Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.217
Filter
1.
Ophthalmol Ther ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985408

ABSTRACT

INTRODUCTION: This study was conducted to analyze and compare the intraocular pressure (IOP) treatment effect of the slow-eluting (SE) travoprost intracameral implant to the IOP treatment effect of topical prostaglandin analog (PGA) monotherapy in a subgroup of subjects who were on pre-study PGA monotherapy prior to enrollment in the two pivotal phase 3 trials of the travoprost intracameral implant. METHODS: A combined study population of 133 subjects from two phase 3 trials, who were on topical PGA monotherapy at screening, subsequently underwent a washout period from their topical PGA, and then were randomized and administered an SE travoprost intracameral implant. The subjects were analyzed for the IOP treatment effects of the pre-study topical PGA monotherapy and the in-study SE travoprost intracameral implant. Paired t-tests were used to compare the difference in screening minus post-washout baseline IOP versus month 3 minus post-washout baseline IOP. The IOP-lowering efficacy in eyes administered an SE travoprost intracameral implant was compared to the IOP lowering in the same eyes while on a topical PGA monotherapy prior to study entry. RESULTS: Pre-study topical PGA monotherapy and the SE travoprost intracameral implant demonstrated IOP treatment effects of -5.76 mmHg and -7.07 mmHg, respectively. The IOP-lowering treatment effect was significantly greater by 1.31 mmHg for the SE travoprost intracameral implant relative to pre-study PGA monotherapy (95% confidence interval: -2.01, -0.60; P = 0.0003). CONCLUSIONS: The SE travoprost intracameral implant demonstrated superior IOP-lowering treatment effect versus pre-study topical PGA monotherapy with a superiority margin that was both statistically significant and clinically meaningful. The greater IOP reduction from baseline while on the SE implant versus pre-study topical PGA monotherapy may be a reflection of the optimized adherence and continuous elution of PGA therapy into the anterior chamber achieved with the SE travoprost intracameral implant. TRIAL REGISTRATION: ClinicalTrials.gov identifiers, NCT03519386 and NCT03868124.

2.
Am J Cardiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986860

ABSTRACT

INTRODUCTION: Surgical implantation of a right ventricle to pulmonary artery (RV-PA) conduit is an important component of congenital heart disease (CHD) surgery but with limited durability leading to re-intervention. Current single-center, retrospective, cohort study is reporting results of surgically implanted RV-PA conduits in a consecutive series of children and adults with CHD. METHODS: Patients with CHD referred for RV-PA conduits surgical implantation (October 1997 and January 2022) have been included. Primary outcome was conduit failure defined as peak gradient above 64mmHg/severe regurgitation/need for conduit-related interventions. Longitudinal echocardiographic studies were available for mixed-effect linear regression analysis. RESULTS: Two-hundred and fifty-two patients were initially included. One hundred and forty-nine patients were elegible for follow-up data collection. After a median follow-up time of 49 months the primary study endpoint occurred in 44 (29%) patients. Multivariable Cox regression model identified adult age (>18 years) at implantation and pulmonary homograft as protective factors (HR 0.11, 95% CI 0.02-0.47 and HR 0.34, 95% CI 0.16-0.74, respectively). Fever within 7 days of surgical conduit implantation was a risk factor for early (within 24 months) failure (OR 4.29, 95% CI 1.41-13.01). Longterm use of oral anticoagulant was independently associated with slower progression of peak echocardiographic gradient across conduits (mixed effect linear regression p-value 0.027). CONCLUSION: In patients with CHD, surgically implanted RV-PA conduit failure is faster in children and after non-homograft conduit implantation. Early fever after surgery is a strong risk factor for early failure. Longterm anticoagulation seems to exert a protective effect.

