Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Sci Total Environ ; 946: 174201, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936709

ABSTRACT

Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.

2.
Environ Pollut ; 357: 124405, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906409

ABSTRACT

Offshore aquaculture's explosive growth improves the public food chain while also unavoidably adding new pollutants to the environment. Consequently, the protection of coastal marine eco-systems depends on the efficient treatment of wastewater from marine aquaculture. For the sulfamethazine (SMZ) of representative sulfonamides and total organic pollutants removal utilizing in-situ high salinity, this work has established an inventive and systematic treatment process coupled with iron-electrode electrochemical and ultrafiltration. Additionally, the activated dithionite (DTN) was being used in the electrochemical and ultrafiltration processes with electricity/varivalent iron (FeII/FeIII) and ceramic membrane (CM), respectively, indicated by the notations DTN@iron-electrode/EO-CM. Quenching experiments and ESR detection have identified plenty of reactive species including SO4·-, ·OH, 1O2, and O2·-, for the advanced treatment. In addition, the mass spectrometry (MS) and the Gaussian simulation calculation for these primary reaction sites revealed the dominate SMZ degradation mechanisms, including cleavage of S-N bond, hydroxylation, and Smile-type rearrangement in DTN@iron-electrode/EO process. The DTN@iron-electrode/EO effluent also demonstrated superior membrane fouling mitigation in terms of the CM process, owing to its higher specific flux. XPS and SEM confirmed the reducing membrane fouling, which showed the formation of a loose and porous cake layer. This work clarified diverse reactive species formation and detoxification with DTN@iron-electrode/EO system and offers a sustainable and efficient process for treating tailwater from coastal aquaculture.

3.
Environ Sci Pollut Res Int ; 31(27): 39120-39137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809409

ABSTRACT

Organophosphorus esters (OPEs), exemplified by tris (2-chloroethyl) phosphate (TCEP), find extensive application in diverse industries such as construction materials, textiles, chemical manufacturing, and electronics, consequently resulting in an increased concentration of these compounds in industrial wastewater. The fundamental objective of this investigation was to examine the degradation of TCEP through the implementation of US/Fenton oxidation techniques in a solution. The findings revealed that the US/Fenton system effectively facilitated the degradation of TCEP, with the Chan kinetic model precisely elucidating the degradation process. Under optimized reaction conditions, the degradation efficiency of TCEP reached an impressive 93.18%. However, the presence of common co-existing aqueous substrates such as Cl-, HCO3-, H2PO4-, and HA hindered the degradation process. Bursting tests and electron paramagnetic resonance (EPR) studies affirmed ∙OH oxidation as the principal mechanism underlying TCEP degradation. Detailed degradation pathways for TCEP were established through the utilization of density-functional theory (DFT) calculations and GC/MS tests. Moreover, the ecotoxicological evaluation of TCEP and its intermediates was conducted using the Toxicity Estimation Software Tool (T.E.S.T.).


Subject(s)
Organophosphates , Organophosphates/chemistry , Organophosphates/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Iron/chemistry , Density Functional Theory
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124118, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38461562

ABSTRACT

As the most universally used anionic surfactant, ubiquitous existence and accumulation of sodium dodecyl benzene sulfonate (SDBS) in the environment has inevitably imposed the associated harmful impacts to plants due to producing excessive reactive oxygen species. However, the underlying hazardous mechanism of the SDBS-induced oxidative stress to plants at molecular level has never been reported. Here, the molecular interaction of AtPrxQ with SDBS was explored for the first time. The intrinsic fluorescence of AtPrxQ was quenched based on static quenching, and a single binding site of AtPrxQ towards SDBS and the potential interaction forces driven by hydrophobic interactions were predicted from thermodynamic parameters and molecular docking results. Besides, the interaction pattern of AtPrxQ and SDBS was also confirmed by the bio-layer interferometry with moderate binding affinity. Moreover, the structural changes of AtPrxQ along with the destructions of the protein framework and the hydrophobic enhancement around aromatic amino acids were observed upon binding with SDBS. At last, the toxic effects produced by SDBS on peroxidase activities and Arabidopsis seedlings growth were also characterized. Thus this work may provide insights on the molecular interactions of AtPrxQ with SDBS and assessments on the biological hazards of SDBS to plants even for the agriculture.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Molecular Docking Simulation , Surface-Active Agents/chemistry , Oxidative Stress , Antioxidants/pharmacology , Benzenesulfonates/chemistry
5.
Chemosphere ; 356: 141736, 2024 May.
Article in English | MEDLINE | ID: mdl-38554873

ABSTRACT

Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.


