentiation Factor 88 , NF-kappa B , Rhinitis, Allergic , Toll-Like Receptor 4 , Animals , Female , Humans , Male , Rats , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NF-kappa B/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , Rats, Sprague-Dawley , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/genetics , Signal Transduction , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
17.
Cell Biochem Funct ; 42(4): e4059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773900

ABSTRACT

Cerebral ischemic stroke remains a leading cause of mortality and morbidity worldwide. Toll-like receptor 4 (TLR4) has been implicated in neuroinflammatory responses poststroke, particularly in the infiltration of immune cells and polarization of macrophages. This study aimed to elucidate the impact of TLR4 deficiency on neutrophil infiltration and subsequent macrophage polarization after middle cerebral artery occlusion (MCAO), exploring its role in stroke prognosis. The objective was to investigate how TLR4 deficiency influences neutrophil behavior poststroke, its role in macrophage polarization, and its impact on stroke prognosis using murine models. Wild-type and TLR4-deficient adult male mice underwent MCAO induction, followed by various analyses, including flow cytometry to assess immune cell populations, bone marrow transplantation experiments to evaluate TLR4-deficient neutrophil behaviors, and enzyme-linked immunosorbent assay and Western blot analysis for cytokine and protein expression profiling. Neurobehavioral tests and infarct volume analysis were performed to assess the functional and anatomical prognosis poststroke. TLR4-deficient mice exhibited reduced infarct volumes, increased neutrophil infiltration, and reduced M1-type macrophage polarization post-MCAO compared to wild-type mice. Moreover, the depletion of neutrophils reversed the neuroprotective effects observed in TLR4-deficient mice, suggesting the involvement of neutrophils in mediating TLR4's protective role. Additionally, N1-type neutrophils were found to promote M1 macrophage polarization via neutrophil gelatinase-associated lipocalin (NGAL) secretion, a process blocked by TLR4 deficiency. The study underscores the protective role of TLR4 deficiency in ischemic stroke, delineating its association with increased N2-type neutrophil infiltration, diminished M1 macrophage polarization, and reduced neuroinflammatory responses. Understanding the interplay between TLR4, neutrophils, and macrophages sheds light on potential therapeutic targets for stroke management, highlighting TLR4 as a promising avenue for intervention in stroke-associated neuroinflammation and tissue damage.


Subject(s)
Macrophages , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/deficiency , Mice , Male , Macrophages/metabolism , Macrophages/immunology , Prognosis , Stroke/metabolism , Stroke/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Neutrophils/metabolism , Neutrophils/immunology
18.
Mol Pain ; 20: 17448069241256466, 2024.
Article in English | MEDLINE | ID: mdl-38716504

ABSTRACT

Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.


Subject(s)
Myeloid Differentiation Factor 88 , Nerve Regeneration , Neuralgia , Proanthocyanidins , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Animals , Proanthocyanidins/pharmacology , Toll-Like Receptor 4/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Myeloid Differentiation Factor 88/metabolism , Nerve Regeneration/drug effects , Signal Transduction/drug effects , Male , Grape Seed Extract/pharmacology , Rats , Microglia/drug effects , Microglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Spinal Nerves/drug effects
19.
Neurosci Lett ; 832: 137806, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38714229

ABSTRACT

BACKGROUND: Trigeminal neuralgia (TN) is a common and difficult-to-treat neuropathic pain disorder in clinical practice. Previous studies have shown that Toll-like receptor 4 (TLR4) modulates the activation of the NF-κB pathway to affect neuropathic pain in rats. Voltage-gated sodium channels (VGSCs) are known to play an important role in neuropathic pain electrical activity. OBJECTIVE: To investigate whether TLR4 can regulate Nav1.3 through the TRAF6/NF-κB p65 pathway after infraorbital nerve chronic constriction injury (ION-CCI). STUDY DESIGN: ION-CCI modeling was performed on SD (Sprague Dawley) rats. To verify the success of the modeling, we need to detect the mechanical pain threshold and ATF3. Then, detecting the expression of TLR4, TRAF6, NF-κB p65, p-p65, and Nav1.3 in rat TG. Subsequently, investigate the role of TLR4/TRAF6/NF-κB pathway in ION-CCI model by intrathecal injections of LPS-rs (TLR4 antagonist), C25-140 (TRAF6 inhibitor), and PDTC (NF-κB p65 inhibitor). RESULTS: ION-CCI surgery decreased the mechanical pain threshold of rats and increased the expression of ATF3, TLR4, TRAF6, NF-κB p-p65 and Nav1.3, but there was no difference in NF-κB p65 expression. After inject antagonist or inhibitor of the TLR4/TRAF6/NF-κB pathway, the expression of Nav1.3 was decreased and mechanical pain threshold was increased. CONCLUSION: In the rat model of ION-CCI, TLR4 in the rat trigeminal ganglion regulates Nav1.3 through the TRAF6/NF-κB p65 pathway, and TLR4 antagonist alleviates neuropathic pain in ION-CCI rats.


Subject(s)
NAV1.3 Voltage-Gated Sodium Channel , Rats, Sprague-Dawley , Signal Transduction , TNF Receptor-Associated Factor 6 , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , TNF Receptor-Associated Factor 6/metabolism , Male , NAV1.3 Voltage-Gated Sodium Channel/metabolism , Signal Transduction/physiology , NF-kappa B/metabolism , Trigeminal Neuralgia/metabolism , Rats , Disease Models, Animal , Transcription Factor RelA/metabolism , Activating Transcription Factor 3/metabolism , Pain Threshold/physiology
20.
Front Pediatr ; 12: 1401090, 2024.
Article in English | MEDLINE | ID: mdl-38745834

ABSTRACT

Introduction: Necrotizing enterocolitis (NEC) is a life-threatening inflammatory disease. Its onset might be triggered by Toll-Like Receptor 4 (TLR4) activation via bacterial lipopolysaccharide (LPS). We hypothesize that a deficiency of intestinal alkaline phosphatase (IAP), an enzyme secreted by enterocytes that dephosphorylates LPS, may contribute to NEC development. Methods: In this prospective pilot study, we analyzed intestinal resection specimens from surgical NEC patients, and from patients undergoing Roux-Y reconstruction for hepatobiliary disease as controls. We assessed IAP activity via enzymatic stainings and assays and explored IAP and TLR4 co-localization through immunofluorescence. Results: The study population consisted of five NEC patients (two Bell's stage IIb and three-stage IIIb, median (IQR) gestational age 25 (24-28) weeks, postmenstrual age at diagnosis 28 (26-31) weeks) and 11 controls (unknown age). There was significantly lower IAP staining in NEC resection specimens [49 (41-50) U/g of protein] compared to controls [115 (76-144), P = 0.03]. LPS-dephosphorylating activity was also lower in NEC patients [0.06 (0-0.1)] than in controls [0.3 (0.2-0.5), P = 0.003]. Furthermore, we observed colocalization of IAP and TLR4 in NEC resection specimens. Conclusion: This study suggests a significantly lower IAP level in resection specimens of NEC patients compared to controls. This lower IAP activity suggests a potential role of IAP as a protective agent in the gut, which needs further confirmation in larger cohorts.

SELECTION OF CITATIONS
SEARCH DETAIL
...