3.
Mol Pharm ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976794

ABSTRACT

Thyroid cancer is the most common endocrine cancer, with differentiated thyroid cancers (DTCs) accounting for 95% of diagnoses. While most DTC patients are diagnosed and treated with radioiodine (RAI), up to 20% of DTC patients become RAI refractory (RAI-R). RAI-R patients have significantly reduced survival rates compared to patients who remain RAI-avid. This study explores [89Zr]Zr-TR1402 as a thyroid-stimulating hormone receptor (TSHR)-targeted PET radiopharmaceutical for DTC. [89Zr]Zr-TR1402 was synthesized with a molar activity of 25.9 MBq/nmol by conjugating recombinant human TSH (rhTSH) analogue TR1402 to chelator p-SCN-Bn-deferoxamine (DFO) in a molar ratio of 3:1 (DFO/TR1402) and radiolabeling with 89Zr (t1/2 = 78.4 h, ß+ = 22.7%). As TSHR is absent in commonly available DTC-derived cell lines, TSHR was reintroduced via stable transduction by delivering a lentivirus containing the full-length coding region of the human TSHR gene. Receptor-mediated uptake of [89Zr]Zr-TR1402 was evaluated in vitro in stably transduced TSHR+ and wild-type TSHR- DTC cell lines. In vivo PET imaging was performed on Days 1-3 postinjection in male and female athymic nude mice bearing TSHR+ and TSHR- xenografts, along with ex vivo biodistribution on Day 3 postinjection. In vitro uptake of 1 nM [89Zr]Zr-TR1402 was significantly higher in TSHR+ THJ529T (P < 0.0001) and FTC133 (P < 0.01) cells than in TSHR- THJ529T and FTC133 cells. This uptake was shown to be specific in both TSHR+ THJ529T (P < 0.0001) and TSHR+ FTC133 (P < 0.0001) cells by blocking uptake with 250 nm DFO-TR1402. In vivo PET imaging showed accumulation of [89Zr]Zr-TR1402 in TSHR+ tumors, which was the highest on Day 1. In the male FTC133 xenograft model, ex vivo biodistribution confirmed a significant difference (P < 0.001) in uptake between FTC133+ (1.3 ± 0.1%ID/g) and FTC133- (0.8 ± 0.1%ID/g) tumors. A significant difference (P < 0.05) in uptake was also seen in the male THJ529T xenograft model between THJ529T+ (1.8 ± 0.6%ID/g) and THJ529T- (0.8 ± 0.4%ID/g) tumors. The in vitro and in vivo accumulation of [89Zr]Zr-TR1402 in TSHR-expressing DTC cell lines support the continued preclinical optimization of this approach.

4.
Schizophr Res ; 270: 441-450, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991420

ABSTRACT

BACKGROUND: Early identification of treatment non-response in first-episode psychosis (FEP) is essential to outcome. Despite indications that exposure to childhood trauma (CT) can have adverse effects on illness severity, its impact on treatment non-response and the interplay with other pre-treatment characteristics is sparsely investigated. We use a lack of clinical recovery as an early indicator of treatment resistance to investigate the relationship between CT and treatment resistance status at one-year follow-up and the potential mediation of this effect by other pre-treatment characteristics. METHODS: This prospective one-year follow-up study involved 141 participants recruited in their first year of treatment for a schizophrenia-spectrum disorder. We investigated clinical status, childhood trauma (CT), premorbid adjustment (PA), and duration of untreated psychosis (DUP) at baseline and clinical status at one-year follow-up. Ordinal regression analyses were conducted to investigate how PA and DUP affected the relationship between CT and one-year outcome in FEP. RESULTS: 45 % of the FEP sample reported moderate to severe CT, with significantly higher levels of CT in the early treatment resistant group compared to participants with full or partial early recovery. Ordinal regression analysis showed that CT was a significant predictor of being in a more severe outcome group (OR = 4.59). There was a partial mediation effect of PA and a full mediation effect of DUP on the effect of CT on outcome group membership. DISCUSSION: Our findings indicate that reducing treatment delays may mitigate the adverse effects of CT on clinical outcomes and support the inclusion of broad trauma assessment in FEP services.

5.
Methods Enzymol ; 700: 295-328, 2024.
Article in English | MEDLINE | ID: mdl-38971604

ABSTRACT

The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.


Subject(s)
Lipid Bilayers , Liposomes , Neutron Diffraction , Scattering, Small Angle , Liposomes/chemistry , Lipid Bilayers/chemistry , Neutron Diffraction/methods , Proton Magnetic Resonance Spectroscopy/methods
6.
AAPS PharmSciTech ; 25(6): 141, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898204

ABSTRACT

Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.


