Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.802
Filter
1.
Biomed Pharmacother ; 177: 117069, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968802

ABSTRACT

The high mortality rate due to chemoresistance in patients with high-grade ovarian cancer (HGSOC) emphasizes the urgent need to determine optimal treatment strategies for advanced and recurrent cases. Our study investigates the interplay between estrogens and chemoresistance in HGSOC and shows clear differences between platinum-sensitive and -resistant tumors. Through comprehensive transcriptome analyzes, we uncover differences in the expression of genes of estrogen biosynthesis, metabolism, transport and action underlying platinum resistance in different tissues of HGSOC subtypes and in six HGSOC cell lines. Furthermore, we identify genes involved in estrogen biosynthesis and metabolism as prognostic biomarkers for HGSOC. Additionally, our study elucidates different patterns of estrogen formation/metabolism and their effects on cell proliferation between six HGSOC cell lines with different platinum sensitivity. These results emphasize the dynamic interplay between estrogens and HGSOC chemoresistance. In particular, targeting the activity of steroid sulfatase (STS) proves to be a promising therapeutic approach with potential efficacy in limiting estrogen-driven cell proliferation. Our study reveals potential prognostic markers as well as identifies novel therapeutic targets that show promise for overcoming resistance and improving treatment outcomes in HGSOC.

2.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38974914

ABSTRACT

Background: Bulbus Fritillariae Pallidiflorae (BFP) is a traditional Chinese medicine that has long been used to treat lung diseases, but the active components and mechanism are still unclear. Objective: This study aimed to investigate the effect and mechanism of the total alkaloid extract from BFP (BFP-TA) on cigarette smoke extract (CSE)-induced Beas-2B cells injury. Design: The Beas-2B cells injury model was induced by 2% CSE, then the effect of BFP-TA on the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA) was detected according to the instructions of the T-AOC assay kit, the SOD detection kit and the MDA detection kit, and the production of ROS was detected by fluorescence microscopy. The effect of BFP-TA on Beas-2B cells apoptosis was detected by flow cytometry, and the effect of BFP-TA on related protein expression was detected by western blot. Subsequently, the effect of BFP-TA on differentially expressed genes (DEGs) in CSE-induced Beas-2B cells was studied by transcriptomic sequencing, and the expression of DEGs was verified by quantitative real-time polymerase chain reaction (qPCR). Results: The results showed that BFP-TA could attenuate CSE-induced oxidative damage in Beas-2B cells by elevating T-AOC and SOD levels while inhibiting ROS and MDA levels, and the mechanism was potentially related to the SIRT1/Nrf2/Keap1 signaling pathway. Furthermore, BFP-TA could inhibit CSE-induced apoptosis by inhibiting the protein expression of Bax, MST1 and FOXO3a, and exert anti-inflammatory effect by inhibiting the activation of MAPK signaling pathway. Subsequently, transcriptome analysis and qPCR validation showed that BFP-TA could alleviate inflammation, oxidative stress, apoptosis and lipid metabolism disorders by regulating the expression of DEGs in PPAR and PI3K-Akt signaling pathways, thereby exerting a protective effect against CSE-induced Beas-2B cell injury. Conclusion: This study is the first to demonstrate that BFP-TA could exert a protective effect on CSE-induced Beas-2B cell injury by exerting anti-inflammatory, antioxidant, anti-apoptotic and regulate lipid metabolism disorders.

