Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.186
Filter
1.
J Mol Cell Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982223

ABSTRACT

Alternative polyadenylation (APA) is an essential post-transcriptional process that produces mature mRNA isoforms by regulating the usage of polyadenylation sites (PASs). APA is involved in lymphocyte activation; however, its role throughout the entire differentiation trajectory remains elusive. Here, we analyzed single-cell 3'-end transcriptome data from healthy subjects to construct a dynamic-APA landscape from hematopoietic stem and progenitor cells (HSPCs) to terminally differentiated lymphocytes. This analysis covered 19973 cells of 12 clusters from five lineages (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, and plasmacytoid dendritic cells). A total of 2364 genes exhibited differential 3'UTR PAS usage, and 3021 genes displayed differential intronic cleavage during lymphoid differentiation. We observed a global trend of 3'UTR shortening during lymphoid differentiation. Nevertheless, specific events of both 3'UTR shortening and lengthening were also identified within each cluster. The APA patterns delineated three differentiation stages: HSPCs, precursor cells, and mature cells. Moreover, we demonstrated that the conversion of naïve T cells to memory T cells was accompanied by dynamic APA in transcription factor-encoding genes (TCF7 and NFATC2IP), immune function-related genes (BCL2, CD5, CD28, GOLT1B, and TMEM59), and protein ubiquitination-related genes (UBE2G1, YPEL5, and SUMO3). These findings expand our understanding of the underlying molecular mechanisms of APA and facilitate studies on the regulatory role of APA in lymphoid hematopoiesis.

2.
Heliyon ; 10(12): e33079, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984299

ABSTRACT

Adipose-derived stromal cells (ADSCs) can be induced to differentiate into neurons, representing the most promising avenue for cell therapy. However, the molecular mechanism and genomic characteristics of the differentiation of ADSCs into neurons remain poorly understood. In this study, cells from the adult ADSCs group, induction 1h, 3h, 5h, 6h, and 8h groups were selected for single-cell RNA sequencing (scRNA-Seq). Samples from these seven-time points were sequenced and analyzed. The expression of neuron marker genes, including NES, MAP2, TMEM59L, PTK2B, CHN1, DNM1, NRSN2, FBLN2, SCAMP1, SLC1A1, DLG4, CDK5, and ENO2, was found to be low in the ADSCs group, but highly expressed in differentiated cell clusters. The expression of stem cell marker genes, including CCND1, IL1B, MMP1, MMP3, MYO10, and BMP2, was the highest in the ADSCs cluster. This expression decreased significantly with the extension of induction time. Gene ontology (GO) enrichment analysis of upregulated genes in the induced samples showed that the biological processes related to neuronal differentiation and development, such as neuronal differentiation, projection, and apoptosis, were significantly upregulated with a longer induction time during cell cluster differentiation. The results of the cell communication analysis demonstrated the gradual formation of complex neural network connections between ADSC-derived neurons through receptor and ligand pairs at 5h after the induction of differentiation.

3.
Brain Res ; 1842: 149097, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950810

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the fastest growing neurological disease. Currently, there is no disease-modifying therapy to slow the progression of the disease. Danggui buxue decoction (DBD) is widely used in the clinic because of its therapeutic effect. However, little is known about the molecular mechanism of DBD against PD. This study intends to explore the possible molecular mechanisms involved in DBD treatment of PD based on network pharmacology, and provide potential research directions for future research. METHODS: Firstly, the active components and target genes of DBD were screened from the traditional Chinese medicine systems pharmacology (TCMSP), DrugBank and UniProt database. Secondly, target genes of PD were identified from the (GEO) dataset, followed by identification of common target genes of DBD and PD. Thirdly, analysis of protein-protein interaction (PPI), functional enrichment and diagnosis was performed on common target genes, followed by correlation analysis between core target genes, immune cell, miRNAs, and transcription factors (TFs). Finally, molecular docking between core target genes and active components, and real-time PCR were performed. RESULTS: A total of 72 common target genes were identified between target genes of DBD and target genes of PD. Among which, 11 target genes with potential diagnostic value were further identified, including TP53, AKT1, IL1B, MMP9, NOS3, RELA, MAPK14, HMOX1, TGFB1, NOS2, and ERBB2. The combinations with the best docking binding were identified, including kaempferol-AKT1/HMOX1/NOS2/NOS3, quercetin-AKT1/ERBB2/IL1B/HMOX1/MMP9/TP53/NOS3/TGFB1. Moreover, IL1B and NOS2 respectively positively and negatively correlated with neutrophil and Type 1 T helper cell. Some miRNA-core target gene regulatory pairs were identified, such as hsa-miR-185-5p-TP53/TGFB1/RELA/MAPK14/IL1B/ERBB2/AKT1 and hsa-miR-214-3p-NOS3. These core target genes were significantly enriched in focal adhesion, TNF, HIF-1, and ErbB signaling pathway. CONCLUSION: Diagnostic TP53, AKT1, IL1B, MMP9, NOS3, RELA, MAPK14, HMOX1, TGFB1, NOS2, and ERBB2 may be considered as potential therapeutic targets of DBD in the treatment of PD.