Subject(s)
Colorectal Neoplasms , Drug Delivery Systems , Lactic Acid , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Silybin , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Silybin/administration & dosage , Silybin/pharmacology , Silybin/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Nanoparticles/chemistry , Lactic Acid/chemistry , Drug Delivery Systems/methods , Silymarin/chemistry , Silymarin/administration & dosage , Silymarin/pharmacology , Drug Carriers/chemistry , Cell Line, Tumor , Polyglycolic Acid/chemistry , Particle Size , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/administration & dosage , Cell Survival/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Solubility , HT29 Cells , Drug Liberation , Calorimetry, Differential Scanning/methods
7.
J Adv Nurs ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887109

ABSTRACT

AIMS: The research was conducted to determine the practices of parents regarding the fever management of their children and reveal the relationship between their health literacy (HL) and fever management of their children. DESIGN: Cross-sectional study was used. METHODS: This study was carried out with 242 parents. The data were collected using the Parent Descriptive Information Form, Turkish HL Scale-32 and Parents' Fever Management Scale between September 2021 and September 2022. The data were evaluated with the SPSS program, using percentages, averages, Pearson's correlation and regression analysis. RESULTS: The mean age of the parents was 31.87 ± 6.59. The parents' mean Parents' Fever Management Scale score was 36.22. It means that parents had high fever management practice. Their mean Turkish HL Scale-32 total score was 34.43. 51.6% of the parents had a problematic or insufficient HL level. In the cases of fever, 61.2% of the parents stated that they took off the child's clothes, 69.0% measured temperature from the armpit, and 55.4% gave antipyretics according to the doctor's prescription. There is a statistically significant positive correlation between the Parents' Fever Management Scale and Turkish HL Scale-32. It is observed that 8.2% of the change in parents' fever management is explained by HL. CONCLUSION: The study found that with an increase in parents' HL, fever management of their children also increased. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE: Emerging evidence showed that developing parents' HL knowledge and skills could be an option/approach in fever management. It should be a basic nursing skill that to provide HL support to parents. REPORTING METHOD: This study adhered to the relevant cross-sectional STROBE (the Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

8.
Small ; : e2310363, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895967

ABSTRACT

Commitment to the 3Rs principle (Replacement, Reduction, and Refinement) led to the development of a cell-based system to measure buccal bioadhesion in vitro and replace the use of porcine buccal and esophageal tissues (PBT and PET, respectively). Additionally, the aim is to bridge the gap in knowledge regarding the bioadhesion properties of PBT and PET. The in vitro models are based on the human buccal epithelial cell line-TR146 without ("Model I") or with ("Model II") 5% (w/v) mucous layer. The in vitro setup also provides a method to evaluate the bioadhesion between two soft materials. Standard bioadhesive hydrogels (alginate, chitosan, and gelatin) are used to test and compare the results from the in vitro models to the ex vivo tissues. The ex vivo and in vitro models show increased bioadhesion as the applied force and contact time increases. Furthermore, Model I exhibits bioadhesion values-of alginate, chitosan, and gelatin-comparable to those obtained with PBT. It is also found that contact time and applied force similarly affect PBT and PET bioadhesion, while PET exhibits greater values. In conclusion, Model I can replace PBT for measuring bioadhesion and be incorporated into the experimental design of bioadhesive DDS, thus minimizing animal tissue usage.

9.
ACS Nano ; 18(26): 16914-16922, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905311

ABSTRACT

Femtosecond laser-induced ultrafast magnetization dynamics are all-optically probed for different remanent magnetic domain states of a [Co/Pt]22 multilayer sample, thus revealing the tunability of the direct transport of spin angular momentum across domain walls. A variety of different magnetic domain configurations (domain wall origami) at remanence achieved by applying different magnetic field histories are investigated by time-resolved magneto-optical Kerr effect magnetometry to probe the ultrafast magnetization dynamics. Depending on the underlying domain landscape, the spin-transport-driven magnetization dynamics show a transition from typical ultrafast demagnetization to being fully dominated by an anomalous transient magnetization enhancement (TME) via a state in which both TME and demagnetization coexist in the system. Thereby, the study reveals an extrinsic channel for the modulation of spin transport, which introduces a route for the development of magnetic spin-texture-driven ultrafast spintronic devices.

