Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
2.
Respir Res ; 25(1): 193, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702733

ABSTRACT

BACKGROUND: Influenza A virus (IAV) infection is a significant risk factor for respiratory diseases, but the host defense mechanisms against IAV remain to be defined. Immune regulators such as surfactant protein A (SP-A) and Toll-interacting protein (Tollip) have been shown to be involved in IAV infection, but whether SP-A and Tollip cooperate in more effective host defense against IAV infection has not been investigated. METHODS: Wild-type (WT), Tollip knockout (KO), SP-A KO, and Tollip/SP-A double KO (dKO) mice were infected with IAV for four days. Lung macrophages were isolated for bulk RNA sequencing. Precision-cut lung slices (PCLS) from WT and dKO mice were pre-treated with SP-A and then infected with IAV for 48 h. RESULTS: Viral load was significantly increased in bronchoalveolar lavage (BAL) fluid of dKO mice compared to all other strains of mice. dKO mice had significantly less recruitment of neutrophils into the lung compared to Tollip KO mice. SP-A treatment of PCLS enhanced expression of TNF and reduced viral load in dKO mouse lung tissue. Pathway analysis of bulk RNA sequencing data suggests that macrophages from IAV-infected dKO mice reduced expression of genes involved in neutrophil recruitment, IL-17 signaling, and Toll-like receptor signaling. CONCLUSIONS: Our data suggests that both Tollip and SP-A are essential for the lung to exert more effective innate defense against IAV infection.


Subject(s)
Influenza A virus , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections , Pulmonary Surfactant-Associated Protein A , Animals , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein A/genetics , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/metabolism , Influenza A virus/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Lung/immunology , Lung/metabolism , Lung/virology
3.
Fish Shellfish Immunol ; 149: 109561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636738

ABSTRACT

Toll-interacting protein (Tollip) serves as a crucial inhibitory factor in the modulation of Toll-like receptor (TLR)-mediated innate immunological responses. The structure and function of Tollip have been well documented in mammals, yet the information in teleost remained limited. This work employed in vitro overexpression and RNA interference in vivo and in vitro to comprehensively examine the regulatory effects of AjTollip on NF-κB and MAPK signaling pathways. The levels of p65, c-Fos, c-Jun, IL-1, IL-6, and TNF-α were dramatically reduced following overexpression of AjTollip, whereas knocking down AjTollip in vivo and in vitro enhanced those genes' expression. Protein molecular docking simulations showed AjTollip interacts with AjTLR2, AjIRAK4a, and AjIRAK4b. A better understanding of the transcriptional regulation of AjTollip is crucial to elucidating the role of Tollip in fish antibacterial response. Herein, we cloned and characterized a 2.2 kb AjTollip gene promoter sequence. The transcription factors GATA1 and Sp1 were determined to be associated with the activation of AjTollip expression by using promoter truncation and targeted mutagenesis techniques. Collectively, our results indicate that AjTollip suppresses the NF-κB and MAPK signaling pathways, leading to the decreased expression of the downstream inflammatory factors, and GATA1 and Sp1 play a vital role in regulating AjTollip expression.


Subject(s)
Anguilla , Fish Proteins , GATA1 Transcription Factor , NF-kappa B , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Fish Proteins/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Anguilla/genetics , Anguilla/immunology , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Signal Transduction
4.
Autophagy ; : 1-2, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38597191

ABSTRACT

Proteostasis of the endoplasmic reticulum (ER) is maintained by coordinated action of two major catabolic pathways: proteasome-dependent ER-associated degradation (ERAD) and less characterized lysosomal pathways. Recent studies on ER-specific autophagy (termed "reticulophagy") have highlighted the importance of lysosomes for ER proteostasis. Key to this process are proteins termed reticulophagy receptors that connect ER fragments and Atg8-family proteins, facilitating the lysosomal degradation of both native and aberrant ER proteins in a relatively nonselective manner. In contrast, our recent work identified TOLLIP as a novel type of cargo receptor specifically dedicated to the lysosomal degradation of aberrant ER membrane proteins. The clients of TOLLIP include an engineered model substrate, which mimics an ER-retained aberrant membrane protein, and motor neuron disease-linked misfolded mutants of VAPB and BSCL2/Seipin. TOLLIP acts as a receptor to connect these aberrant ER membrane proteins and phosphatidylinositol-3-phosphate (PtdIns3P) by recognizing the former through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain, and the latter through its C2 domain. These interactions enable PtdIns3P-dependent vesicular trafficking of aberrant membrane proteins to lysosomes without promoting reticulophagic turnover of bulk ER.