Subject(s)
Honey , Zebrafish , Animals , Honey/analysis , Bees/drug effects , Lethal Dose 50 , Larva/drug effects , Food Contamination/analysis , Toxicity Tests/methods , Embryo, Nonmammalian/drug effects , Heart Rate/drug effects
6.
Chemosphere ; 355: 141814, 2024 May.
Article in English | MEDLINE | ID: mdl-38554862

ABSTRACT

Evaluating the toxicity of micropollutants forms the basis for understanding their potential risks to the ecosystem and/or human health. To accurately evaluate the toxicity of micropollutants in toxicity tests, many factors have been carefully considered, while the impact of the number of test organisms on toxicity results has rarely been taken into account. In this study, the role of the organism number on the developmental toxicity of five micropollutants was investigated using embryos of the marine polychaete Platynereis dumerilii. The toxicity of hydrophobic micropollutants was found to decrease significantly with increasing the number of embryos used in the test. A quantitative model was developed to better describe how the number of embryos affected developmental toxicity. The model showed a satisfactory fit to the raw data in all scenarios tested. The intrinsic half-maximal effective concentration EC50,int was then determined using the model. For a given compound, the EC50,int was a stable parameter that did not depend on the number of test embryos and thus provided an indication of the intrinsic toxicity of the compounds tested. Compared with the EC50 values determined with the commonly used embryo number (around 120), the EC50,int values of all tested hydrophobic micropollutants were lower. The more hydrophobic the compounds tested, the more pronounced the reduction in toxicity. This suggested that hydrophobic micropollutants could be more toxic than reported in the literature. Some suggestions were also made to eliminate the effect of the number of organisms used in the toxicity evaluation.


Subject(s)
Polychaeta , Water Pollutants, Chemical , Animals , Humans , Ecosystem , Hydrophobic and Hydrophilic Interactions , Toxicity Tests , Water Pollutants, Chemical/toxicity
7.
Environ Sci Technol ; 58(6): 2662-2671, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38311984

ABSTRACT

The exposure of aquatic organisms to pollutants often occurs concomitantly with salinity fluctuations. Here, we reported the effects of erythromycin (0.250, 7.21, and 1030 µg/L) on marine invertebrate N. succinea and its intestinal microbiome under varying salinity levels (5‰, 15‰, and 30‰). The salinity elicited significant effects on the growth and intestinal microbiome of N. succinea. The susceptibility of the intestinal microbiome to erythromycin increased by 8.7- and 6.2-fold at salinities of 15‰ and 30‰, respectively, compared with that at 5‰ salinity. Erythromycin caused oxidative stress and histological changes in N. succinea intestines, and inhibited N. succinea growth in a concentration-dependent manner under 30‰ salinity with a maximum inhibition of 25%. At the intestinal microbial level, erythromycin enhanced the total cell counts at 5‰ salinity but reduced them at 15‰ salinity. Under all tested salinities, erythromycin diminished the antibiotic susceptibility of the intestinal microbiome. Two-way ANOVA revealed significant interactive effects (p < 0.05) between salinity and erythromycin on various parameters, including antibiotic susceptibility and intestinal microbial diversity. The present findings demonstrated the significant role of salinity in modulating the impacts of erythromycin, emphasizing the necessity to incorporate salinity fluctuations into environmental risk assessments.


Subject(s)
Gastrointestinal Microbiome , Salinity , Erythromycin/pharmacology , Aquatic Organisms , Anti-Bacterial Agents/pharmacology
8.
Patterns (N Y) ; 5(1): 100909, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38264717

ABSTRACT

MicroRNAs are recognized as key drivers in many cancers but targeting them with small molecules remains a challenge. We present RiboStrike, a deep-learning framework that identifies small molecules against specific microRNAs. To demonstrate its capabilities, we applied it to microRNA-21 (miR-21), a known driver of breast cancer. To ensure selectivity toward miR-21, we performed counter-screens against miR-122 and DICER. Auxiliary models were used to evaluate toxicity and rank the candidates. Learning from various datasets, we screened a pool of nine million molecules and identified eight, three of which showed anti-miR-21 activity in both reporter assays and RNA sequencing experiments. Target selectivity of these compounds was assessed using microRNA profiling and RNA sequencing analysis. The top candidate was tested in a xenograft mouse model of breast cancer metastasis, demonstrating a significant reduction in lung metastases. These results demonstrate RiboStrike's ability to nominate compounds that target the activity of miRNAs in cancer.

