Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.521
Filter
1.
Front Plant Sci ; 15: 1394223, 2024.
Article in English | MEDLINE | ID: mdl-38966147

ABSTRACT

Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.

2.
Mol Plant Pathol ; 25(7): e13469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956901

ABSTRACT

Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.


Subject(s)
Genome, Viral , Plant Diseases , Solanum lycopersicum , Viroids , Solanum lycopersicum/virology , Plant Diseases/virology , Viroids/genetics , Viroids/pathogenicity , Genome, Viral/genetics , Algorithms , Genome, Plant
3.
Open Life Sci ; 19(1): 20220893, 2024.
Article in English | MEDLINE | ID: mdl-38952718

ABSTRACT

This study aimed to explore the effects of different nitrogen, phosphorus, and potassium ratios on the yield and nutritional quality of greenhouse tomatoes under a water and fertilizer integration model. Greenhouse tomatoes were used as the research object, and the "3414" fertilizer trial design was employed to assess tomato growth, yield, quality, and soil indicators across various treatment combinations. The goal was to determine the optimal fertilization scheme and recommend appropriate fertilizer quantities for tomato cultivation and production. The results revealed that different fertilizer ratios significantly affected both the quality and yield of tomatoes. Overall, the tomato yield tended to increase with higher fertilization amounts, with potassium exhibiting the most pronounced effect on yield increase, followed by phosphorus and nitrogen. The comprehensive analysis of principal components indicated that the N2P2K1 treatment yielded the highest nutritional quality and yield. Therefore, the best fertilization combination identified in this study consisted of nitrogen fertilizer at 197.28 kg hm-2, phosphorus fertilizer at 88.75 kg hm-2, and potassium fertilizer at 229.80 kg hm-2. These findings provided the scientific basis for optimizing fertilization practices in greenhouse tomato cultivation and production in the Jilin Province.

4.
Front Plant Sci ; 15: 1413653, 2024.
Article in English | MEDLINE | ID: mdl-38952846

ABSTRACT

Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.

5.
Data Brief ; 55: 110567, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952950

ABSTRACT

The large-fruited fresh-market tomato cultivated in the U.S. represents a unique fruit market class of contemporary (modern) tomatoes for direct consumption. The genomes of F2 plants from crosses between inbred contemporary U.S. large-fruited fresh-market tomatoes were sequenced. 516 F2 individual plants randomly selected from five different biparental segregating populations were used for DNA extraction. The polymerase chain reaction (PCR)-free, paired-end (2 × 150 bp) sequencing libraries (350 bp DNA fragment length) were prepared, and sequenced on average 5 Gb for each plant using the Illumina next-generation sequencing technologies [1,2]. Raw Illumina reads with adapter contamination and/or uncertain nucleotides constitute (Ns, >10 % of either read; Q-score 5 or lower, >50 % of either read) were removed. This data article will contribute to improving our knowledge of the genetic recombination and variation in tomato.

6.
Sci Rep ; 14(1): 15118, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956171

ABSTRACT

The use of novel active ingredients for the functional modification of chitosan nanoformulations has attracted global attention. In this study, chitosan has been functionalized via histidine to craft novel chitosan-histidine nanoformulation (C-H NF) using ionic gelation method. C-H NF exhibited elite physico-biochemical properties, influencing physiological and biochemical dynamics in Tomato. These elite properties include homogenous-sized nanoparticles (314.4 nm), lower PDI (0.218), viscosity (1.43 Cps), higher zeta potential (11.2 mV), nanoparticle concentration/ml (3.53 × 108), conductivity (0.046 mS/cm), encapsulation efficiency (53%), loading capacity (24%) and yield (32.17%). FTIR spectroscopy revealed histidine interaction with C-H NF, while SEM and TEM exposed its porous structure. Application of C-H NF to Tomato seedling and potted plants through seed treatment and foliar spray positively impacts growth parameters, antioxidant-defense enzyme activities, reactive oxygen species (ROS) content, and chlorophyll and nitrogen content. We claim that the histidine-functionalized chitosan nanoformulation enhances physico-biochemical properties, highlighting its potential to elevate biochemical and physiological processes of Tomato plant.