3.
Front Immunol ; 15: 1420847, 2024.
Article in English | MEDLINE | ID: mdl-38975339

ABSTRACT

High-grade serous ovarian cancer (HGSOC) presents significant challenges due to its heterogeneity and late-stage diagnoses. Using single-cell and spatial transcriptomics to elucidate the complex landscape of HGSOC to understand its underlying mechanism. Our analysis reveals significant inter- and intra-tumoral diversity, manifested through distinct cellular subpopulations and varied microenvironmental niches. Notably, our findings highlight a widespread immunosuppressive environment, marked by complex networks of cell-cell interactions, particularly evident in areas of elevated tumor cell density within metastatic samples. We identify the exclusive presence of COL14A1+ neoplastic cells in metastatic specimens, alongside a strong correlation between CD8A+ NKT cells and poor prognosis, and elevated CHODL expression in HGSOC metastasis tissues. Furthermore, knockdown experiments targeting CHODL demonstrate its role in reducing migration and invasion abilities in HGSOC cells. A pivotal discovery of our study is the delineation of specific cellular signatures correlated with adverse outcomes, notably a subset of CHODL+ neoplastic cells characterized by a distinct metabolic phenotype with a predilection for lipid metabolism. The therapeutic targeting of this metabolic pathway with existing inhibitors appears promising in curbing tumor proliferation. These findings enhance our understanding of HGSOC heterogeneity and reveal potential therapeutic targets, promising more effective management strategies for this aggressive cancer subtype.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Tumor Microenvironment/genetics , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Gene Expression Profiling , Transcriptome , Cell Line, Tumor , Neoplasm Grading , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Biomarkers, Tumor/genetics , Prognosis
4.
J Sci Food Agric ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979962

ABSTRACT

BACKGROUND: Alicyclobacillus acidoterrestris is a common microorganism in fruit juice. It can produce off-odor metabolites and has been considered to be an important factor in juice contamination. Thus, the development of new strategy for the control of A. acidoterrestris has important practical significance. The primary objective of this work was to assess the antibacterial performance of ε-polylysine-functionalized magnetic composites (Fe3O4@MoS2@PAA-EPL) in apple juice and its effect on juice quality. Moreover, the molecular mechanism of Fe3O4@MoS2@PAA-EPL against A. acidoterrestris was explored by RNA sequencing (RNA-Seq). RESULTS: Experimental results indicated that the synthesized composites possessed the ability to inhibit the viability of A. acidoterrestris vegetative cells and spores. Besides, investigation on the quality of apple juice incubated with Fe3O4@MoS2@PAA-EPL implied that the fabricated composites displayed negligible adverse effects on juice quality. In addition, the results of RNA-Seq demonstrated that 833 differentially expressed genes (DEGs) were identified in Fe3O4@MoS2@PAA-EPL-treated A. acidoterrestris, which were associated with translation, energy metabolism, amino acid metabolism, membrane transport and cell integrity. CONCLUSION: These results suggested that the treatment of Fe3O4@MoS2@PAA-EPL disrupted energy metabolism, repressed cell wall synthesis and caused membrane transport disorder of bacterial cells. This work provides novel insights into the molecular antibacterial mechanism for ε-polylysine-functionalized magnetic composites against A. acidoterrestris. © 2024 Society of Chemical Industry.

5.
Ecotoxicol Environ Saf ; 282: 116690, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981394

ABSTRACT

Heterosigma akashiwo is a harmful algal bloom species that causes significant detrimental effects on marine ecosystems worldwide. The algicidal bacterium Pseudalteromonas sp. LD-B1 has demonstrated potential effectiveness in mitigating these blooms. However, the molecular mechanisms underlying LD-B1's inhibitory effects on H. akashiwo remain poorly understood. In this study, we employed the comprehensive methodology, including morphological observation, assessment of photosynthetic efficiency (Fv/Fm), and transcriptomic analysis, to investigate the response of H. akashiwo to LD-B1. Exposure to LD-B1 resulted in a rapid decline of H. akashiwo's Fv/Fm ratio, with cells transitioning to a rounded shape within 2 hours, subsequently undergoing structural collapse and cytoplasmic leakage. Transcriptomic data revealed sustained downregulation of photosynthetic genes, indicating impaired functionality of the photosynthetic system. Additionally, genes related to the respiratory electron transfer chain and antioxidant defenses were consistently downregulated, suggesting prolonged oxidative stress beyond the cellular antioxidative capacity. Notably, upregulation of autophagy-related genes was observed, indicating autophagic responses in the algal cells. This study elucidates the molecular basis of LD-B1's algicidal effects on H. akashiwo, advancing our understanding of algicidal mechanisms and contributing to the development of effective strategies for controlling harmful algal blooms.