9.
Molecules ; 29(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257210

ABSTRACT

MASM, a structurally modified derivative of matrine, exhibits superior efficacy in reducing inflammation and liver injury in rats when compared to matrine. This study aims to investigate the pharmacokinetic profile and acute toxicity of MASM. Pharmacokinetic results revealed that MASM exhibited rapid absorption, with a Tmax ranging from 0.21 ± 0.04 h to 1.31 ± 0.53 h, and was eliminated slowly, with a t1/2 of approximately 10 h regardless of the route of administration (intravenous, intraperitoneal, or intragastric). The absolute intragastric bioavailability of MASM in rats was determined to be 44.50%, which was significantly higher than that of matrine (18.5%). MASM was detected in all rat tissues including the brain, and through the utilization of stable isotope-labeled compounds and standard references, ten metabolites of MASM, namely sophocarpine, oxysophocarpine, and oxymatrine, were tentatively identified. The LD50 of MASM in mice was determined to be 94.25 mg/kg, surpassing that of matrine (83.21 mg/kg) based on acute toxicity results. Histopathological and biochemical analysis indicated no significant alterations in the primary organs of the low- to medium-dosage groups of MASM. These findings provide valuable insights into the efficacy and toxicity profile of MASM.


Subject(s)
Anthracenes , Matrines , Thiones , Mice , Rats , Animals , Carbon Radioisotopes , Tissue Distribution
10.
Toxics ; 12(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251010

ABSTRACT

Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl-, SO42-, HCO3-, K+, NH4+ and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 µM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0 was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that •OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.

11.
Environ Sci Pollut Res Int ; 31(5): 6835-6846, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38153579

ABSTRACT

A magnetic composite of CoFe2O4 and carbon nanotube (CNT) was prepared using the solvothermal approach and then employed for the activation of peroxydisulfate (PDS) to degrade reactive black 5 (RB5) and other organic pollutants. Characterization results of the composite catalyst revealed the successful loading of spherical CoFe2O4 particles on CNTs, possessing abundant porosity as well as magnetic separation capability. Under the degradation conditions of 0.2 g/L CoFe2O4-CNT dosage and 4 mM PDS dosage, the removal efficiencies of 10 mg/L RB5 and other pollutants were in the range of 94.5 to ~ 100%. The effects of pH, co-existing ions/humic acid, and water matrices as well as the reusability of the catalyst were also investigated in detail. Furthermore, the degradation mechanism and pathway were proposed based on quenching experiments, LC-MS analysis, and density functional theory (DFT) calculations, and the toxicity of the degradation products was evaluated in the quantitative structure-activity relationship approach.


Subject(s)
Environmental Pollutants , Nanotubes, Carbon , Naphthalenesulfonates , Catalysis , Magnetic Phenomena
12.
Arch Toxicol ; 98(2): 409-424, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38099972

ABSTRACT

Arsenic, which can be divided into inorganic and organic arsenic, is a toxic metalloid that has been identified as a human carcinogen. A common source of arsenic exposure in seafood is arsenolipid, which is a complex structure of lipid-soluble organic arsenic compounds. At present, the known arsenolipid species mainly include arsenic-containing fatty acids (AsFAs), arsenic-containing hydrocarbons (AsHCs), arsenic glycophospholipids (AsPLs), and cationic trimethyl fatty alcohols (TMAsFOHs). Furthermore, the toxicity between different species is unique. However, the mechanism underlying arsenolipid toxicity and anabolism remain unclear, as arsenolipids exhibit a complex structure, are present at low quantities, and are difficult to extract and detect. Therefore, the objective of this overview is to summarize the latest research progress on methods to evaluate the toxicity and analyze the main speciation of arsenolipids in seafood. In addition, novel insights are provided to further elucidate the speciation, toxicity, and anabolism of arsenolipids and assess the risks on human health.