Subject(s)
Chitosan , Histidine , Nanoparticles , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Chitosan/chemistry , Histidine/chemistry , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Chlorophyll/metabolism , Chlorophyll/chemistry , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Spectroscopy, Fourier Transform Infrared
7.
J Sci Food Agric ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970166

ABSTRACT

BACKGROUND: Use of high hydrostatic pressure (HHP) with reduced processing times is gaining traction in the food industry as an alternative to conventional thermal treatment. In order to enhance functional benefits while minimizing processing losses, functionalized products are being developed with such novel techniques. In this study, changes in quality parameters for HHP treated enriched tomato sauce were evaluated, with the aim to assess its viability as an alternative to conventional thermal treatment methods. RESULTS: HHP treatments at 500 MPa, 30 °C/50 °C significantly increased the total phenolic and lycopene content of the sauce samples, achieving 6.7% and 7.5% improvements over conventionally treated samples. The antioxidant capacity of the HHP-treated samples was also found to match or be better than conventionally treated samples. Furthermore, a T2 relaxation time study revealed that pressure-temperature processing treatments were effective in maintaining the structural integrity of water molecules. Microbiological analyses revealed that 500 MPa/50 °C 5 min treatment can offer 8 logs reduction colony formation, matching the results of conventional thermal treatment. CONCLUSION: Combined pressure-temperature treatments improve results, reduce time consumption. 500 MPa/50 °C treatments provided retention of quality parameters and significant reduction in microbial activity. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
Plant J ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970620

ABSTRACT

Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.

9.
BMC Plant Biol ; 24(1): 641, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971719

ABSTRACT

BACKGROUND: Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS: The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS: Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.


Subject(s)
Alternaria , Disease Resistance , Gene Regulatory Networks , Plant Diseases , Solanum lycopersicum , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Alternaria/physiology , Alternaria/pathogenicity , Disease Resistance/genetics , Gene Expression Regulation, Plant , Transcriptome , Plant Growth Regulators/metabolism , Ethylenes/metabolism
11.
J Agric Food Chem ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973576

ABSTRACT

Peel and seeds are the main byproducts from tomato (Lycopersicon esculentum P. Mill) processing with high concentrations of polyphenols that have been underexploited. Herein, polyphenolic profiles in tomato peel and seeds were elucidated by untargeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) with an LTQ Orbitrap analyzer. Samples from two Spanish regions─"Murcia" and "Almería"─were analyzed to obtain complementary results. 57 compounds were found, mainly phenolic acids and flavonoids, of which eight were identified for the first time in tomato. Polyphenols were more abundant in byproducts from "Murcia" samples than in those from"Almería" samples, where the abundance of compounds like coutaric, caffeic, neochlorogenic, dicaffeoylquinic and ferulic acids, vanillic acid hexoside, catechin, naringenin, prunin, apigenin-O-hexoside, rutin, and rutin-O-pentoside was even much higher in byproducts than that in whole fruits. These results reveal the wide range of polyphenols found in tomato byproducts, with potential applications in pharmaceutical research, food preservation, and cosmetic development, among others.

13.
Front Plant Sci ; 15: 1403895, 2024.
Article in English | MEDLINE | ID: mdl-38957600

ABSTRACT

Water deficit stress triggers various physiological and biochemical changes in plants, substantially affecting both overall plant defense response and thus nutritional quality of tomatoes. The aim of this study was to assess the antioxidant defense response and nutritional quality of different tomato genotypes under water deficit stress. In this study, six tomato genotypes were used and subjected to water deficit stress by withholding water for eight days under glass house conditions. Various physiological parameters from leaves and biochemical parameters from tomato fruits were measured to check the effect of antioxidant defense response and nutritional value. Multi-trait genotype-ideotype distance index (MGIDI) was used for the selection of genotypes with improved defense response and nutritional value under water deficit stress condition. Results indicated that all physiological parameters declined under stress conditions compared to the control. Notably, NBH-362 demonstrated resilience to water deficit stress, improving both defense response and nutritional quality which is evident by an increase in proline (16.91%), reducing sugars (20.15%), total flavonoids (10.43%), superoxide dismutase (24.65%), peroxidase (14.7%), and total antioxidant capacity (29.9%), along with a decrease in total oxidant status (4.38%) under stress condition. Overall, the findings suggest that exposure to water deficit stress has the potential to enhance the nutritional quality of tomatoes. However, the degree of this enhancement is contingent upon the distinct genetic characteristics of various tomato genotypes. Furthermore, the promising genotype (NBH-362) identified in this study holds potential for future utilization in breeding programs.

