Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Neurobiol Aging ; 140: 81-92, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744041

ABSTRACT

Limbic predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is common in older adults and is associated with neurodegeneration, cognitive decline and dementia. In this MRI and pathology investigation we tested the hypothesis that LATE-NC is associated with abnormalities in white matter structural integrity and connectivity of a network of brain regions typically harboring TDP-43 inclusions in LATE, referred to here as the "LATE-NC network". Ex-vivo diffusion MRI and detailed neuropathological data were collected on 184 community-based older adults. Linear regression revealed an independent association of higher LATE-NC stage with lower diffusion anisotropy in a set of white matter connections forming a pattern of connectivity that is consistent with the stereotypical spread of this pathology in the brain. Graph theory analysis revealed an association of higher LATE-NC stage with weaker integration and segregation in the LATE-NC network. Abnormalities were significant in stage 3, suggesting that they are detectable in later stages of the disease. Finally, LATE-NC network abnormalities were associated with faster cognitive decline, specifically in episodic and semantic memory.


Subject(s)
Diffusion Magnetic Resonance Imaging , TDP-43 Proteinopathies , White Matter , Humans , Male , White Matter/diagnostic imaging , White Matter/pathology , Female , Aged , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/diagnostic imaging , Aged, 80 and over , Limbic System/pathology , Limbic System/diagnostic imaging , Aging/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology , Dementia , DNA-Binding Proteins
2.
Article in English | MEDLINE | ID: mdl-38504592

ABSTRACT

Aims: Increasing nicotinamide adenine dinucleotide (NAD+) availability has been proposed as a therapeutic approach to prevent neurodegeneration in amyotrophic lateral sclerosis (ALS). Accordingly, NAD+ precursor supplementation appears to exert neuroprotective effects in ALS patients and mouse models. The mechanisms mediating neuroprotection remain uncertain but could involve changes in multiple cell types. We investigated a potential direct effect of the NAD+ precursor nicotinamide mononucleotide (NMN) on the health of cultured induced pluripotent stem cell (iPSC)-derived human motor neurons and in motor neurons isolated from two ALS mouse models, that is, mice overexpressing wild-type transactive response DNA binding protein-43 (TDP-43) or the ALS-linked human superoxide dismutase 1 with the G93A mutation (hSOD1G93A). Results: NMN treatment increased the complexity of neuronal processes in motor neurons isolated from both mouse models and in iPSC-derived human motor neurons. In addition, NMN prevented neuronal death induced by trophic factor deprivation. In mouse and human motor neurons expressing ALS-linked mutant superoxide dismutase 1, NMN induced an increase in glutathione levels, but this effect was not observed in nontransgenic or TDP-43 overexpressing motor neurons. In contrast, NMN treatment normalized the TDP-43 cytoplasmic mislocalization induced by its overexpression. Innovation: NMN can directly act on motor neurons to increase the growth and complexity of neuronal processes and prevent the death induced by trophic factor deprivation. Conclusion: Our results support a direct beneficial effect of NAD+ precursor supplementation on the maintenance of the neuritic arbor in motor neurons. Importantly, this was observed in motor neurons isolated from two different ALS models, with and without involvement of TDP-43 pathology, supporting its therapeutic potential in sporadic and familial ALS.

3.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554281

ABSTRACT

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Subject(s)
Cholinergic Neurons , Methyltransferases , Neuromuscular Diseases , Animals , Humans , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology
4.
Neuropathology ; 44(2): 154-160, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37717977