6.
Environ Pollut ; 358: 124511, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977121

ABSTRACT

Hexafluoropropylene oxide dimer acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are increasingly used as alternatives for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, their immunotoxicity and underlying molecular mechanisms remain poorly understood. Here, to assess immunotoxic effects, zebrafish embryos were exposed to environmentally relevant concentrations of PFOA, PFOS, HFPO-DA, and PFECHS for four days. Results revealed that all four per- and polyfluoroalkyl substances (PFAS) resulted in decreased heart rate and spontaneous movement, and induced oxidative stress in zebrafish larvae. Notably, HFPO-DA exhibited more severe oxidative stress than PFOA. Immune dysfunction was observed, characterized by elevated cytokine, complement factor, nitric oxide, and neutrophil content, along with a significant decrease in lysozyme content. Transcriptomic analysis revealed the activation of Toll-like receptor (TLR)/NOD-like receptor (NLR)/RIG-I-like receptor (RLR) and associated downstream genes, indicating their pivotal role in PFAS-induced immunomodulation. Molecular docking simulations demonstrated stable interactions between PFAS and key receptors (TLR2, NOD2 and RIG-I). Overall, HFPO-DA and PFECHS exhibited immunotoxic effects in zebrafish larvae similar to legacy PFAS, providing important information for understanding the toxic mode of action of these emerging alternatives.

7.
Endocr Pathol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958823

ABSTRACT

Medullary thyroid carcinoma (MTC) is a rare cancer derived from neuroendocrine C-cells of the thyroid. In contrast to other neuroendocrine tumors, a histological grading system was lacking until recently. A novel two-tier grading system based on the presence of high proliferation or necrosis is associated with prognosis. Transcriptomic analysis was conducted on 21 MTCs, including 9 high-grade tumors, with known mutational status, using the NanoString Tumor Signaling 360 Panel. This analysis, covering 760 genes, revealed upregulation of the genes EGLN3, EXO1, UBE2T, UBE2C, FOXM1, CENPA, DLL3, CCNA2, SOX2, KIF23, and CDCA5 in high-grade MTCs. Major pathways differentially expressed between high-grade and low-grade MTCs were DNA damage repair, p53 signaling, cell cycle, apoptosis, and Myc signaling. Validation through qRT-PCR in 30 MTCs demonstrated upregulation of ASCL1, DLL3, and SOX2 in high-grade MTCs, a gene signature akin to small-cell lung carcinoma, molecular subgroup A. Subsequently, DLL3 expression was validated by immunohistochemistry. MTCs with DLL3 overexpression (defined as ≥ 50% of positive tumor cells) were associated with significantly lower disease-free survival (p = 0.041) and overall survival (p = 0.01). Moreover, MTCs with desmoplasia had a significantly increased expression of DLL3. Our data supports the idea that DLL3 should be further explored as a predictor of aggressive disease and poor outcomes in MTC.

8.
Hum Genomics ; 18(1): 75, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956648

ABSTRACT

BACKGROUND: Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS: We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS: These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.


Subject(s)
Cognitive Aging , DNA Methylation , Genome-Wide Association Study , Multifactorial Inheritance , Humans , DNA Methylation/genetics , Female , Male , Multifactorial Inheritance/genetics , Aged , Middle Aged , Cross-Sectional Studies , White Matter/diagnostic imaging , White Matter/pathology , Risk Factors , Magnetic Resonance Imaging , Aging/genetics , Aging/pathology , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Genetic Risk Score
9.
Int J Biol Macromol ; 275(Pt 1): 133599, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960263

ABSTRACT

Helicobacter pylori (H. pylori) is one of the major causes of gastrointestinal diseases, including gastric cancer. However, the acidic environment of the stomach and H. pylori resistance severely impair the antimicrobial efficacy of oral drugs. Here, a biocompatible chitosan-modified molybdenum selenide (MoSe2@CS) was designed for the simultaneous photothermal treatment of H. pylori infection and gastric cancer. MoSe2@CS showed a photothermal conversion efficiency was as high as 45.7 %. In the H. pylori-infected mice model, MoSe2@CS displayed a high bacteriostasis ratio of 99.9 % upon near-infrared irradiation. The antimicrobial functionality was also proved by transcriptomic sequencing study, which showed that MoSe2@CS combined with NIR laser irradiation modulated the gene expression of a variety of H. pylori bioprocesses, including cell proliferation and inflammation-related pathways. Further gut flora analysis results indicated that MoSe2@CS mediated PTT of H. pylori did not affect the homeostasis of gut flora, which highlights its advantages over traditional antibiotic therapy. In addition, MoSe2@CS exhibited a good photothermal ablation effect and significantly inhibited gastric tumor growth in vitro and in vivo. The comprehensive application of MoSe2@CS in the PTT of H. pylori infection and gastric cancer provides a new avenue for the clinical treatment of H. pylori infection and related diseases.