Subject(s)
Arsenic , Arsenicals , Humans , Arsenic/toxicity , Fatty Acids/toxicity , Hydrocarbons/chemistry , Seafood/toxicity , Seafood/analysis
13.
Ecotoxicol Environ Saf ; 268: 115685, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976930

ABSTRACT

Triphenyl phosphate (TPHP), one widely used organophosphate flame retardant, has attracted accumulating attention due to its high detection rate in human biological samples. Up to date, the effects of TPHP exposure on intestinal health remain unexplored. In this study, BALB/c mice were used as a model and exposed to TPHP at dose of 2, 10, or 50 mg/kg body weight for 28 days. We observed Crohn's disease-like features in ileum and ulcerative colitis disease-like features in colon, such as shorter colon length, ileum/colon structure impairment, intestinal epithelial cell apoptosis, enrichment of proinflammatory cytokines and immune cells, and disruption of tight junction. Furthermore, we found that TPHP induced production of reactive oxygen species and apoptosis in intestinal epithelial Caco-2 cells, accompanied by disruption of tight junction between cells. To understand the molecular mechanism underlying TPHP-induced changes in intestines, we build the adverse outcome pathway (AOP) framework based on Comparative Toxicogenomics and GeneCards database. The AOP framework revealed that PI3K/AKT and FoxO signaling pathway might be associated with cellular apoptosis, an increase in ROS production, and increased inflammation response in mouse ileum and colon tissues challenged with TPHP. These results identified that TPHP induced IBD-like features and provided new perspectives for toxicity evaluation of TPHP.


Subject(s)
Flame Retardants , Humans , Animals , Mice , Flame Retardants/toxicity , Flame Retardants/metabolism , Caco-2 Cells , Phosphatidylinositol 3-Kinases , Organophosphates/toxicity , Organophosphates/metabolism , Intestines
14.
Biomed Rep ; 19(6): 96, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37901875

ABSTRACT

In green synthesis of zinc oxide nanoparticles (ZnO NPs), the use of papaya extract as a capping and reducing agent shows promise for potential applications of these particles in biomedicine. However, toxicity evaluation is necessary to ensure the safety of humans and the environment. The zebrafish model is used to assess toxicity with embryo developmental observation as it is a rapid, simple method for screening of toxicity. The objective of the present study was to assess the toxicological characteristics of ZnO NPs produced from papaya extract using a zebrafish model. The preparation of plant extracts from papaya using two solvents (water and methanol) and characterization of bioactive compounds in the extracts were reported. ZnO NPs were synthesized from both plant extracts and characterized with scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Toxicity evaluation was conducted on zebrafish embryos for 96 h. ZnO NPs synthesized from aqueous and methanol extracts had mean crystallite diameters of 13 and 12 nm, respectively. Mortality, hatching rate and malformation of zebrafish embryos were assessed at different concentrations of ZnO NPs. Both NPs showed high mortality rates at high concentrations, with 100 (aqueous) and 20 mg/l (methanol extract) being lethal for all embryos. Concentrations <10 mg/l for both synthesized ZnO NPs had similar results to the negative control, indicating a safe dosage for embryos. The hatching rate and malformation were also affected, with higher concentrations of NPs causing a delayed hatching rate and malformation in pericardial and yolk sac edema. Whole embryo mRNA expression of immune-associated genes, including IL-1 and -10 and TNF-α, was upregulated following lethal concentration 50 (LC50) ZnO NP exposure. ZnO NPs synthesized from papaya extract (both in aqueous and methanol environments) had a dose- and time-dependent embryonic toxicity effect. Hence, the present study demonstrated initial toxicity screening of ZnO NPs synthesized from plant extract.