ABSTRACT

Progressive nonfluent aphasia (PNFA) is a form of frontotemporal lobar degeneration (FTLD) caused by tau and transactive response DNA-binding protein of 43 kDa (TDP-43) accumulation. Here we report the autopsy findings of a 64-year-old right-handed man with an atypical TDP-43 proteinopathy who presented with difficulties with speech, verbal paraphasia, and dysphagia that progressed over the 36 months prior to his death. He did not show pyramidal tract signs until his death. At autopsy, macroscopic brain examination revealed atrophy of the left dominant precentral, superior, and middle frontal gyri and discoloration of the putamen. Spongiform change and neuronal loss were severe on the cortical surfaces of the precentral, superior frontal, and middle frontal gyri and the temporal tip. Immunostaining with anti-phosphorylated TDP-43 revealed neuronal cytoplasmic inclusions and long and short dystrophic neurites in the frontal cortex, predominantly in layers II, V, and VI of the temporal tip, amygdala, and transentorhinal cortex. Immunoblot analysis of the sarkosyl-insoluble fractions showed hyperphosphorylated TDP-43 bands at 45 kDa and phosphorylated C-terminal fragments at approximately 25 kDa. The pathological distribution and immunoblot band pattern differ from the major TDP-43 subtype and therefore may represent a new FTLD-TDP phenotype.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Primary Progressive Nonfluent Aphasia , TDP-43 Proteinopathies , Male , Humans , Middle Aged , Primary Progressive Nonfluent Aphasia/pathology , Frontotemporal Lobar Degeneration/pathology , TDP-43 Proteinopathies/pathology , DNA-Binding Proteins/metabolism
5.
Brain Sci ; 13(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37891841

ABSTRACT

Frontotemporal lobar degeneration (FTLD) belongs to a heterogeneous group of highly complex neurodegenerative diseases and represents the second cause of presenile dementia in individuals under 65. Frontotemporal-TDP is a subgroup of frontotemporal dementia characterized by the aggregation of abnormal protein deposits, predominantly transactive response DNA-binding protein 43 (TDP-43), in the frontal and temporal brain regions. These deposits lead to progressive degeneration of neurons resulting in cognitive and behavioral impairments. Limbic age-related encephalopathy (LATE) pertains to age-related cognitive decline primarily affecting the limbic system, which is crucial for memory, emotions, and learning. However, distinct, emerging research suggests a potential overlap in pathogenic processes, with some cases of limbic encephalopathy displaying TDP-43 pathology. Genetic factors play a pivotal role in both disorders. Mutations in various genes, such as progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72), have been identified as causative in frontotemporal-TDP. Similarly, specific genetic variants have been associated with an increased risk of developing LATE. Understanding these genetic links provides crucial insights into disease mechanisms and the potential for targeted therapies.

6.
Chin J Integr Med ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695446

ABSTRACT

OBJECTIVE: To examine the effect of combined treatment with Bojungikgi-tang (BJIGT, Buzhong Yiqi Decoction) and riluzole (RZ) in transactive response DNA-binding protein 43 (TDP-43) stress granule (SG) cells, a amyotrophic lateral sclerosis (ALS) cell line using transcriptomic and molecular techniques. METHODS: TDP-43 SG cells were pretreated with BJIGT (100 µg/mL), RZ (50 µmol/L), and combined BJIGT (100 µg/mL)/RZ (50 µmol/L) for 6 h before treatment with lipopolysaccharide (LPS, 200 µmol/L). Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8 (CCK8) assay kit. The expression levels of cell death-related proteins, including Bax, caspase 1, cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis. The autophagy-related proteins, including pmTOR/mTOR, LC3b, P62, ATG7 and Bcl-2-associated athanogene 3 (Bag3) were investigated using immunofluorescence and immunoblotting assays. RESULTS: Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins, including Bax, caspase 1, and DJ1 (P<0.05 or P<0.01). Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels, including p62, light chain 3b, Bag3, and ATG7, in TDP-43-expressing cells (P<0.05 or P<0.01). CONCLUSION: The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.