4.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970019

ABSTRACT

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Subject(s)
Avena , Droughts , Homeostasis , Phylogeny , Plant Proteins , Reactive Oxygen Species , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Avena/genetics , Avena/metabolism , Gene Expression Regulation, Plant , Polyethylene Glycols/pharmacology , Multigene Family , Stress, Physiological/genetics , Genome-Wide Association Study , Genome, Plant
5.
Phytother Res ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973353

ABSTRACT

American ginseng (AG) has been reported to have anti-inflammatory effects in many diseases, but the key molecules and mechanisms are unclear. This study aims to evaluate the anti-inflammatory mechanism of AG and identify the key molecules by in vivo and in vitro models. Zebrafish was employed to assess the anti-inflammatory properties of AG and the compounds. Metabolomics was utilized to identify potential anti-inflammatory molecules in AG, while molecular dynamics simulations were conducted to forecast the interaction capabilities of these compounds with inflammatory targets. Additionally, macrophage cell was employed to investigate the anti-inflammatory mechanisms of the key molecules in AG by enzyme-linked immunosorbent assay and western blotting. Seven potential anti-inflammatory molecules were discovered in AG, with ginsenoside Rg1, ginsenoside Rs3 (G-Rs3), and oleanolic acid exhibiting the strongest affinity for signal transducer and activator of transcription 3. These compounds demonstrated inhibitory effects on macrophage migration in zebrafish models and the ability to regulate ROS levels in both zebrafish and macrophages. The cell experiments found that ginsenoside Rg1, ginsenoside Rs3, and oleanolic acid could promote macrophage M2/M1 polarization ratio and inhibit phosphorylation overexpression of signal transducer and activator of transcription 3. This study revealed the key anti-inflammatory molecules and mechanisms of AG, and provided new evidence of anti-inflammatory for the scientific use of AG.

6.
FEBS J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975839

ABSTRACT

The protein-protein interaction (PPI) network of the Mediator complex is very tightly regulated and depends on different developmental and environmental cues. Here, we present an interactive platform for comparative analysis of the Mediator subunits from humans, baker's yeast Saccharomyces cerevisiae, and model plant Arabidopsis thaliana in a user-friendly web-interface database called MediatorWeb. MediatorWeb provides an interface to visualize and analyze the PPI network of Mediator subunits. The database facilitates downloading the untargeted and unweighted network of Mediator complex, its submodules, and individual Mediator subunits to better visualize the importance of individual Mediator subunits or their submodules. Further, MediatorWeb offers network visualization of the Mediator complex and interacting proteins that are functionally annotated. This feature provides clues to understand functions of Mediator subunits in different processes. In an additional tab, MediatorWeb provides quick access to secondary and tertiary structures, as well as residue-level contact information for Mediator subunits in each of the three model organisms. Another useful feature of MediatorWeb is detection of interologs based on orthologous analyses, which can provide clues to understand the functions of Mediator complex in less explored kingdoms. Thus, MediatorWeb and its features can help the user to understand the role of Mediator complex and its subunits in the transcription regulation of gene expression.