10.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915662

ABSTRACT

The spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) interaction has a major role in the normal innate and adaptive immune responses, but dysregulation of this interaction is implicated in several human diseases, including autoimmune disorders, hematological malignancies, and Alzheimer's Disease. Development of small molecule chemical probes could aid in studying this pathway both in normal and aberrant contexts. Herein, we describe the miniaturization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to measure the interaction between SYK and FCER1G in a 1536-well ultrahigh throughput screening (uHTS) format. The assay utilizes the His-SH2 domains of SYK, which are indirectly labeled with anti-His-terbium to serve as TR-FRET donor and a FITC-conjugated phosphorylated ITAM domain peptide of FCER1G to serve as acceptor. We have optimized the assay into 384-well HTS format and further miniaturized the assay into a 1536-well uHTS format. Robust assay performance has been achieved with a Z' factor > 0.8 and signal-to-background (S/B) ratio > 15. The utilization of this uHTS TR-FRET assay for compound screening has been validated by a pilot screening of 2,036 FDA-approved and bioactive compounds library. Several primary hits have been identified from the pilot uHTS. One compound, hematoxylin, was confirmed to disrupt the SYK/FECR1G interaction in an orthogonal protein-protein interaction assay. Thus, our optimized and miniaturized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the SYK and FCER1G interaction.

11.
Anal Bioanal Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849527

ABSTRACT

Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).

12.
Aging Cell ; : e14250, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881280

ABSTRACT

Mitochondria are dynamic bioenergetic hubs that become compromised with age. In neurons, declining mitochondrial axonal transport has been associated with reduced cellular health. However, it is still unclear to what extent the decline of mitochondrial transport and function observed during ageing are coupled, and if somal and axonal mitochondria display compartment-specific features that make them more susceptible to the ageing process. It is also not known whether the biophysical state of the cytoplasm, thought to affect many cellular functions, changes with age to impact mitochondrial trafficking and homeostasis. Focusing on the mouse peripheral nervous system, we show that age-dependent decline in mitochondrial trafficking is accompanied by reduction of mitochondrial membrane potential and intramitochondrial viscosity, but not calcium buffering, in both somal and axonal mitochondria. Intriguingly, we observe a specific increase in cytoplasmic viscosity in the neuronal cell body, where mitochondria are most polarised, which correlates with decreased cytoplasmic diffusiveness. Increasing cytoplasmic crowding in the somatic compartment of DRG neurons grown in microfluidic chambers reduces mitochondrial axonal trafficking, suggesting a mechanistic link between the regulation of cytoplasmic viscosity and mitochondrial dynamics. Our work provides a reference for studying the relationship between neuronal mitochondrial homeostasis and the viscoelasticity of the cytoplasm in a compartment-dependent manner during ageing.

13.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790192

ABSTRACT

TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to complex with available cofactors mediating developmental stage-specific actions in primitive and definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development, maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation during hematopoiesis.


Subject(s)
Hematopoiesis , Humans , Animals , Hematopoiesis/genetics , Nuclear Receptor Subfamily 2, Group C, Member 2/metabolism , Nuclear Receptor Subfamily 2, Group C, Member 2/genetics , Erythropoiesis/genetics , Gene Expression Regulation, Developmental
14.
Breast Cancer Res Treat ; 207(1): 187-201, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750271