7.
Brain ; 146(12): 5139-5152, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37527465

ABSTRACT

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative diseases that represent ends of the spectrum of a single disease. The most common genetic cause of FTD and ALS is a hexanucleotide repeat expansion in the C9orf72 gene. Although epidemiological data suggest that traumatic brain injury (TBI) represents a risk factor for FTD and ALS, its role in exacerbating disease onset and course remains unclear. To explore the interplay between traumatic brain injury and genetic risk in the induction of FTD/ALS pathology we combined a mild repetitive traumatic brain injury paradigm with an established bacterial artificial chromosome transgenic C9orf72 (C9BAC) mouse model without an overt motor phenotype or neurodegeneration. We assessed 8-10 week-old littermate C9BACtg/tg (n = 21), C9BACtg/- (n = 20) and non-transgenic (n = 21) mice of both sexes for the presence of behavioural deficits and cerebral histopathology at 12 months after repetitive TBI. Repetitive TBI did not affect body weight gain, general neurological deficit severity, nor survival over the 12-month observation period and there was no difference in rotarod performance, object recognition, social interaction and acoustic characteristics of ultrasonic vocalizations of C9BAC mice subjected to repetitive TBI versus sham injury. However, we found that repetitive TBI increased the time to the return of the righting reflex, reduced grip force, altered sociability behaviours and attenuated ultrasonic call emissions during social interactions in C9BAC mice. Strikingly, we found that repetitive TBI caused widespread microglial activation and reduced neuronal density that was associated with loss of histological markers of axonal and synaptic integrity as well as profound neuronal transactive response DNA binding protein 43 kDa mislocalization in the cerebral cortex of C9BAC mice at 12 months; this was not observed in non-transgenic repetitive TBI and C9BAC sham mice. Our data indicate that repetitive TBI can be an environmental risk factor that is sufficient to trigger FTD/ALS-associated neuropathology and behavioural deficits, but not paralysis, in mice carrying a C9orf72 hexanucleotide repeat expansion.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain Concussion , C9orf72 Protein , Frontotemporal Dementia , Pick Disease of the Brain , Animals , Female , Male , Mice , Amyotrophic Lateral Sclerosis/genetics , Brain Concussion/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mice, Transgenic
8.
Alzheimers Dement (Amst) ; 15(2): e12437, 2023.
Article in English | MEDLINE | ID: mdl-37266411

ABSTRACT

Introduction: We evaluated the relationship between plasma levels of transactive response DNA binding protein of 43 kDa (TDP-43) and neuroimaging (magnetic resonance imaging [MRI]) measures of brain structure in aging. Methods: Plasma samples were collected from 72 non-demented older adults (age range 60-94 years) in the University of Kentucky Alzheimer's Disease Research Center cohort. Multivariate linear regression models were run with plasma TDP-43 level as the predictor variable and brain structure (volumetric or cortical thickness) measurements as the dependent variable. Covariates included age, sex, intracranial volume, and plasma markers of Alzheimer's disease neuropathological change (ADNC). Results: Negative associations were observed between plasma TDP-43 level and both the volume of the entorhinal cortex, and cortical thickness in the cingulate/parahippocampal gyrus, after controlling for ADNC plasma markers. Discussion: Plasma TDP-43 levels may be directly associated with structural MRI measures. Plasma TDP-43 assays may prove useful in clinical trial stratification. HIGHLIGHTS: Plasma transactive response DNA binding protein of 43 kDa (TDP-43) levels were associated with entorhinal cortex volume.Biomarkers of TDP-43 and Alzheimer's disease neuropathologic change (ADNC) may help distinguish limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) from ADNC.A comprehensive biomarker kit could aid enrollment in LATE-NC clinical trials.

9.
Acta Neuropathol ; 144(3): 393-411, 2022 09.
Article in English | MEDLINE | ID: mdl-35867112

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. Although ALS is considered a motor neuron disorder, neuroinflammation also plays an important role. Recent evidence in ALS disease models indicates activation of the inflammasome and subsequent initiation of pyroptosis, an inflammatory type of cell death. In this study, we determined the expression and distribution of the inflammasome and pyroptosis effector proteins in post-mortem brain and spinal cord from ALS patients (n = 25) and controls (n = 19), as well as in symptomatic and asymptomatic TDP-43A315T transgenic and wild-type mice. Furthermore, we evaluated its correlation with the presence of TDP-43 pathological proteins and neuronal loss. Expression of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, pyroptosis effector protein cleaved Gasdermin D (GSDMD), and IL-18 was detected in microglia in human ALS motor cortex and spinal cord, indicative of canonical inflammasome-triggered pyroptosis activation. The number of cleaved GSDMD-positive precentral white matter microglia was increased compared to controls and correlated with a decreased neuronal density in human ALS motor cortex. Neither of this was observed in the spinal cord. Similar results were obtained in TDP-43A315T mice, where microglial pyroptosis activation was significantly increased in the motor cortex upon symptom onset, and correlated with neuronal loss. There was no significant correlation with the presence of TDP-43 pathological proteins both in human and mouse tissue. Our findings emphasize the importance of microglial NLRP3 inflammasome-mediated pyroptosis activation for neuronal degeneration in ALS and pave the way for new therapeutic strategies counteracting motor neuron degeneration in ALS by inhibiting microglial inflammasome/pyroptosis activation.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Cortex , White Matter , Amyotrophic Lateral Sclerosis/pathology , Animals , DNA-Binding Proteins/metabolism , Disease Models, Animal , Humans , Inflammasomes/metabolism , Mice , Mice, Inbred NOD , Mice, Transgenic , Microglia/pathology , Motor Cortex/metabolism , Motor Neurons/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , White Matter/pathology
10.
Neurobiol Aging ; 117: 128-138, 2022 09.
Article in English | MEDLINE | ID: mdl-35728463