15.
Waste Manag ; 170: 270-277, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37729844

ABSTRACT

As a class of organic micropollutants of global concern, pharmaceuticals have prevalent distributions in the aqueous environment (e.g., groundwater and surface water) and solid matrices (e.g., soil, sediments, and dried sludge). Their contamination levels have been further aggravated by the annually increased production of expired drugs as emerging harmful wastes worldwide. Sulfate radicals (SO4•-)-based oxidation has attracted increasing attention for abating pharmaceuticals in the environment, whereas the transformation mechanisms of solid-phase pharmaceuticals remain unknown thus far. This investigation presented for the first time that SO4•-, individually produced by mechanical force-activated and heat-activated persulfate treatments, could effectively oxidize three model pharmaceuticals (i.e., methotrexate, sitagliptin, and salbutamol) in both solid and liquid phases. The high-resolution mass spectrometric analysis suggested their distinct transformation products formed by different phases of SO4•- oxidation. Accordingly, the SO4•--mediated mechanistic differences between the solid-phase and liquid-phase pharmaceuticals were proposed. It is noteworthy that the products from both systems were predicted with the remaining persistence, bioaccumulation, and multi-endpoint toxicity. Therefore, some post-treatment strategies need to be considered during practical applications of SO4•--based technologies in remediating different phases of micropollutants. This work has environmental implications for understanding the comparative transformation mechanisms of pharmaceuticals by SO4•- oxidation in remediating the contaminated solid and aqueous matrices.

16.
Sci Total Environ ; 905: 167249, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37739086

ABSTRACT

Fosfomycin (FOS) as a widely used antibiotic has been found in abundance throughout the environment, but little effort has been devoted to its treatment. In this study, we systemically looked into the degradation of FOS by ultraviolet-activated persulfate (UV/PS) in aqueous solutions. Our findings demonstrated that FOS can be degraded efficiently under the UV/PS, e.g., >90 % of FOS was degraded with 19,200 mJ cm-2 of UV irradiance and 20 µM of PS. HO was the dominant radical responsible for FOS degradation. FOS degradation increased as PS dosage increased, and higher degradation efficiency was observed at neutral pH. Natural water constitutes either promoted (e.g., Cu2+, Fe3+, and SO42-) or inhibited (e.g., humic acid, HCO3-, and CO32-) FOS degradation to varying degrees. Hydroxyl substitution, CP bond cleavage, and coupling reactions were the major degradation pathways for FOS degradation. Finally, the toxicity evaluation revealed that FOS was toxic to E. coli and S. aureus, but the toxicity of the intermediate products of FOS to E. coli and S. aureus rapidly decreased over time after UV/PS treatment. Therefore, these findings provided a fundamental understanding of the transformation process of FOS and supplied useful information for the environmental elimination of FOS contamination and its toxicity.


Subject(s)
Fosfomycin , Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents , Escherichia coli , Staphylococcus aureus , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Kinetics , Ultraviolet Rays , Water , Sulfates/chemistry
17.
Chemosphere ; 341: 139916, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37633607

ABSTRACT

Halogenated aromatic disinfection by-products (DBPs) are a new type of DBPs that have been detected in various water bodies. Previous studies have shown that most of them can induce in vivo toxicity in aquatic organisms. In this study, in order to further investigate the toxic effects and mechanisms of aromatic DBPs, the toxicity and ecological risks of 10 halogenated aromatic DBPs were assessed using the model organism zebrafish. It was found that the toxicity of DBPs was related to the number, type, and position of halogen and the type of substituent, and the 24 h-toxicity value of DBPs in this experiment could replace their 96 h-toxicity value to reduce the test time and save the test cost. Halogenated phenol and halogenated nitrophenol were more toxic, but the current ecological risks of DBPs were relatively low. In addition, the toxicity mechanism of DBPs was analyzed based on molecular docking and quantitative structure-activity relationship (QSAR) models. The molecular docking results showed that all 10 DBPs could bind to zebrafish's catalase (CAT), cytochrome P450 (CYP450), p53, and acetylcholinesterase (AChE), thereby affecting their normal life activities. QSAR models indicated that the toxicity of halogenated aromatic DBPs to zebrafish mainly depended on their hydrophobicity (log D), the interaction with CAT (ECAT), and hydrogen bonding acidity (A).