14.
Trends Plant Sci ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38987059

ABSTRACT

Cultivated tomatoes exhibit cleistogamy - self-pollination within closed flowers. Wu et al. report that three HD-Zip IV genes and Style2.1 coordinately control anther trichome formation and style length to form closed anther cones that underpin the development of cleistogamy. Further exploration of causal variation and regulatory elements could provide targets for plant breeding.

15.
J Integr Plant Biol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967265

ABSTRACT

Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.

16.
Food Res Int ; 188: 114512, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823883

ABSTRACT

Several studies have linked the intake of lycopene and/or tomato products with improved metabolic health under obesogenic regime. The aim was to evaluate the differential impact of supplementations with several tomato genotypes differing in carotenoid content and subjected to different irrigation levels on obesity-associated disorders in mice. In this study, 80 male C57BL/6JRj mice were assigned into 8 groups to receive: control diet, high fat diet, high fat diet supplemented at 5 % w/w with 4 tomato powders originating from different tomato genotypes cultivated under control irrigation: H1311, M82, IL6-2, IL12-4. Among the 4 genotypes, 2 were also cultivated under deficit irrigation, reducing the irrigation water supply by 50 % from anthesis to fruit harvest. In controlled irrigation treatment, all genotypes significantly improved fasting glycemia and three of them significantly lowered liver lipids content after 12 weeks of supplementation. In addition, IL6-2 genotype, rich in ß-carotene, significantly limited animal adiposity, body weight gain and improved glucose homeostasis as highlighted in glucose and insulin tolerance tests. No consistent beneficial or detrimental impact of deficit irrigation to tomato promoting health benefits was found. These findings imply that the choice of tomato genotype can significantly alter the composition of fruit carotenoids and phytochemicals, thereby influencing the anti-obesogenic effects of the fruit. In contrast, deficit irrigation appears to have an overall insignificant impact on enhancing the health benefits of tomato powder in this context, particularly when compared to the genotype-related variations in carotenoid content.


Subject(s)
Diet, High-Fat , Genotype , Mice, Inbred C57BL , Obesity , Solanum lycopersicum , Solanum lycopersicum/genetics , Animals , Male , Obesity/genetics , Obesity/metabolism , Mice , Carotenoids/metabolism , Fruit , Water , Agricultural Irrigation/methods , Blood Glucose/metabolism , Adiposity
17.
Plant Physiol Biochem ; 213: 108791, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861818

ABSTRACT

Despite the tangible benefits of copper nanoparticles (CuNPs) for plants, the increasing use of CuNPs poses a threat to plants and the environment. Although miRNAs have been shown to mediate heat shock and CuNPs by altering gene expression, no study has investigated how CuNPs in combination with heat shock (HS) affect the miRNA expression profile. Here, we exposed tomato plants to 0.01 CuONPs at 42 °C for 1 h after exposure. It was found that the expression levels of miR156a, miR159a and miR172a and their targets SPL3, MYB33 and AP2a were altered under CuNPs and HS + CuNPs. This alteration accelerated the change of vegetative phase and the process of leaf senescence. The overexpression of miR393 under CuNPs and HS + CuNPs could also be an indicator of the attenuation of leaf morphology. Interestingly, the down-regulation of Cu/ZnSOD1 and Cu/ZnSOD2 as target genes of miR398a, which showed strong abnormal expression, was replaced by FeSOD (FSD1), indicating the influence of CuNPs. In addition, CuNPs triggered the expression of some important genes of heat shock response, including HsFA2, HSP70-9 and HSP90-3, which showed lower expression compared to HS. Thus, CuNPs play an important role in altering the gene expression pathway during heat stress.