ABSTRACT

Limbic predominant age-related transactive response DNA binding protein 43 (TDP-43) encephalopathy neuropathological change (LATE-NC) is common in persons older than 80 years of age and is associated with cognitive decline and increased likelihood of dementia. The MRI signature of LATE-NC has not been fully determined. In this study, the association of LATE-NC with the transverse relaxation rate, R2, was investigated in a large number of community-based older adults. Cerebral hemispheres from 738 participants of the Rush Memory and Aging Project, Religious Orders Study, and Minority Aging Research Study, were imaged ex-vivo with multi-echo spin-echo MRI and underwent detailed neuropathologic examination. Voxel-wise analysis revealed a novel spatial pattern of lower R2 for higher LATE-NC stage, controlling for other neuropathologies and demographics. This pattern was consistent with the distribution of LATE-NC in gray matter, and also involved white matter providing temporo-temporal, fronto-temporal, and temporo-basal ganglia connectivity. Furthermore, analysis at different LATE-NC stages showed that R2 imaging may capture the general progression of LATE-NC, but only when TDP-43 inclusions extend beyond the amygdala.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Nervous System Diseases , TDP-43 Proteinopathies , White Matter , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Brain/metabolism , Cognitive Dysfunction/complications , Cognitive Dysfunction/etiology , DNA-Binding Proteins/metabolism , Humans , Magnetic Resonance Imaging , Nervous System Diseases/pathology , TDP-43 Proteinopathies/diagnostic imaging , TDP-43 Proteinopathies/metabolism , White Matter/pathology
11.
J Alzheimers Dis ; 87(2): 595-607, 2022.
Article in English | MEDLINE | ID: mdl-35311708

ABSTRACT

BACKGROUND: Down syndrome (DS) is frequently associated with Alzheimer's disease (AD)-related neuropathological changes. There are few observations on the spectrum of mixed proteinopathies in DS patients. OBJECTIVE: This study aimed to evaluate multiple disease-associated proteinopathies in a series of DS cases. METHODS: We analyzed the distribution of neurodegenerative disease associated proteins in postmortem brain samples from 11 DS cases (6 females, median age 57, range 38-66 years). Sections were stained for phosphorylated tau, 3-repeat and 4-repeat tau, amyloid-ß, alpha synuclein, phosphorylated TDP-43, and p62. A comprehensive anatomical mapping and staging were applied for all proteins. RESULTS: Tau and amyloid-ß pathology was prevalent in all cases and compatible with that typically seen in AD with some subtle deviations. Four of 11 cases presented with Lewy-related pathology (LRP). Two cases followed the Braak staging (stage 4 and 5) whereas 2 cases presented with an atypical distribution. Two cases showed limbic predominant age-related TDP-43 encephalopathy (LATE) (stage 1 and stage 2) neuropathologic change. Two cases exhibited aging-related tau astrogliopathy (ARTAG). CONCLUSION: In addition to subtle deviations from AD regarding the morphology of amyloid-ß deposition and distribution of neuronal tau pathology, we find that the spectrum of mixed-pathologies in DS show distinctive features such as deviations from the Braak staging of LRP and that LATE neuropathologic change and ARTAG pathology can be seen in individuals younger than in sporadic AD cases. Our observations support the notion that DS has distinctive pathogenic pathways from sporadic AD.