7.
Heliyon ; 10(12): e32784, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975074

ABSTRACT

Early diagnosis of HIV-1 is crucial to minimize transmission, morbidity, and mortality, particularly for neonates with developing immune systems. This study aimed to develop and evaluate a simplified, high-sensitivity assay for early HIV-1 detection before seroconversion. The assay utilizes reverse-transcription-polymerase chain reaction (RT-PCR) to amplify the HIV-1 RNA protease gene. Digoxigenin (dig)-labeled forward, and biotin-labeled universal reverse primers are used, generating digoxigenin-amplicon-biotin (DAB) products. These products are detected using a lateral flow assay (LFA) containing a conjugated pad with colloidal gold-labeled 6-histidine tag-fused maltose-binding protein-monomeric streptavidin (6HISMBP-mSA-CGC). Anti-dig monoclonal antibody (mAb) and biotinylated-BSA are immobilized in the test and control line zones, respectively. Five plasma samples with known viral load (VL) were used to simulate the efficacy of early HIV-1 detection. RNA extracted from these samples was amplified by RT-PCR using the labeled primers, and DAB products were examined on agarose gel electrophoresis and LFA. RT-PCR from diluted clinical samples yielded visible DNA bands in agarose gel electrophoresis, consistent with positive LFA results. Conversely, negative samples only displayed the control line on LFA. This assay exhibited a limit of detection (LOD) of 82.29 RNA copies/mL, comparable to other nucleic acid amplification tests (NAATs). This novel technique provides a highly sensitive assay for early HIV-1 diagnosis, even with low VL, making it suitable for resource-limited settings.

8.
Cureus ; 16(6): e61844, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975467

ABSTRACT

BACKGROUND: CD147, encoded by the BSGgene, has complex transcripts that encode proteins of different lengths. Total BSG transcription is a prognostic biomarker for patients with liver cancer. This study tried to analyze the expression profile and prognostic significance of BSG transcripts in liver cancer. MATERIALS AND METHODS: RNA sequencing data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project, survival data from TCGA, and protein expression data from the Human Protein Atlas were systematically analyzed. RESULTS: Among the four protein-coding transcripts of BSG, ENST00000353555 encoding basigin-2 is the dominant transcript isoform. It might be an independent prognostic biomarker for unfavorable overall survival in patients with liver cancer (HR: 1.404, 95% CI: 1.1224-1.754, p = 0.003). CONCLUSIONS: ENST00000353555 might be a prognostic biomarker linking unfavorable overall survival in liver cancer patients.

9.
Proc Natl Acad Sci U S A ; 121(29): e2321408121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976730

ABSTRACT

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing neuromuscular disease caused by a polyglutamine (polyQ)-encoding CAG trinucleotide repeat expansion in the androgen receptor (AR) gene, leading to AR aggregation, lower motor neuron death, and muscle atrophy. AR is a ligand-activated transcription factor that regulates neuronal architecture and promotes axon regeneration; however, whether AR transcriptional functions contribute to disease pathogenesis is not fully understood. Using a differentiated PC12 cell model of SBMA, we identified dysfunction of polyQ-expanded AR in its regulation of neurite growth and maintenance. Specifically, we found that in the presence of androgens, polyQ-expanded AR inhibited neurite outgrowth, induced neurite retraction, and inhibited neurite regrowth. This dysfunction was independent of polyQ-expanded AR transcriptional activity at androgen response elements (ARE). We further showed that the formation of polyQ-expanded AR intranuclear inclusions promoted neurite retraction, which coincided with reduced expression of the neuronal differentiation marker ß-III-Tubulin. Finally, we revealed that cell death is not the primary outcome for cells undergoing neurite retraction; rather, these cells become senescent. Our findings reveal that mechanisms independent of AR canonical transcriptional activity underly neurite defects in a cell model of SBMA and identify senescence as a pathway implicated in this pathology. These findings suggest that in the absence of a role for AR canonical transcriptional activity in the SBMA pathologies described here, the development of SBMA therapeutics that preserve this activity may be desirable. This approach may be broadly applicable to other polyglutamine diseases such as Huntington's disease and spinocerebellar ataxias.


Subject(s)
Neurites , Receptors, Androgen , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , Neurites/metabolism , Rats , PC12 Cells , Cellular Senescence , Peptides/metabolism , Humans , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/genetics , Muscular Disorders, Atrophic/pathology , Mutation , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology
10.
Elife ; 132024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976490

ABSTRACT

RNA polymerase II (RNAPII) transcription initiates bidirectionally at many human protein-coding genes. Sense transcription usually dominates and leads to messenger RNA production, whereas antisense transcription rapidly terminates. The basis for this directionality is not fully understood. Here, we show that sense transcriptional initiation is more efficient than in the antisense direction, which establishes initial promoter directionality. After transcription begins, the opposing functions of the endonucleolytic subunit of Integrator, INTS11, and cyclin-dependent kinase 9 (CDK9) maintain directionality. Specifically, INTS11 terminates antisense transcription, whereas sense transcription is protected from INTS11-dependent attenuation by CDK9 activity. Strikingly, INTS11 attenuates transcription in both directions upon CDK9 inhibition, and the engineered recruitment of CDK9 desensitises transcription to INTS11. Therefore, the preferential initiation of sense transcription and the opposing activities of CDK9 and INTS11 explain mammalian promoter directionality.