5.
Pulmonology ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38309995

ABSTRACT

INTRODUCTION AND OBJECTIVES: Hypersensitivity pneumonitis (HP) is an interstitial lung disease with diverse clinical features that can present a fibrotic phenotype similar to idiopathic pulmonary fibrosis (IPF) in genetically predisposed individuals. While several single nucleotide polymorphisms (SNPs) have been associated with IPF, the genetic factors contributing to fibrotic HP (fHP) remain poorly understood. This study investigated the association of MUC5B and TOLLIP variants with susceptibility, clinical presentation and survival in Portuguese patients with fHP. MATERIAL AND METHODS: A case-control study was undertaken with 97 fHP patients and 112 controls. Six SNPs residing in the MUC5B and TOLLIP genes and their haplotypes were analyzed. Associations with risk, survival, and clinical, radiographic, and pathological features of fHP were probed through comparisons among patients and controls. RESULTS: MUC5B rs35705950 and three neighboring TOLLIP variants (rs3750920, rs111521887, and rs5743894) were associated with increased susceptibility to fHP. Minor allele frequencies were greater among fHP patients than in controls (40.7% vs 12.1%, P<0.0001; 52.6% vs 40.2%, P = 0.011; 22.7% vs 13.4%, P = 0.013; and 23.2% vs 12.9%, P = 0.006, respectively). Haplotypes formed by these variants were also linked to fHP susceptibility. Moreover, carriers of a specific haplotype (G-T-G-C) had a significant decrease in survival (adjusted hazard ratio 6.92, 95% CI 1.73-27.64, P = 0.006). Additional associations were found between TOLLIP rs111521887 and rs5743894 variants and decreased lung function at baseline, and the MUC5B SNP and radiographic features, further highlighting the influence of genetic factors in fHP. CONCLUSION: These findings suggest that TOLLIP and MUC5B variants and haplotypes may serve as valuable tools for risk assessment and prognosis in fibrotic hypersensitivity pneumonitis, potentially contributing to its patient stratification, and offer insights into the genetic factors influencing the clinical course of the condition.

6.
FASEB Bioadv ; 6(1): 12-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223200

ABSTRACT

Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFß) signaling in human cell lines. In this study, we examined the role of TOLLIP in mouse lung fibroblast (MLF) responses to TGFß and in the bleomycin model of experimental lung fibrosis using Tollip-/- mice. We hypothesize that if TOLLIP negatively regulates TGFß signaling, then Tollip-/- mouse lung fibroblasts (MLFs) would have enhanced response to TGFß treatment, and Tollip-/- mice would develop increased fibrosis following bleomycin challenge. Primary MLFs were stimulated with TGFß (1 ng/mL) for 24 h. RNA was obtained to assess global transcriptional responses by RNA-seq and markers of myofibroblast transition by qPCR. Functional assessment of TGFß-stimulated MLFs included cell migration by scratch assay, cell proliferation, and matrix invasion through Matrigel. In the in vivo model of lung fibrosis, Tollip-/- mice and wild-type (WT) littermates were administered bleomycin intratracheally and assessed for fibrosis. We further examined TGFß signaling in vivo after bleomycin injury by SMAD2, ERK1/2, and TGFßR1 Western blot. In response to TGFß treatment, both WT and Tollip-/- MLFs exhibited global transcriptional changes consistent with myofibroblast differentiation. However, Tollip-/- MLFs showed greater number of differentially expressed genes compared to WT MLFs and greater upregulation of Acta2 by qPCR. Functionally, Tollip-/- MLFs also exhibited increased migration and Matrigel invasiveness compared to WT. We found evidence of enhanced TGFß signaling in Tollip-/- through SMAD2 in vitro and in vivo. Tollip-/- mice experienced lower survival using a standard weight-adjusted dosing without evidence of differences in fibrosis at Day 21. With adjustment of dosing for sex, no differences were observed in fibrosis at Day 21. However, Tollip-/- mice had greater weight loss and increased bronchoalveolar lavage fluid total protein during early resolution at Day 14 compared to WT without evidence of differences in acute lung injury at Day 7, suggesting impaired resolution of lung injury.