Subject(s)
Alzheimer Disease , Down Syndrome , Neurodegenerative Diseases , Adult , Aged , Alzheimer Disease/pathology , Amyloid beta-Peptides , DNA-Binding Proteins/metabolism , Down Syndrome/complications , Female , Humans , Male , Middle Aged , Neurodegenerative Diseases/complications , tau Proteins/metabolism
12.
Biomolecules ; 12(3)2022 03 12.
Article in English | MEDLINE | ID: mdl-35327632

ABSTRACT

Recently, disease-associated variants of the TUBA4A gene were identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we present the neuropathological report of a patient with the semantic variant of primary progressive aphasia with a family history of Parkinsonism, harboring a novel frameshift mutation c.187del (p.Arg64Glyfs*90) in TUBA4A. Immunohistochemistry showed abundant TAR DNA-binding protein 43 kDa (TDP-43) dystrophic neurite pathology in the frontal and temporal cortex and the dentate gyrus of the hippocampus, consistent with frontotemporal lobar degeneration (FTLD). The observed pathology pattern fitted best with that of FTLD-TDP Type C. qPCR showed the presence of mutant TUBA4A mRNA. However, no truncated TUBA4A was detected at the protein level. A decrease in total TUBA4A mRNA and protein levels suggests loss-of-function as a potential pathogenic mechanism. This report strengthens the idea that N-terminal TUBA4A mutations are associated with FTLD-TDP. These N-terminal mutations possibly exert their pathogenic effects through haploinsufficiency, contrary to C-terminal TUBA4A mutations which are thought to disturb the microtubule network via a dominant-negative mechanism.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Brain/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Humans , Mutation , RNA, Messenger/genetics
13.
Cells ; 11(3)2022 02 02.
Article in English | MEDLINE | ID: mdl-35159325

ABSTRACT

Extracellular vesicles (EVs) play a central role in neurodegenerative diseases (NDs) since they may either spread the pathology or contribute to the intracellular protein quality control (PQC) system for the cellular clearance of NDs-associated proteins. Here, we investigated the crosstalk between large (LVs) and small (SVs) EVs and PQC in the disposal of TDP-43 and its FTLD and ALS-associated C-terminal fragments (TDP-35 and TDP-25). By taking advantage of neuronal cells (NSC-34 cells), we demonstrated that both EVs types, but particularly LVs, contained TDP-43, TDP-35 and TDP-25. When the PQC system was inhibited, as it occurs in NDs, we found that TDP-35 and TDP-25 secretion via EVs increased. In line with this observation, we specifically detected TDP-35 in EVs derived from plasma of FTLD patients. Moreover, we demonstrated that both neuronal and plasma-derived EVs transported components of the chaperone-assisted selective autophagy (CASA) complex (HSP70, BAG3 and HSPB8). Neuronal EVs also contained the autophagy-related MAP1LC3B-II protein. Notably, we found that, under PQC inhibition, HSPB8, BAG3 and MAP1LC3B-II secretion paralleled that of TDP-43 species. Taken together, our data highlight the role of EVs, particularly of LVs, in the disposal of disease-associated TDP-43 species, and suggest a possible new role for the CASA complex in NDs.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Extracellular Vesicles , Frontotemporal Lobar Degeneration , Neurodegenerative Diseases , Adaptor Proteins, Signal Transducing/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Proteins/metabolism , DNA-Binding Proteins/metabolism , Extracellular Vesicles/metabolism , Humans , Molecular Chaperones/metabolism , Peptide Fragments/metabolism
14.
Neural Regen Res ; 17(7): 1423-1430, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34916412

ABSTRACT

Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein response) represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis (also known as proteostasis). This is even more important in neurons, as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age. Several neurodegenerative pathologies such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct, unbalanced protein overload. In amyotrophic lateral sclerosis and frontotemporal dementia, the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa (TDP-43). TDP-43 is an RNA binding protein that participates in RNA metabolism, among other functions. Dysregulation of TDP-43 (e.g. aggregation and mislocalization) can dramatically affect neurons, and this has been linked to disease development. Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum. These variants can be causative of degeneration onset and progression. Most neurodegenerative diseases (including amyotrophic lateral sclerosis and frontotemporal dementia) have no cure at the moment; however, modulating translation has recently emerged as an attractive approach that can be performed at several steps (i.e. regulating activation of initiation and elongation factors, inhibiting unfolded protein response activation or inducing chaperone expression and activity). This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis. We strive to highlight the importance of research on drugs that, not only restore protein imbalance without compromising translational activity of cells, but are also as safe as possible for the patients.