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Animals , Disinfection/methods , Zebrafish , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Acetylcholinesterase , Halogenation , Water Purification/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/toxicity
18.
J Colloid Interface Sci ; 652(Pt A): 69-81, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37591085

ABSTRACT

Electrospinning MOFs nanoparticles derived porous carbon nanofibers with rational structure and design are recently as environmentally friendly and highly efficient catalytic materials for wastewater treatment. However, most of the pore-making strategies are based on precursors structural shrinkage during pyrolysis, which is a challenge to create abundant large pores and open channels. Here, a confined expansion pore-making strategy with active MOF is introduced, where energetic Zn-MOF (Zn2+/triazole) and ZIF-67 (Co2+/dimethylimidazole) are utilized as pore forming additive and precursor of active sites, respectively. The high nitrogen content gives triazole the ability to puff up and realizes N-doped during pyrolysis. Moreover, degradation mechanisms and pathways of pollutants were measured by 3D EEM, LC-MS, quenching experiments, and Fukui function. This pore-making strategy via energetic MOF local contraction and expansion provides a novel method to prepare diversiform function porous carbon materials for environmental remediation.

19.
Chemosphere ; 339: 139790, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572712

ABSTRACT

A photochemical system combining iron (hydr)oxides and oxalate (Ox) shows application prospects in wastewater treatment due to the abundance of reactive oxygen species (ROS) generation. Nevertheless, it is a challenge to the investigate photochemical activity of iron (hydr)oxides/Ox systems with varying structural properties. Herein, the photochemical behaviors of Ox on goethite (Gt) surface from the view of structural dependent activity, containment degradation, and ROS generation were explored in detail. Results confirmed that bidentate mononuclear was formed on Gt surface after complexing Ox. Combined with density functional theory calculation and pH time evolution during aniline degradation, the photochemical activity of the Gt/Ox system fell in between that of ferrihydrite/Ox and hematite/Ox systems. After irradiating 120 min visible light, 96.5% aniline was degraded by 1.0 mM Ox and 0.2 g/L Gt. The amount of •OH in vis/Gt/Ox system could be up to 309.3 µM and its generation was closely associated with Fe(II) while slightly affected by the generated H2O2. Moreover, as revealed by high-performance liquid chromatography with mass spectrometric and Ecological Structure Activity Relationships software, the toxicity of the intermediates of aniline degradation in the vis/Gt/Ox system towards fish and green algae increased first but then declined accompanied by the generation of non-toxic ring-opening products at the end of reaction. According to the findings in the presented study, it could be concluded that vis/Gt/Ox is a promising approach to wiping out aniline wastewater.


Subject(s)
Hydroxyl Radical , Oxalates , Oxalates/chemistry , Hydroxyl Radical/chemistry , Hydrogen Peroxide/chemistry , Reactive Oxygen Species , Oxidation-Reduction , Ferric Compounds/toxicity , Ferric Compounds/chemistry , Iron/chemistry , Oxides
20.
Sci Total Environ ; 903: 166057, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37553056

ABSTRACT

Microplastics (MPs) are inevitably oxidized in the environment, however, to date, no studies have discussed the biological toxicity of oxidized polyethylene (Ox-PE) MPs. In this study, oxidized low-density polyethylene (Ox-LDPE), a representative Ox-PE, was prepared using a selective oxidation method. The difference in toxicity between LDPE-MPs and Ox-LDPE-MPs were evaluated in C57BL/6 mice and Caco-2 cells. The proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopy analyses revealed that some hydrocarbon-containing groups were transformed into carboxyl and ketone groups during selective oxidation. In vivo experiment results showed that LDPE-MPs and Ox-LDPE-MPs exists in the intestinal (duodenum and colon) of mice, and Ox-LDPE-MPs caused more severe intestinal histological changes, oxidative stress, and inflammatory response. The gut microbiota data showed that the relative abundance of Lactobacillus decreased significantly in the LDPE-MP- and Ox-LDPE-MP-exposed groups (P < 0.05). The predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway suggested that exposure to LDPE-MPs or Ox-LDPE-MPs inhibited glycan biosynthesis and metabolism in the flora (P < 0.05). In vitro experiment results showed that selective oxidation to LDPE promoted its uptake by cells and aggravated adverse effects on cells, including reduced cell viability, damaged cell membrane, oxidative stress, and mitochondrial depolarization. The major mechanism of the increased toxicity of Ox-LDPE-MPs may be its easier accumulation and the ionic effect of oxygen-containing functional groups. Overall, these findings provide insights on the differences in toxicity between LDPE-MPs and Ox-LDPE-MPs. They also provide new perspectives for understanding the biohazards of MPs, which are necessary to accurately assess the potential environmental and health risks of these plastic pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL
...