7.
Can J Neurol Sci ; 51(1): 104-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36660782

ABSTRACT

BACKGROUND: Pathophysiology of levodopa-induced dyskinesia (LID) remains obscure. Increased dopamine metabolism due to prolonged levodopa treatment can exacerbate oxidative damage and neuroinflammatory pathology in Parkinson's disease (PD). Association of novel peripheral markers with LID severity might provide insight into LID pathomechanisms. OBJECTIVE: We aimed to study specific peripheral blood inflammatory-oxidative markers in LID patients and investigate their association with clinical severity of LID. METHOD: Motor, non-motor and cognitive changes in PD with and without LID compared to healthy-matched controls were identified. Within the same cohort, inflammatory marker (sLAG3, TOLLIP, NLRP3 and IL-1ß) levels and antioxidant enzyme activities were determined by ELISA and spectrophotometric methods. RESULTS: LID patients showed distinctly upregulated TOLLIP, IL-1ß levels with significant diminution of antioxidant activity compared to controls. Significant negative association of cognitive markers with oxidative changes was also observed. CONCLUSION: To our understanding, this is the first study that indicates the involvement of toll-like receptor-mediated distinct and low-grade inflammatory activation in LID pathophysiology.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Levodopa/adverse effects , Parkinson Disease/drug therapy , Antiparkinson Agents/therapeutic use , Dyskinesia, Drug-Induced/etiology , Biomarkers , Oxidative Stress
8.
Front Immunol ; 14: 1304758, 2023.
Article in English | MEDLINE | ID: mdl-38124753

ABSTRACT

Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.


Subject(s)
Asthma , Receptors, Purinergic P2 , Humans , Mice , Animals , Interleukin-1 Receptor-Like 1 Protein , Allergens , Interleukin-33 , Asthma/metabolism , Inflammation/metabolism , Pyroglyphidae , Dermatophagoides pteronyssinus , Adenosine Triphosphate , Intracellular Signaling Peptides and Proteins
9.
EMBO J ; 42(23): e114272, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37929762

ABSTRACT

Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.


Subject(s)
Autophagy , Membrane Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lysosomes/metabolism , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism
10.
FASEB J ; 37(8): e23089, 2023 08.
Article in English | MEDLINE | ID: mdl-37410058

ABSTRACT

Toll-interacting protein (Tollip) is a multifunctional regulator in cellular activities. However, whether its functions are subjected to post-translational modifications remains elusive. Here, we identified ubiquitination as a post-translational modification on Tollip. We found that Tollip interacted with ring finger protein 167 (RNF167) through its C-terminal coupling of ubiquitin to ER degradation (CUE) domain, and RNF167 functioned as the potential E3 ligase to attach K33-linked poly-ubiquitin chains to the Lys235 (K235) site of Tollip. Furthermore, we discovered Tollip could inhibit TNF-α-induced nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation, and substitution of Lys235 on Tollip to arginine failed to suppress TNF-α-NF-κB/MAPK (JNK) cascades, revealing the role of Tollip and its ubiquitination in NF-κB/MAPK pathways. Thus, our study reveals the novel biological function of Tollip and RNF167-dependent ubiquitination of Tollip in TNF-α signaling.


Subject(s)
Mitogen-Activated Protein Kinases , NF-kappa B , NF-kappa B/metabolism , Mitogen-Activated Protein Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination , Ubiquitin/metabolism
11.
Bull Entomol Res ; 113(4): 497-507, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37278204

ABSTRACT

Toll-interacting protein (Tollip) participates in multiple biological processes. However, the biological functions of Tollip proteins in insects remain to be further explored. Here, the genomic sequence of tollip gene from Antheraea pernyi (named Ap-Tollip) was identified with a length of 15,060 bp, including eight exons and seven introns. The predicted Ap-Tollip protein contained conserved C2 and CUE domains and was highly homologous to those tollips from invertebrates. Ap-Tollip was highly expressed in fat body compared with other determined tissues. As far as the developmental stages were concerned, the highest expression level was found at the 14th day in eggs or the 3rd day of the 1st instar. Ap-Tollip was also obviously regulated by lipopolysaccharide, polycytidylic acid or 20E in different tissues. In addition, the interaction between Ap-Tollip and ubiquitin was confirmed by western blotting and pull-down assay. RNAi of Ap-Tollip significantly affected the expression levels of apoptosis and autophagy-related genes. These results indicated that Ap-Tollip was involved in immunity and development of A. pernyi.