15.
Int J Mol Sci ; 22(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34830093

ABSTRACT

Traumatic brain injury (TBI) is a disabling disorder and a major cause of death and disability in the world. Both single and repetitive traumas affect the brain acutely but can also lead to chronic neurodegenerative changes. Clinical studies have shown some dissimilarities in transactive response DNA binding protein 43 (TDP-43) expression patterns following single versus repetitive TBI. We explored the acute cortical post-traumatic changes of TDP-43 using the lateral fluid percussion injury (LFPI) model of single moderate TBI in adult male mice and investigated the association of TDP-43 with post-traumatic neuroinflammation and synaptic plasticity. In the ipsilateral cortices of animals following LFPI, we found changes in the cytoplasmic and nuclear levels of TDP-43 and the decreased expression of postsynaptic protein 95 within the first 3 d post-injury. Subacute pathological changes of TDP-43 in the hippocampi of animals following LFPI and in mice exposed to repetitive mild TBI (rmTBI) were studied. Changes in the hippocampal TDP-43 expression patterns at 14 d following different brain trauma procedures showed pathological alterations only after single moderate, but not following rmTBI. Hippocampal LFPI-induced TDP-43 pathology was not accompanied by the microglial reaction, contrary to the findings after rmTBI, suggesting that different types of brain trauma may cause diverse pathophysiological changes in the brain, specifically related to the TDP-43 protein as well as to the microglial reaction. Taken together, our findings may contribute to a better understanding of the pathophysiological events following brain trauma.


Subject(s)
Brain Injuries, Traumatic/metabolism , DNA-Binding Proteins/biosynthesis , Gene Expression Regulation , Hippocampus/metabolism , Animals , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Female , Hippocampus/pathology , Male , Mice
16.
J Neurosci Methods ; 363: 109344, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34469713

ABSTRACT

BACKGROUND: There is great interest in detecting, characterizing and quantifying transactive response DNA binding protein of 43 kDa (TDP-43), and its post-translational modifications, due to its association with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis. Unfortunately, detailed analysis of TDP-43 in human biological matrices by immunometric methods has been hindered by the relatively low abundance of TDP-43 and poor antibody reagent specificity. NEW METHOD: With the goal of developing a selective and multiplex method for characterizing TDP-43, we previously developed a high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) assay for relative quantification of TDP-43 in human brain tissue and cells. To improve analytical sensitivity and to perform absolute quantification, we coupled a novel RNA-based aptamer enrichment workflow (and inclusion of a stable isotope-labeled standard) to HPLC-MS/MS. RESULTS: The TDP-43 aptamer-enrichment-HPLC-MS/MS assay was linear from 0.37 to 2.55nmol/L, a range suitable for analysis of both human cells and brain tissue homogenates, and had a total CV of 14.8%. Quantitative TDP-43 peptide profiles were developed for cases of FTD with TDP-43 pathology and cases with no neurodegenerative pathology. COMPARISON WITH EXISTING METHODS: Compared to immunoenrichment, aptamer-enrichment yielded cleaner recoveries of TDP-43. The aptamer-enrichment-HPLC-MS/MS method, compared to our previous method without enrichment, increased analytical sensitivity by 8.7-fold and 11.8-fold for endogenous TDP-43 in human cells and brain tissue, respectively. Critically, inclusion of the aptamer enrichment step improved sequence resolution and enabled identification of TDP-43 C-terminal fragments. CONCLUSIONS: The aptamer-enrichment-HPLC-MS/MS method enabled highly selective quantification, enhanced sequence coverage and structural characterization of endogenous TDP-43.