10.
Poult Sci ; 103(9): 103994, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38991385

ABSTRACT

Different rearing systems have varying effect on animal welfare and meat quality of poultry. Currently, there are no established standards for the rearing systems of Chinese indigenous chickens. Our study aimed to investigate the effects of different rearing systems on the meat quality, gene profiles, and metabolites of Chinese indigenous chickens (Nanchuan chicken). 10-wk-old Nanchuan chickens (n=360) were randomly divided into 3 groups (cage, net, and free-range groups), with 6 replicates per group (20 chickens per replicate). The experiment lasted for 12 wk. At 154-days-old, 36 healthy chickens (6 males and 6 females per group) were randomly selected, euthanized, and their breast muscles were collected to assess the meat quality parameters and histomorphological characteristics. Additionally, breast muscles from 18 random hens (3 males and 3 females per group) were used for metabolomics and RNA-seq analysis. The results showed that rearing systems significantly affected the meat quality and myofiber characteristics. The meat quality of breast muscles from free-range chickens was superior to that of caged chickens, characterized by more tender meat and smaller myofiber cross-sectional areas. Integrative metabolomics and transcriptomics analysis revealed that the differentially expressed genes of chicken breast muscles were primarily involved in the myofiber differentiation. Mechanically, the improved meat quality of breast muscle in free-range chickens were mainly associated with enhanced skeletal muscle differentiation facilitated by fibromodulin, increased levels of up-regulated Acetyl-L-carnitine and Propionylcarnitine level, and decreased levels of Nonanoic acid and Elaidic acid abundance (Graphical abstract). This provides a comprehensive understanding of the most effective and sustainable breeding, production, and rearing systems for Chinese indigenous chickens. It also contributes to the current knowledge of the molecular mechanisms underlying the effects of rearing systems on growth performance and meat quality of chickens.

11.
J Hazard Mater ; 476: 135145, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991638

ABSTRACT

Increasing frequency and intensity of cyanobacterial blooms in water sources is a growing global issue. Algicides are usually implemented in summer or autumn when blooms break out, however, the blooms will form again when algicide's concentration declines to a certain extent. Preventing the recovery and growth of cyanobacteria in early spring may be conducive to abatement of the blooms in summer or autumn. In this study solid sodium percarbonate (SPC) was used as an algicide to suppress recovery and growth of Pseudanabaena sp., a common odour-producing cyanobacterium, in early spring (12 °C). Results showed that 3.0 and 6.0 mg/L SPC were able to kill most of the algal cells after 12 h treatment at 12 °C, and the residual cells gradually died during the re-cultivation period at 25 °C. As a control, although SPC also caused most of algal cells to lyse at 25 °C, regrowth of cells was found during the period of re-cultivation at 25 °C. Transcriptomic analysis revealed that the dysregulated genes were strongly associated with translation and photosynthesis after SPC treatment. All differentially expressed unigenes related to translation and photosynthesis were down-regulated after SPC oxidation at 12 °C, whereas key genes associated with translation and photosynthesis were upregulated after SPC treatment at 25 °C.

12.
Trends Cancer ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019673

ABSTRACT

Gastrointestinal (GI) cancers are highly heterogeneous at multiple levels. Tumor heterogeneity can be captured by molecular profiling, such as genetic, epigenetic, proteomic, and transcriptomic classification. Transcriptomic subtyping has the advantage of combining genetic and epigenetic information, cancer cell-intrinsic properties, and the tumor microenvironment (TME). Unsupervised transcriptomic subtyping systems of different GI malignancies have gained interest because they reveal shared biological features across cancers and bear prognostic and predictive value. Importantly, transcriptomic subtypes accurately reflect complex phenotypic states varying not only per tumor region, but also throughout disease progression, with consequences for clinical management. Here, we discuss methodologies of transcriptomic subtyping, proposed taxonomies for GI malignancies, and the challenges posed to clinical implementation, highlighting opportunities for future transcriptomic profiling efforts to optimize clinical impact.