Subject(s)
Moths , Animals , Moths/metabolism , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism
12.
Autophagy ; 19(7): 1916-1933, 2023 07.
Article in English | MEDLINE | ID: mdl-36588386

ABSTRACT

Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NPY313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; EID50: 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD50: 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Mice , Humans , Animals , Mitophagy/genetics , Autophagy , Nucleoproteins/pharmacology , Immunity, Innate , Antiviral Agents/pharmacology
13.
Autophagy ; 19(4): 1332-1347, 2023 04.
Article in English | MEDLINE | ID: mdl-36126167

ABSTRACT

NLRC5 has been reported to be involved in antiviral immunity; however, the underlying mechanism remains poorly understood. Here, we investigated the functional role of NLRC5 in the infection of a flavivirus, dengue virus (DENV). We found that the expression of NLRC5 was strongly induced by virus infection and IFNB or IFNG stimulation in different cell lines. Overexpression of NLRC5 remarkably suppressed DENV infection, whereas knockout of NLRC5 led to a significant increase in DENV infection. Mechanistic study revealed that NLRC5 interacted with the viral nonstructural protein 3 (NS3) protease domain and mediated degradation of NS3 through a ubiquitin-dependent selective macroautophagy/autophagy pathway. We demonstrated that NLRC5 recruited the E3 ubiquitin ligase CUL2 (cullin 2) to catalyze K48-linked poly-ubiquitination of the NS3 protease domain, which subsequently served as a recognition signal for cargo receptor TOLLIP-mediated selective autophagic degradation. Together, we have demonstrated that NLRC5 exerted an antiviral effect by mediating the degradation of a multifunctional protein of DENV, providing a novel antiviral signal axis of NLRC5-CUL2-NS3-TOLLIP. This study expands our understanding of the regulatory network of NLRC5 in the host defense against virus infection.


Subject(s)
Dengue , Ubiquitin-Protein Ligases , Humans , Cullin Proteins , Autophagy , Antiviral Agents , Peptide Hydrolases , Viral Nonstructural Proteins/metabolism , Intracellular Signaling Peptides and Proteins
14.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499030

ABSTRACT

Resistance to systemic therapy is one of the hallmarks of renal cell carcinoma (RCC). Recently, TOLLIP has emerged as a possible driver of autophagy and chemoresistance. We explored the relationship between primary and metastatic RCC tumor characteristics, patient survival, and TOLLIP expression. The tissue microarrays cohort contained 95 cores of the primary tumor, matched metastases, and matched adjacent tissues derived from 32 RCC patients. TOLLIP expression in tumor samples was evaluated using the H-score. All examined samples showed cytoplasmic TOLLIP expression, with a median value of 100 in primary tumors, 107.5 in metastases, and 220 in the control group. The expression was significantly higher in the normal adjacent tissues compared to primary or metastatic RCC (p < 0.05). We found a positive correlation between expressions of TOLLIP in the primary tumor and its metastases (p < 0.05; k = 0.48). TOLLIP expression significantly correlates with a lower overall survival rate (p = 0.047). TOLLIP functions as a ubiquitin-LC3 adaptor in the intracellular pathway associated with autophagy. Relative TOLLIP overexpression may augment autophagy-related signaling, limiting susceptibility to therapy. The blockade of TOLLIP physiological function seems to be a promising approach to overcoming resistance to systemic therapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Autophagy/genetics , Signal Transduction , Protein Processing, Post-Translational , Kidney Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
15.
Expert Rev Respir Med ; 16(11-12): 1145-1152, 2022.
Article in English | MEDLINE | ID: mdl-36416606