Subject(s)
Copper , Heat-Shock Response , Metal Nanoparticles , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Copper/metabolism , Heat-Shock Response/genetics , Metal Nanoparticles/chemistry , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , RNA, Plant/genetics , RNA, Plant/metabolism
18.
Plant Physiol Biochem ; 213: 108850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917737

ABSTRACT

The importance of metacaspases in programmed cell death and tissue differentiation is known, but their significance in disease stress response, particularly in a crop plant, remained enigmatic. We show the tomato metacaspase expression landscape undergoes differential reprogramming during biotrophic and necrotrophic modes of pathogenesis; also, the metacaspase activity dynamics correlate with the disease progression. These stresses have contrasting effects on the expression pattern of SlMC8, a Type II metacaspase, indicating that SlMC8 is crucial for stress response. In accordance, selected biotic stress-related transcription factors repress SlMC8 promoter activity. Interestingly, SlMC8 exhibits maximum proteolysis at an acidic pH range of 5-6. Molecular dynamics simulation identified the low pH-driven protonation event of Glu246 as critical to stabilize the interaction of SlMC8 with its substrate. Mutagenesis of Glu246 to charge-neutral glutamine suppressed SlMC8's proteolytic activity, corroborating the importance of the amino acid in SlMC8 activation. The glutamic acid residue is found in an equivalent position in metacaspases having acidic pH dependence. SlMC8 overexpression leads to heightened ROS levels, cell death, and tolerance to PstDC3000, and SlMC8 repression reversed the phenomena. However, the overexpression of SlMC8 increases tomato susceptibility to necrotrophic Alternaria solani. We propose that SlMC8 activation due to concurrent changes in cellular pH during infection contributes to the basal resistance of the plant by promoting cell death at the site of infection, and the low pH dependence acts as a guard against unwarranted cell death. Our study confirms the essentiality of a low pH-driven Type II metacaspase in tomato biotic stress-response regulation.


Subject(s)
Plant Diseases , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/enzymology , Hydrogen-Ion Concentration , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Caspases/metabolism , Caspases/genetics , Gene Expression Regulation, Plant
19.
Int J Biol Macromol ; 273(Pt 2): 132957, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848837

ABSTRACT

Food waste resulting from perishable fruits and vegetables, coupled with the utilization of non-renewable petroleum-based packaging materials, presents pressing challenges demanding resolution. This study addresses these critical issues through the innovative development of a biodegradable functional plastic wrap. Specifically, the proposed solution involves the creation of a κ-carrageenan/carboxymethyl chitosan/arbutin/kaolin clay composite film. This film, capable of rapid in-situ formation on the surfaces of perishable fruits, adeptly conforms to their distinct shapes. The incorporation of kaolin clay in the composite film plays a pivotal role in mitigating water vapor and oxygen permeability, concurrently bolstering water resistance. Accordingly, tensile strength of the composite film experiences a remarkable enhancement, escalating from 20.60 MPa to 34.71 MPa with the incorporation of kaolin clay. The composite film proves its efficacy by preserving cherry tomatoes for an extended period of 9 days at 28 °C through the deliberate delay of fruit ripening, respiration, dehydration and microbial invasion. Crucially, the economic viability of the raw materials utilized in the film, coupled with the expeditious and straightforward preparation method, underscores the practicality of this innovative approach. This study thus introduces an easy and sustainable method for preserving perishable fruits, offering a cost-effective and efficient alternative to petroleum-based packaging materials.


Subject(s)
Carrageenan , Chitosan , Clay , Food Packaging , Hydrogels , Kaolin , Solanum lycopersicum , Chitosan/chemistry , Chitosan/analogs & derivatives , Kaolin/chemistry , Carrageenan/chemistry , Clay/chemistry , Food Packaging/methods , Hydrogels/chemistry , Tensile Strength , Food Preservation/methods , Fruit/chemistry , Permeability
20.
Ann Bot ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946023

ABSTRACT

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...