Subject(s)
Cyclin-Dependent Kinase 9 , Promoter Regions, Genetic , Transcription Initiation, Genetic , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/genetics , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Transcription, Genetic , Gene Expression Regulation , Nuclear Proteins , Transcriptional Elongation Factors
11.
Front Plant Sci ; 15: 1417204, 2024.
Article in English | MEDLINE | ID: mdl-38978523

ABSTRACT

Growth-regulating factors (GRFs) are transcription factors that play a pivotal role in plant growth and development. This study identifies 12 Solanum tuberosum GRF transcription factors (StGRFs) and analyzes their physicochemical properties, phylogenetic relationships, gene structures and gene expression patterns using bioinformatics. The StGRFs exhibit a length range of 266 to 599 amino acids, with a molecular weight of 26.02 to 64.52 kDa. The majority of StGRFs possess three introns. The promoter regions contain a plethora of cis-acting elements related to plant growth and development, as well as environmental stress and hormone response. All the members of the StGRF family contain conserved WRC and QLQ domains, with the sequences of these two conserved domain modules exhibiting high levels of conservation. Transcriptomic data indicates that StGRFs play a significant role in the growth and development of stamens, roots, young tubers, and other tissues or organs in potatoes. Furthermore, a few StGRFs exhibit differential expression patterns in response to Phytophthora infestans, chemical elicitors, heat, salt, and drought stresses, as well as multiple hormone treatments. The results of the expression analysis indicate that StGRF1, StGRF2, StGRF5, StGRF7, StGRF10 and StGRF12 are involved in the process of tuber sprouting, while StGRF4 and StGRF9 may play a role in tuber dormancy. These findings offer valuable insights that can be used to investigate the roles of StGRFs during potato tuber dormancy and sprouting.

12.
Front Oncol ; 14: 1383419, 2024.
Article in English | MEDLINE | ID: mdl-38978740

ABSTRACT

The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.

13.
Mol Clin Oncol ; 21(2): 54, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38978976

ABSTRACT

Chest computed tomography (CT) revealed a focal ground glass opacity (GGO) with a minimal solid area in a 75-year-old man. The shadow was located in the periphery of the right upper lobe and measured 11 mm in diameter. The patient had a medical history of metachronous prostate and gastric cancers. The patient had been treated with androgen deprivation therapy for prostate cancer for 12 years and underwent subtotal gastrectomy for triple gastric cancers 7 months before. Since primary lung adenocarcinoma was suspected, CT-assisted percutaneous needle biopsy was performed. Histology revealed the sheet-like and trabecular proliferation of atypical cells, suggesting that the lesion was moderately to poorly differentiated adenocarcinoma. Adenocarcinoma cells showed subepithelial extension causing the thickening of alveolar walls. A tumor thrombus was not detected in the blood or lymphatic vessels. Immunohistochemistry revealed that carcinoma cells were negative for cytokeratin 7 (CK7), CK20, thyroid transcription factor-1 and CDX2 and positive for prostate-specific antigen and P504S. Based on these findings, the patient was diagnosed with metastatic carcinoma from prostate cancer. The disease remained stable for 4 months after the diagnosis, and no new lesions were observed on chest CT. Metastatic carcinoma rarely presents with focal GGO. Lung biopsy is necessary to identify the pathology of the lesion, and the primary site needs to be confirmed by immunohistochemistry with specific markers, particularly in a case of metachronous multiple cancers. A tumor thrombus, which is suggestive of lymphangitic carcinomatosis or pulmonary tumor thrombotic microangiopathy, also needs to be evaluated.