ABSTRACT

PURPOSE: HER2-positive breast cancer (BC) accounts for 20-30% of all BC subtypes and is linked to poor prognosis. Trastuzumab (Tz), a humanized anti-HER2 monoclonal antibody, is a first-line treatment for HER2-positive breast cancer which faces resistance challenges. This study aimed to identify the biomarkers driving trastuzumab resistance. METHODS: Differential expression analysis of genes and proteins between trastuzumab-sensitive (TS) and trastuzumab-resistant (TR) cells was conducted using RNA-seq and iTRAQ. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used to study their functions. The prognostic significance and protein levels of ARFIP2 and MSN were evaluated using online tools and immunohistochemistry. Sensitivity of MSN and ARFIP2 to other therapies was assessed using public pharmacogenomics databases and the R language. RESULTS: Five genes were up-regulated, and nine genes were down-regulated in TR cells at both transcriptional and protein levels. Low ARFIP2 and high MSN expression linked to poor BC prognosis. MSN increased and ARFIP2 decreased in TR patients, correlating with shorter OS. MSN negatively impacted fulvestrant and immunotherapy sensitivity, while ARFIP2 had a positive impact. CONCLUSION: Our findings suggest that MSN and ARFIP2 could serve as promising biomarkers for predicting response to Tz, offering valuable insights for future research in the identification of diagnostic and therapeutic targets for BC patients with Tz resistance.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Proteome , Transcriptome , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Prognosis , Gene Expression Profiling/methods , Proteomics/methods , Cell Line, Tumor , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics
15.
Pharmaceutics ; 16(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794344

ABSTRACT

The successful substitution of complex physiological fluids, such as human saliva, remains a major challenge in drug development. Although there are a large number of saliva substitutes on the market, their efficacy is often inadequate due to short residence time in the mouth, unpleasant mouthfeel, or insufficient protection of the teeth. Therefore, systems need to be identified that mimic the functions of saliva, in particular the salivary mucin MUC5B and the unique physiological properties of saliva. To this end, plant extracts known to contain hydrocolloid polysaccharides and to have mucus-forming properties were studied to evaluate their suitability as saliva substitutes. The aqueous plant extracts of Calendula officinalis, Fucus sp. thalli, and lichenan from Lichen islandicus were examined for composition using a range of techniques, including GC-MS, NMR, SEC, assessment of pH, osmolality, buffering capacity, viscoelasticity, viscoelastic interactions with human saliva, hydrocolloid network formation, and in vitro cell adhesion. For this purpose, a physiologically adapted adhesive test was developed using human buccal epithelial cells. The results show that lichenan is the most promising candidate to mimic the properties of MUC5B. By adjusting the pH, osmolality, and buffering capacity with K2HPO4, it was shown that lichenan exhibited high cell adhesion, with a maximum detachment force that was comparable to that of unstimulated whole mouth saliva.

16.
Infection ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801514

ABSTRACT

OBJECTIVES: We aimed to report the emergence of azole-resistant invasive aspergillosis in hematologic patients admitted to a tertiary hospital in Spain during the last 4 months. METHODS: Prospective, descriptive study was performed to describe and follow all consecutive proven and probable invasive aspergillosis resistant to azoles from hematological cohort during the last 4 months. All patients had fungal cultures and antifungal susceptibility or real-time PCR detection for Aspergillus species and real-time PCR detection for azole-resistant mutation. RESULTS: Four cases of invasive aspergillosis were diagnosed in 4 months. Three of them had azole-resistant aspergillosis. Microbiological diagnosis was achieved in three cases by means of fungal culture isolation and subsequent antifungal susceptibility whereas one case was diagnosed by PCR-based aspergillus and azole resistance detection. All the azole-resistant aspergillosis presented TR34/L98H mutation. Patients with azole-resistant aspergillosis had different hematologic diseases: multiple myeloma, lymphoblastic acute leukemia, and angioimmunoblastic T lymphoma. Regarding risk factors, one had prolonged neutropenia, two had corticosteroids, and two had viral co-infection. Two of the patients developed aspergillosis under treatment with azoles. CONCLUSION: We have observed a heightened risk of azole-resistant aspergillosis caused by A. fumigatus harboring the TR34/L98H mutation in patients with hematologic malignancies. The emergence of azole-resistant aspergillosis raises concerns for the community, highlighting the urgent need for increased surveillance and the importance of susceptibility testing and new drugs development.