13.
Crit Care ; 28(1): 240, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010113

ABSTRACT

BACKGROUND: The immune response of critically ill patients, such as those with sepsis, severe trauma, or major surgery, is heterogeneous and dynamic, but its characterization and impact on outcomes are poorly understood. Until now, the primary challenge in advancing our understanding of the disease has been to concurrently address both multiparametric and temporal aspects. METHODS: We used a clustering method to identify distinct groups of patients, based on various immune marker trajectories during the first week after admission to ICU. In 339 severely injured patients, we initially longitudinally clustered common biomarkers (both soluble and cellular parameters), whose variations are well-established during the immunosuppressive phase of sepsis. We then applied this multi-trajectory clustering using markers composed of whole blood immune-related mRNA. RESULTS: We found that both sets of markers revealed two immunotypes, one of which was associated with worse outcomes, such as increased risk of hospital-acquired infection and mortality, and prolonged hospital stays. This immunotype showed signs of both hyperinflammation and immunosuppression, which persisted over time. CONCLUSION: Our study suggest that the immune system of critically ill patients can be characterized by two distinct longitudinal immunotypes, one of which included patients with a persistently dysregulated and impaired immune response. This work confirms the relevance of such methodology to stratify patients and pave the way for further studies using markers indicative of potential immunomodulatory drug targets.


Subject(s)
Biomarkers , Wounds and Injuries , Humans , Male , Female , Biomarkers/blood , Biomarkers/analysis , Middle Aged , Adult , Wounds and Injuries/immunology , Wounds and Injuries/blood , Cluster Analysis , Critical Illness , Intensive Care Units/statistics & numerical data , Intensive Care Units/organization & administration , Aged , Sepsis/blood , Sepsis/immunology , Longitudinal Studies
14.
Fish Shellfish Immunol ; 152: 109756, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992802

ABSTRACT

Fish skin plays an important role in defending against pathogens in water, primarily through the secretion of skin mucus containing various immune-related factors. Local immune responses in the skin activate systemic immune responses by inflammatory cytokines. However, it remains unclear whether immune responses in the skin occur after systemic immune responses caused by pathogen invasion into the fish body. This study aimed to clarify the relationship between systemic immune responses and skin responses after intraperitoneal injection of formalin-killed cells (FKC) of Vibrio anguillarum. Although systemic inflammatory responses were observed in the spleen after injection, expression changes in the skin did not show significant differences. In contrast, expression of hemoglobin subunit genes significantly increased in the skin after FKC injection, suggesting that erythrocytes infiltrate extravascularly.

15.
Aquat Toxicol ; 273: 107021, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38996480

ABSTRACT

Permethrin (Per) is a widely used and frequently detected pyrethroid pesticide in agricultural products and the environment. It may pose potential toxicity to non-target organisms. Per has been reported to affect lipid homeostasis, although the mechanism is undefined. This study aims to explore the characteristic transcriptomic profiles and clarify the underlying signaling pathways of Per-induced lipid metabolism disorder in zebrafish liver. The results showed that environmental exposure to Per caused changes in the liver index, histopathology, and oxidative stress in zebrafish. Moreover, transcriptome results showed that Per heavily altered the pathways involved in metabolism, the immune system, and the endocrine system. We conducted a more in-depth analysis of the genes associated with lipid metabolism. Our findings revealed that exposure to Per led to a disruption in lipid metabolism by activating the KRAS-PPAR-GLUT signaling pathways through oxidative stress. The disruption of lipid homeostasis caused by exposure to Per may also contribute to obesity, hepatitis, and other diseases. The results may provide new insights for the risk of Permethrin to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.