14.
Front Immunol ; 15: 1421012, 2024.
Article in English | MEDLINE | ID: mdl-38979414

ABSTRACT

Objective: This study revealed a core regulator and common upstream mechanisms for the multifaceted pathological processes of age-related macular degeneration (AMD) and provided proof-of-concept for this new therapeutic target. Methods: Comprehensive gene expression analysis was performed using RNA sequencing of eye cup from old mice as well as laser-induced choroidal neovascularization (CNV) mouse model. Through integrative analysis and protein-protein interaction (PPI) analysis, common pathways and key transcription factor was identified simultaneously engaged in age-related retinal degeneration and CNV, the two typical pathological process of AMD. Subsequently, the expression changes of Spi1, the key regulator, as well as the alternation of the downstream mechanisms were validated in both models through qRT-PCR, Elisa, flow cytometry and immunofluorescence. Further, we assessed the impact of Spi1 knockdown in vitro and in vivo using gene intervention vectors carried by adeno-associated virus or lentivirus to test its potential as a therapeutic target. Results: Compared to corresponding controls, we found 1,939 and 1,319 genes differentially expressed in eye cups of old and CNV mice respectively. The integrative analysis identified a total of 275 overlapping DEGs, of which 150 genes were co-upregulated. PPI analysis verified a central transcription factor, SPI1. The significant upregulation of Spi1 expression was then validated in both models, accompanied by macrophage polarization towards the M1 phenotype. Finally, SPI1 suppression significantly inhibited M1 polarization of BMDMs and attenuated neovascularization in CNV mice. Conclusion: This study demonstrates that SPI1 exerts a pivotal role in AMD by regulation of macrophage polarization and innate immune response, offering promise as an innovative target for treating AMD.


Subject(s)
Choroidal Neovascularization , Disease Models, Animal , Macrophages , Macular Degeneration , Trans-Activators , Animals , Macular Degeneration/immunology , Macular Degeneration/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , Macrophages/immunology , Macrophages/metabolism , Choroidal Neovascularization/immunology , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Mice, Inbred C57BL , Macrophage Activation/genetics , Humans , Gene Expression Profiling , Male
15.
mSystems ; : e0078424, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980050

ABSTRACT

Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE: C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.

16.
PeerJ ; 12: e17684, 2024.
Article in English | MEDLINE | ID: mdl-38952979

ABSTRACT

Background: FAR1/FHY3 transcription factors are derived from transposase, which play important roles in light signal transduction, growth and development, and response to stress by regulating downstream gene expression. Although many FAR1/FHY3 members have been identified in various species, the FAR1/FHY3 genes in maize are not well characterized and their function in drought are unknown. Method: The FAR1/FHY3 family in the maize genome was identified using PlantTFDB, Pfam, Smart, and NCBI-CDD websites. In order to investigate the evolution and functions of FAR1 genes in maize, the information of protein sequences, chromosome localization, subcellular localization, conserved motifs, evolutionary relationships and tissue expression patterns were analyzed by bioinformatics, and the expression patterns under drought stress were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results: A total of 24 ZmFAR members in maize genome, which can be divided into five subfamilies, with large differences in protein and gene structures among subfamilies. The promoter regions of ZmFARs contain abundant abiotic stress-responsive and hormone-respovensive cis-elements. Among them, drought-responsive cis-elements are quite abundant. ZmFARs were expressed in all tissues detected, but the expression level varies widely. The expression of ZmFARs were mostly down-regulated in primary roots, seminal roots, lateral roots, and mesocotyls under water deficit. Most ZmFARs were down-regulated in root after PEG-simulated drought stress. Conclusions: We performed a genome-wide and systematic identification of FAR1/FHY3 genes in maize. And most ZmFARs were down-regulated in root after drought stress. These results indicate that FAR1/FHY3 transcription factors have important roles in drought stress response, which can lay a foundation for further analysis of the functions of ZmFARs in response to drought stress.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Zea mays , Zea mays/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Appl Environ Microbiol ; : e0074124, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953660