ABSTRACT

INTRODUCTION: The study of genetic variants in response to different drugs has predominated in fields of medicine such as oncology and infectious diseases. In chronic respiratory diseases, the available pharmacogenomic information is scarce but not less relevant. AREAS COVERED: We searched the pharmacogenomic recommendations for respiratory diseases in the Table of Pharmacogenomic Biomarkers in Drug Labeling (U.S. Food and Drug Administration), the Clinical Pharmacogenomics Implementation Consortium (CPIC), and PharmGKB. The main pharmacogenomics recommendation in this field is to assess CFTR variants for using ivacaftor and its combination. The drugs' labels for arformoterol, indacaterol, and umeclidinium indicate a lack of influence of genetic variants in the pharmacokinetics of these drugs. Further studies should evaluate the contribution of CYP2D6 and CYP2C19 variants for formoterol. In addition, there are reports of potential pharmacogenetic variants in the treatment with acetylcysteine (TOLLIP rs3750920) and captopril (ACE rs1799752). The genetic variations for warfarin also are presented in PharmGKB and CPIC for patients with pulmonary hypertension. EXPERT OPINION: The pharmacogenomics recommendations for lung diseases are limited. The clinical implementation of pharmacogenomics in treating respiratory diseases will contribute to the quality of life of patients with chronic respiratory diseases.


Subject(s)
Pharmacogenetics , Quality of Life , Humans , Biomarkers
16.
J Innate Immun ; : 1-18, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36116427

ABSTRACT

Cathelicidin peptides secreted by leukocytes and epithelial cells are microbicidal but also regulate pathogen sensing via toll-like receptors (TLRs) in the colon by mechanisms that are not fully understood. Herein, analyses with the attaching/effacing pathogen Citrobacter rodentium model of colitis in cathelicidin-deficient (Camp-/-) mice, and colonic epithelia demonstrate that cathelicidins prevent apoptosis by sustaining post-transcriptional synthesis of a TLR adapter, toll-interacting protein (TOLLIP). Cathelicidins induced phosphorylation-activation of epidermal growth factor receptor (EGFR)-kinase, which phosphorylated-inactivated miRNA-activating enzyme Argonaute 2 (AGO2), thus reducing availability of the TOLLIP repressor miRNA-31. Cathelicidins promoted stability of TOLLIP protein via a proteosome-dependent pathway. This cathelicidin-induced TOLLIP upregulation prevented apoptosis in the colonic epithelium by reducing levels of caspase-3 and poly (ADP-ribose) polymerase (PARP)-1 in response to the proinflammatory cytokines, interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα). Further, Camp-/- colonic epithelial cells were more susceptible to apoptosis during C. rodentium infection than wild-type cells. This antiapoptotic effect of cathelicidins, maintaining epithelial TOLLIP protein in the gut, provides insight into cathelicidin's ability to regulate TLR signaling and prevent exacerbated inflammation.

17.
J Mol Med (Berl) ; 100(9): 1341-1353, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35986225

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia of unknown etiology. The role of genetic risk factors has been the focus of numerous studies probing for associations of genetic variants with IPF. We aimed to determine whether single-nucleotide polymorphisms (SNPs) of four candidate genes are associated with IPF susceptibility and survival in a Portuguese population. A retrospective case-control study was performed with 64 IPF patients and 74 healthy controls. Ten single-nucleotide variants residing in the MUC5B, TOLLIP, SERPINB1, and PLAU genes were analyzed. Single- and multi-locus analyses were performed to investigate the predictive potential of specific variants in IPF susceptibility and survival. Multifactor dimensionality reduction (MDR) was employed to uncover predictive multi-locus interactions underlying IPF susceptibility. The MUC5B rs35705950 SNP was significantly associated with IPF: T allele carriers were significantly more frequent among IPF patients (75.0% vs 20.3%, P < 1.0 × 10-6). Genotypic and allelic distributions of TOLLIP, PLAU, and SERPINB1 SNPs did not differ significantly between groups. However, the MUC5B-TOLLIP T-C-T-C haplotype, defined by the rs35705950-rs111521887-rs5743894-rs5743854 block, emerged as an independent protective factor in IPF survival (HR = 0.37, 95% CI 0.17-0.78, P = 0.009, after adjustment for FVC). No significant multi-locus interactions correlating with disease susceptibility were detected. MUC5B rs35705950 was linked to an increased risk for IPF, as reported for other populations, but not to disease survival. A haplotype incorporating SNPs of the MUC5B-TOLLIP locus at 11p15.5 seems to predict better survival and could prove useful for prognostic purposes and IPF patient stratification. KEY MESSAGES : The MUC5B rs35705950 minor allele is associated with IPF risk in the Portuguese. No predictive multi-locus interactions of IPF susceptibility were identified by MDR. A haplotype defined by MUC5B and TOLLIP SNPs is a protective factor in IPF survival. The haplotype may be used as a prognostic tool for IPF patient stratification.