16.
Article in English | MEDLINE | ID: mdl-38996693

ABSTRACT

Preliminary experiments in our laboratory have demonstrated that common carp (Cyprinus carpio) cultivated for two months in land-based container recirculating aquaculture systems (C-RAS) exhibit superior muscle quality compared to those raised in traditional pond systems (TP). To elucidate the molecular mechanisms underlying muscle quality variations in common carp cultured under two aquaculture systems, transcriptomic and metabolomic analyses were performed on muscle tissues of specimens aged 11 to 23 months. Comparison of muscle histological sections between the two groups indicated a significantly lower long diameter of muscle fibers in the C-RAS group compared to the TP group (P < 0.01). Conversely, the muscle fiber density was significantly higher in the C-RAS group than in the TP group (P < 0.05). Transcriptomic and metabolomic analyses identified 3390 differentially expressed genes (DEGs)-1558 upregulated and 1832 downregulated-and 181 differentially expressed metabolites (DEMs)-124 upregulated and 57 downregulated-between the groups. Based on integrated transcriptomic and metabolomic analyses, the significant differences focus on metabolic pathways involving glycolysis/gluconeogenesis, arginine and proline metabolism, arginine biosynthesis, and purine metabolism. The study revealed that the muscle quality of common carp in two aquaculture systems is primarily regulated through improvements in energy metabolism, amino acid metabolism, fatty acid metabolism, and purine metabolism. These metabolic processes play significant roles in promoting muscle fiber hyperplasia and hypertrophy, enhancing muscle flavor, and increasing muscle antioxidant capacity. This study provides new insights into the molecular and metabolic pathways that control muscle quality in common carp under different environmental factors.

17.
Microbiol Spectr ; : e0057223, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012115

ABSTRACT

Fermenting grape juice provides a habitat for a well-mapped and evolutionarily relevant microbial ecosystem consisting of many natural or inoculated strains of yeasts and bacteria. The molecular nature of many of the ecological interactions within this ecosystem remains poorly understood, with the partial exception of interactions of a metabolic nature such as competition for nutrients and production of toxic metabolites/peptides. Data suggest that physical contact between species plays a significant role in the phenotypic outcome of interspecies interactions. However, the molecular nature of the mechanisms regulating these phenotypes remains unknown. Here, we present a transcriptomic analysis of physical versus metabolic contact between two wine relevant yeast species, Saccharomyces cerevisiae and Lachancea thermotolerans. The data show that these species respond to the physical presence of the other species. In S. cerevisiae, physical contact results in the upregulation of genes involved in maintaining cell wall integrity, cell wall structural components, and genes involved in the production of H2S. In L. thermotolerans, HSP stress response genes were the most significantly upregulated gene family. Both yeasts downregulated genes belonging to the FLO family, some of which play prominent roles in cellular adhesion. qPCR analysis indicates that the expression of some of these genes is regulated in a species-specific manner, suggesting that yeasts adjust gene expression to specific biotic challenges or interspecies interactions. These findings provide fundamental insights into yeast interactions and evolutionary adaptations of these species to the wine ecosystem.IMPORTANCEWithin the wine ecosystem, yeasts are the most relevant contributors to alcoholic fermentation and wine organoleptic characteristics. While some studies have described yeast-yeast interactions during alcoholic fermentation, such interactions remain ill-defined, and little is understood regarding the molecular mechanisms behind many of the phenotypes observed when two or more species are co-cultured. In particular, no study has investigated transcriptional regulation in response to physical interspecies cell-cell contact, as opposed to the generally better understood/characterized metabolic interactions. These data are of direct relevance to our understanding of microbial ecological interactions in general while also creating opportunities to improve ecosystem-based biotechnological applications such as wine fermentation. Furthermore, the presence of competitor species has rarely been considered an evolutionary biotic selection pressure. In this context, the data reveal novel gene functions. This, and further such analysis, is likely to significantly enlarge the genome annotation space.

18.
Cell Mol Life Sci ; 81(1): 305, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012348

ABSTRACT

Lentiviral vectors have markedly enhanced gene therapy efficiency in treating congenital diseases, but their long-term safety remains controversial. Most gene therapies for congenital eye diseases need to be carried out at early ages, yet the assessment of related risks to ocular development posed by lentiviral vectors is challenging. Utilizing single-cell transcriptomic profiling on human retinal organoids, this study explored the impact of lentiviral vectors on the retinal development and found that lentiviral vectors can cause retinal precursor cells to shift toward photoreceptor fate through the up-regulation of key fate-determining genes such as PRDM1. Further investigation demonstrated that the intron and intergenic region of PRDM1 was bound by PHLDA1, which was also up-regulated by lentiviral vectors exposure. Importantly, knockdown of PHLDA1 successfully suppressed the lentivirus-induced differentiation bias of photoreceptor cells. The findings also suggest that while lentiviral vectors may disrupt the fate determination of retinal precursor cells, posing risks in early-stage retinal gene therapy, these risks could potentially be reduced by inhibiting the PHLDA1-PRDM1 axis.