ABSTRACT

To cope with a high-salinity environment, haloarchaea generally employ the twin-arginine translocation (Tat) pathway to transport secretory proteins across the cytoplasm membrane in a folded state, including Tat-dependent extracellular subtilases (halolysins) capable of autocatalytic activation. Some halolysins, such as SptA of Natrinema gari J7-2, are produced at late-log phase to prevent premature enzyme activation and proteolytic damage of cellular proteins in haloarchaea; however, the regulation mechanism for growth phase-dependent expression of halolysins remains largely unknown. In this study, a DNA-protein pull-down assay was performed to identify the proteins binding to the 5'-flanking sequence of sptA encoding halolysin SptA in strain J7-2, revealing a TrmBL2-like transcription factor (NgTrmBL2). The ΔtrmBL2 mutant of strain J7-2 showed a sharp decrease in the production of SptA, suggesting that NgTrmBL2 positively regulates sptA expression. The purified recombinant NgTrmBL2 mainly existed as a dimer although monomeric and higher-order oligomeric forms were detected by native-PAGE analysis. The results of electrophoretic mobility shift assays (EMSAs) showed that NgTrmBL2 binds to the 5'-flanking sequence of sptA in a non-specific and concentration-dependent manner and exhibits an increased DNA-binding affinity with the increase in KCl concentration. Moreover, we found that a distal cis-regulatory element embedded in the neighboring upstream gene negatively regulates trmBL2 expression and thus participates in the growth phase-dependent biosynthesis of halolysin SptA. IMPORTANCE: Extracellular proteases play important roles in nutrient metabolism, processing of functional proteins, and antagonism of haloarchaea, but no transcription factor involved in regulating the expression of haloaechaeal extracellular protease has been reported yet. Here we report that a TrmBL2-like transcription factor (NgTrmBL2) mediates the growth phase-dependent expression of an extracellular protease, halolysin SptA, of haloarchaeon Natrinema gari J7-2. In contrast to its hyperthermophilic archaeal homologs, which are generally considered to be global transcription repressors, NgTrmBL2 functions as a positive regulator for sptA expression. This study provides new clues about the transcriptional regulation mechanism of extracellular protease in haloarchaea and the functional diversity of archaeal TrmBL2.

18.
J Integr Plant Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953747

ABSTRACT

NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.

19.
Med Oncol ; 41(8): 191, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954116

ABSTRACT

Zinc-finger proteins are involved in many biological processes. However, the role of Zinc-finger protein 334 (ZNF334) in cervical cancer remains unidentified. This study showed that promoter methylation of ZNF334 was responsible for its reduced expression. ZNF334 suppressed malignant biological behaviors in cervical cancer. Notably, ZNF334 reversed the EMT process both in vitro and in vivo. RNA-seq coupled with bioinformatics analysis caught P3H3 which is upregulated by ZNF334. Dual-luciferase reporter and Chromatin immunoprecipitation assays illustrated that ZNF334 directly regulate P3H3. Knockdown of P3H3 attenuated the reversal of EMT induced by ZNF334. Additionally, ZNF334 overexpression sensitized cervical cancer cells to the cytotoxic effects of paclitaxel, cyclosporine and sunitinib. In conclusions, this study illustrated that DNA methylation-based silencing ZNF334 played a vital role in cervical cancer, by regulating P3H3 in turn affects EMT. ZNF334 has the potential to become a novel diagnostic biomarker and a potential treatment target for cervical cancer.


Subject(s)
DNA Methylation , Epithelial-Mesenchymal Transition , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Humans , Female , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Animals , Mice , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics , Transcription Factors/metabolism , Mice, Nude , Promoter Regions, Genetic/genetics , Histones/metabolism , Histones/genetics , Mice, Inbred BALB C
20.
Methods Mol Biol ; 2814: 223-245, 2024.
Article in English | MEDLINE | ID: mdl-38954209

ABSTRACT

Dictyostelium represents a stripped-down model for understanding how cells make decisions during development. The complete life cycle takes around a day and the fully differentiated structure is composed of only two major cell types. With this apparent reduction in "complexity," single cell transcriptomics has proven to be a valuable tool in defining the features of developmental transitions and cell fate separation events, even providing causal information on how mechanisms of gene expression can feed into cell decision-making. These scientific outputs have been strongly facilitated by the ease of non-disruptive single cell isolation-allowing access to more physiological measures of transcript levels. In addition, the limited number of cell states during development allows the use of more straightforward analysis tools for handling the ensuing large datasets, which provides enhanced confidence in inferences made from the data. In this chapter, we will outline the approaches we have used for handling Dictyostelium single cell transcriptomic data, illustrating how these approaches have contributed to our understanding of cell decision-making during development.


Subject(s)
Dictyostelium , Gene Expression Profiling , Single-Cell Analysis , Transcriptome , Dictyostelium/genetics , Dictyostelium/growth & development , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Single-Cell Gene Expression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...