Subject(s)
Idiopathic Pulmonary Fibrosis , Serpins , Humans , Case-Control Studies , Genetic Predisposition to Disease , Idiopathic Pulmonary Fibrosis/genetics , Polymorphism, Single Nucleotide , Retrospective Studies , Serpins/genetics
18.
Fish Shellfish Immunol ; 128: 455-465, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988714

ABSTRACT

Toll-interacting protein (Tollip) plays an important role in the innate immune response by negative regulation of the TLR-IL-1R signaling pathway. MyD88 serves as a universal adaptor in TLR-mediated NF-κB activation. However, the regulation mechanisms of Tollip in piscine MyD88-mediated NF-κB activation is largely unknown. In the present study, the cDNA sequence of LcTollip was identified from the large yellow croaker (Larimichthys crocea). The putative LcTollip protein encoded 275 amino acid residues, containing a N-terminal TBD domain, a central C2 domain, and a C-terminal CUE domain. Quantitative PCR showed that the most predominant constitutive expression of LcTollip was detected in spleen. In addition, LcTollip transcripts enhanced significantly after LPS and poly I:C challenge (P < 0.05). Cellular localization revealed that LcTollip existed in the cytoplasm and nucleus. Furthermore, the overexpression plasmids of wild type LcTollip as well as its six domain truncated mutants of LcTollip were constructed by overlap PCR. Dual luciferase analysis showed that NF-κB activation could not be induced by overexpression of LcTollip or its domain truncated mutants alone. However, the LcMyD88-induced-NF-κB activation was significantly suppressed by overexpression with LcTollip, and the truncated mutants LcTollip-ΔTBD, LcTollip-ΔC2, LcTollip-ΔCUE and LcTollip-ΔTBDΔCUE while not by LcTollip-ΔLR and LcTollip-ΔTBDΔC2. Moreover, co-immunoprecipitation (Co-IP) assay revealed that the interaction between LcTollip and LcMyD88 was through CUE domain. More interesting, IP and immunoblotting examination of HEK293T cells co-transfected with LcMyD88, LcTollip and HA-ubiquitin showed that LcMyD88 induced a dose-dependent de-ubiquitination of LcTollip while LcTollip enhanced a dose-dependent ubiquitination of LcMyD88. However, protein degradation investigation displayed that the proteolysis and ubiquitination of LcMyD88 were not connected. Our findings suggested that the LcTollip might involve in negative regulation TLR pathway by suppressing LcMyD88-mediated immune activation and improving the ubiquitination level of LcMyD88.


Subject(s)
Myeloid Differentiation Factor 88 , Perciformes , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Amino Acids/metabolism , Animals , DNA, Complementary/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Luciferases/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Poly I-C/pharmacology , Signal Transduction , Ubiquitination , Ubiquitins/genetics
20.
J Innate Immun ; : 1-11, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35760043

ABSTRACT

Respiratory influenza A virus (IAV) infection continues to pose significant challenges in healthcare of human diseases including asthma. IAV infection in mice was shown to increase IL-33, a key cytokine in driving airway inflammation in asthma, but how IL-33 is regulated during viral infection remains unclear. We previously found that a genetic mutation in Toll-interacting protein (Tollip) was linked to less airway epithelial Tollip expression, increased neutrophil chemokines, and lower lung function in asthma patients. As Tollip is involved in maintaining mitochondrial function, and mitochondrial stress may contribute to extracellular ATP release and IL-33 secretion, we hypothesized that Tollip downregulates IL-33 secretion via inhibiting ATP release during IAV infection. Wild-type and Tollip knockout (KO) mice were infected with IAV and treated with either an ATP converter apyrase or an IL-33 decoy receptor soluble ST2 (sST2). KO mice significantly lost more body weight and had increased extracellular ATP, IL-33 release, and neutrophilic inflammation. Apyrase treatment reduced extracellular ATP levels, IL-33 release, and neutrophilic inflammation in Tollip KO mice. Excessive lung neutrophilic inflammation in IAV-infected Tollip KO mice was reduced by sST2, which was coupled with less IL-33 release. Our data suggest that Tollip inhibits IAV infection, potentially by inhibiting extracellular ATP release and reducing IL-33 activation and lung inflammation. In addition, sST2 may serve as a potential therapeutic approach to mitigate respiratory viral infection in human subjects with Tollip deficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...