Subject(s)
Cell Differentiation , Genetic Vectors , Lentivirus , Retina , Stem Cells , Transcription Factors , Humans , Retina/metabolism , Retina/cytology , Lentivirus/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Genetic Vectors/metabolism , Genetic Vectors/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Organoids/metabolism , Organoids/cytology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Genetic Therapy/methods
19.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000473

ABSTRACT

Nematodes of the genus Trichinella are important pathogens of humans and animals. This study aimed to enhance the genomic and transcriptomic resources for T. pseudospiralis (non-encapsulated phenotype) and T. spiralis (encapsulated phenotype) and to explore transcriptional profiles. First, we improved the assemblies of the genomes of T. pseudospiralis (code ISS13) and T. spiralis (code ISS534), achieving genome sizes of 56.6 Mb (320 scaffolds, and an N50 of 1.02 Mb) and 63.5 Mb (568 scaffolds, and an N50 value of 0.44 Mb), respectively. Then, for each species, we produced RNA sequence data for three key developmental stages (first-stage muscle larvae [L1s], adults, and newborn larvae [NBLs]; three replicates for each stage), analysed differential transcription between stages, and explored enriched pathways and processes between species. Stage-specific upregulation was linked to cellular processes, metabolism, and host-parasite interactions, and pathway enrichment analysis showed distinctive biological processes and cellular localisations between species. Indeed, the secreted molecules calmodulin, calreticulin, and calsyntenin-with possible roles in modulating host immune responses and facilitating parasite survival-were unique to T. pseudospiralis and not detected in T. spiralis. These insights into the molecular mechanisms of Trichinella-host interactions might offer possible avenues for developing new interventions against trichinellosis.


Subject(s)
Transcriptome , Trichinella spiralis , Trichinella , Animals , Trichinella spiralis/genetics , Trichinella/genetics , Genomics/methods , Genome, Helminth , Gene Expression Profiling/methods , Larva/genetics , Larva/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Species Specificity , Host-Parasite Interactions/genetics , Trichinellosis/parasitology , Trichinellosis/genetics
20.
Toxicol In Vitro ; 100: 105893, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002813

ABSTRACT

BACKGROUND: Polystyrene nanoplastics (PS-NPs), are ubiquitous pollution sources in human environments, posing significant biosafety and health risks. While recent studies, including our own, have illustrated that PS-NPs can breach the blood-testis barrier and impact germ cells, there remains a gap in understanding their effects on specific spermatogenic cells such as spermatocytes. METHODS AND RESULTS: Herein, we employed an integrated approach encompassing phenotype, metabolomics, and transcriptomics analyses to assess the molecular impact of PS-NPs on mouse spermatocyte-derived GC-2spd(ts) cells. Optimal exposure conditions were determined as 24 h with 50 nm PS-NPs at 12.5 µg/mL and 90 nm PS-NPs at 50 µg/mL for subsequent multi-omics analysis. Our findings revealed that PS-NPs significantly influenced proliferation and viability, causing alterations in transcriptome and metabolome profiles. Transcriptomics analysis of GC-2spd(ts) cells exposed to PS-NPs indicated the pivotal involvement of cell proliferation and cycle, autophagy, ferroptosis, and redox reaction pathways in PS-NP-induced effects on the proliferation and viability of GC-2spd(ts) cells. Furthermore, metabolomics analysis identified major changes in amino acid metabolism, cyanoamino acid metabolism, and purine and pyrimidine metabolism following PS-NP exposure. CONCLUSION: Our integrated approach, combining metabolomics and transcriptomics profiles with phenotype data, enhances our understanding of the adverse effects of PS-NPs on germ cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...