17.
Clin Neuropsychol ; : 1-16, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38763778

ABSTRACT

Objective: Diagnosis coding is a core clinical competency. A basic understanding of the structure of the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM), the conventions and rules for diagnosis coding, and what constitutes accurate coding, is fundamental to the clinician's knowledge base. This commentary seeks to provide a practical framework for clinicians to perform accurate diagnosis coding of neurocognitive disorders. Method: This paper: (1) summarizes the structure of the ICD-10-CM, (2) describes the rules and conventions of diagnosis coding for diagnostic categories relevant to neurocognitive disorders, (3) presents clinical examples and pragmatic recommendations to help readers improve their day-to-day use of diagnosis codes, and (4) describes limitations and discrepancies in the diagnosis coding advice for neurocognitive disorders presented within the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR) and the DSM-5-TR Neurocognitive Disorders Supplement. Its content originates from the ICD-10-CM itself and its companion document, the ICD-10-CM Official Guidelines for Coding and Reporting. Conclusion: The ICD-10-CM classification scheme is logically organized and easy to navigate for users who understand its structure and rules. Many neuropsychologists rely on the DSM-5-TR diagnosis coding advice, however that advice is limited with respect to the range of diagnosis codes relevant to neurocognitive disorders and their underlying causes. Relying on the ICD-10-CM directly for diagnosis coding of neurocognitive disorders, rather than the DSM-5-TR or other secondary sources, is therefore preferable and aids clinicians in accurate diagnosis coding.

18.
Theranostics ; 14(7): 2897-2914, 2024.
Article in English | MEDLINE | ID: mdl-38773985

ABSTRACT

Background: IL-35 potently inhibits immune responses both in vivo and in vitro. However, the specific characteristics of IL-35-producing cells, including their developmental origin, cellular phenotype, and function, are unknown. Methods: By using a novel IL-35 reporter mouse (Ebi3-Dre-Thy1.1) and double transgenic fate-mapping reporter mice (35EbiT-Rosa26-rox-tdTomato reporter mice or Foxp3 fate-mapping system), we tracked and analyzed the differentiation and developmental trajectories of Tr35 cells in vivo. And then we investigated the therapeutic effects of OVA-specific Tr35 cells in an OVA-induced allergic airway disease model. Results: We identified a subset of cells, denoted Tr35 cells, that secrete IL-35 but do not express Foxp3. These cells have high expression of molecules associated with T-cell activation and can inhibit T-cell proliferation in vitro. Our analyses showed that Tr35 cells are a distinct subpopulation of cells that are independent of Tr1 cells. Tr35 cells exhibit a unique gene expression profile and tissue distribution. The presence of Thy1.1 (Ebi3) expression in Tr35 cells indicates their active secretion of IL-35. However, the proportion of ex-Tr35 cells (Thy1.1-) is significantly higher compared to Tr35 cells (Thy1.1+). This suggests that Tr35 cells possess the ability to regulate IL-35 expression rapidly in vivo. Tr35 cells downregulated the expression of the inflammatory cytokines IL-4, IFN-γ and IL-17A. However, once Tr35 cells lost IL-35 expression and became exTr35 cells, the expression of inflammatory cytokines was upregulated. Importantly, our findings indicate that Tr35 cells have therapeutic potential. In an OVA-induced allergic airway disease mouse model, Tr35 cell reinfusion significantly reduced airway hyperresponsiveness and histopathological airway and lung inflammation. Conclusions: We have identified a subset of Tregs, Tr35 cells, that are distinct from Tr1 cells. Tr35 cells can dynamically regulate the secretion of inflammatory cytokines by controlling IL-35 expression to regulate inflammatory immune responses.


Subject(s)
Interleukins , Mice, Transgenic , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Interleukins/metabolism , Interleukins/genetics , Mice , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Disease Models, Animal , Cell Plasticity , Mice, Inbred C57BL , Lymphocyte Activation , Ovalbumin/immunology , Cell Proliferation , Cell Differentiation , Female
20.
Mycoses ; 67(5): e13732, 2024 May.
Article in English | MEDLINE | ID: mdl-38712846

ABSTRACT

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Cytochrome P-450 Enzyme System , Drug Resistance, Fungal , Fungal Proteins , Mutation , Triazoles , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/isolation & purification , Drug Resistance, Fungal/genetics , Triazoles/pharmacology , Humans , Burkina Faso/epidemiology , Fungal Proteins/genetics , Antifungal Agents/pharmacology , Cytochrome P-450 Enzyme System/genetics , Microbial Sensitivity Tests , Aspergillosis/microbiology , Aspergillosis/epidemiology , Air Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...