Subject(s)
Amyotrophic Lateral Sclerosis , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , DNA-Binding Proteins , Humans , Inclusion Bodies
17.
Neurobiol Dis ; 154: 105360, 2021 07.
Article in English | MEDLINE | ID: mdl-33812000

ABSTRACT

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Lysosomes/metabolism , Lysosomes/pathology , Amyotrophic Lateral Sclerosis/genetics , Animals , Autophagy/physiology , Frontotemporal Dementia/genetics , Humans , Lysosomes/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
18.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498186

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1-5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Disease Models, Animal , Microglia/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Microglia/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
19.
Acta Neuropathol Commun ; 9(1): 15, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33461623

ABSTRACT

Transactive response DNA-binding protein 43 kDa (TDP-43) has been identified as the major component of ubiquitinated inclusions found in patients with sporadic amyotrophic lateral sclerosis (ALS). Increasing evidence suggests prion-like transmission of TDP-43 aggregates via neuroanatomic connection in vitro and pyramidal tract in vivo. However, it is still unknown whether the spreading of pathological TDP-43 sequentially via pyramidal tract can initiate ALS-like pathology and phenotypes. In this study, we reported that injection of TDP-43 preformed fibrils (PFFs) into the primary motor cortex (M1) of Thy1-e (IRES-TARDBP) 1 mice induced the spreading of pathological TDP-43 along pyramidal tract axons anterogradely. Moreover, TDP-43 PFFs-injected Thy1-e (IRES-TARDBP) 1 mice displayed ALS-like neuropathological features and symptoms, including motor dysfunctions and electrophysiological abnormalities. These findings provide direct evidence that transmission of pathological TDP-43 along pyramidal tract induces ALS-like phenotypes, which further suggest the potential mechanism for TDP-43 proteinopathy.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Axonal Transport , DNA-Binding Proteins/genetics , Motor Cortex/metabolism , Protein Aggregates , Protein Aggregation, Pathological/genetics , Pyramidal Tracts/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Humans , Mice , Mice, Transgenic , Motor Cortex/pathology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Aggregation, Pathological/physiopathology , Pyramidal Tracts/pathology
20.
Neuropathol Appl Neurobiol ; 47(2): 328-345, 2021 02.
Article in English | MEDLINE | ID: mdl-32949047

ABSTRACT

AIM: Granulovacuolar degeneration (GVD) in Alzheimer's disease (AD) involves the necrosome, which is a protein complex consisting of phosphorylated receptor-interacting protein kinase 1 (pRIPK1), pRIPK3 and phosphorylated mixed lineage kinase domain-like protein (pMLKL). Necrosome-positive GVD was associated with neuron loss in AD. GVD was recently linked to the C9ORF72 mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with transactive response DNA-binding protein (TDP-43) pathology (FTLD-TDP). Therefore, we investigated whether GVD in cases of the ALS-FTLD-TDP spectrum (ALS/FTLD) shows a similar involvement of the necrosome as in AD, and whether it correlates with diagnosis, presence of protein aggregates and cell death in ALS/FTLD. METHODS: We analysed the presence and distribution of the necrosome in post-mortem brain and spinal cord of ALS and FTLD-TDP patients (n = 30) with and without the C9ORF72 mutation, and controls (n = 22). We investigated the association of the necrosome with diagnosis, the presence of pathological protein aggregates and neuronal loss. RESULTS: Necrosome-positive GVD was primarily observed in hippocampal regions of ALS/FTLD cases and was associated with hippocampal TDP-43 inclusions as the main predictor of the pMLKL-GVD stage, as well as with the Braak stage of neurofibrillary tangle pathology. The central cortex and spinal cord, showing motor neuron loss in ALS, were devoid of any accumulation of pRIPK1, pRIPK3 or pMLKL. CONCLUSIONS: Our findings suggest a role for hippocampal TDP-43 pathology as a contributor to necrosome-positive GVD in ALS/FTLD. The absence of necroptosis-related proteins in motor neurons in ALS argues against a role for necroptosis in ALS-related motor neuron death.


Subject(s)
Frontotemporal Dementia/pathology , Hippocampus/pathology , Necroptosis/physiology , Nerve Degeneration/pathology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...