Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Bioeng Biotechnol ; 12: 1380537, 2024.
Article in English | MEDLINE | ID: mdl-38919379

ABSTRACT

Obesity, characterized by excessive storage of lipids, has become a global pandemic with high incidence levels, and its forecast is not encouraging. Currently, there are different strategies to treat obesity; however, these conventional methods have various limitations. Lifestyle changes may result in poor outcomes due to the complexity of obesity causes, pharmaceutic treatments produce severe side effects, and bariatric surgery is highly invasive. In the search for alternative treatments to fight obesity, transdermal drug delivery systems of anti-obesogenic molecules have gained particular attention. However, the diffusion of molecules through the skin is the main drawback due to the characteristics of different layers of the skin, principally the stratum corneum and its barrier-like behavior. In this sense, microneedles patches (MP) have emerged to overcome this limitation by piercing the skin and allowing drug delivery inside the body. Although MP have been studied for some years, it was not until about 2017 that their potential as anti-obesogenic treatment was reported. This article aims to summarize and analyze the strategies employed to produce MP and to embed the active molecules against obesity. Special attention is focused on the microneedle's material, geometry, array, and additional delivery strategies, like nanoencapsulation. MP are a promising tool to develop an easy-access treatment, avoiding the digestive tract and with the capacity to enhance the anti-obesogenic activity by delivering one or more active molecules.

2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 720-726, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708506

ABSTRACT

OBJECTIVE: To explore the therapeutic effect of transdermal patches containing Cassia seed extract applied at the navel on slow transit constipation (STC) in rats and explore the spectrum-effect relationship of the patches. METHOD: In a STC rat model established by gavage of compound diphenoxylate suspension for 14 days, the transdermal patches containing low, medium and high doses of Cassia seed extract (41.75, 125.25, and 375.75 mg/kg, respectively) were applied at the Shenque acupoint on the abdomen for 14 days after modeling, with constipation patches (13.33 mg/kg) as the positive control. After the treatment, fecal water content and intestinal propulsion rate of the rats were calculated, the pathological changes in the colon were observed with HE staining. Serum NO and NOS levels and the total protein content and NO, NOS and AChE expressions in the colon tissue were determined. HPLC fingerprints of the transdermal patches were established, and the spectrum-effect relationship between the common peaks of the patches and its therapeutic effect were analyzed. RESULTS: Treatment with the transdermal patches containing Cassia seed extract significantly increased fecal water content and intestinal propulsion rate of the rat models, where no pathological changes in the colon tissue were detected. The treatment also suppressed the elevations of serum and colonic NO and NOS levels and reduction of AChE in STC rats. Twenty-eight common peaks were confirmed in the HPLC fingerprints of 6 batches of Cassia seed extract-containing patches. Analysis of the spectrum-effect relationship showed that autrantio-obtusin had the greatest contribution to the therapeutic effect of the patches in STC rats. CONCLUSION: The Cassia seed extract-containing patches alleviates STC in rats via synergistic actions of multiple active ingredients in the extract, where autrantio-obtusin, rhein, chrysoobtusin, obtusin, obtusifolin, emodin, chrysophanol, and physcion are identified as the main active ingredients.


Subject(s)
Cassia , Constipation , Plant Extracts , Seeds , Transdermal Patch , Animals , Rats , Cassia/chemistry , Constipation/drug therapy , Seeds/chemistry , Rats, Sprague-Dawley , Colon/drug effects , Acupuncture Points , Nitric Oxide/metabolism , Disease Models, Animal , Male , Drugs, Chinese Herbal/therapeutic use
3.
AAPS PharmSciTech ; 25(2): 34, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332233

ABSTRACT

Pravastatin sodium (PVS) is a hypolipidemic drug with poor oral bioavailability due to the first-pass effect. Therefore, this study aims to formulate and evaluate transdermal patches containing PVS-loaded nanoemulsions (PVS-NEs) to increase PVS's hypolipidemic and hepatoprotective activities. PVS-NEs were prepared using the aqueous titration method, where oleic acid was chosen as an oil phase, and span 80 and tween 80 were used as surfactant and cosurfactant respectively. Droplet size (DS), polydispersity index (PDI), zeta potential (ZP), clarity, and thermodynamic stability of NEs were all characterized. Also, PVS-NEs (NE2) with 50% oil phase, 40% SC mix 2:1, and 10% water were selected as an optimum formula based on the results of DS (251 ± 16), PDI (0.4 ± 0.16), and ZP (-70 ± 10.4) to be incorporated into a transdermal patch, and PVS-NE2 loaded transdermal patches (PVS-NE2-TDPs) were prepared by solvent evaporation method. F1 patch with HPMC E15 and PVP K30 in a ratio of 3:1 represented satisfactory patch properties with good drug-excipients compatibility. Thus, it was selected as an optimum patch formula. The optimized F1 patch was characterized for thickness, moisture content, weight variation, and drug-excipients incompatibility. Therefore, it was subjected to ex vivo skin permeation and finally pharmacodynamic studies. Ex vivo permeation studies of F1 revealed that the cumulative amount of PVS permeated across rat skin was 271.66 ± 19 µg/cm2 in 72 h, and the pharmacodynamic studies demonstrated that the F1 patch was more effective in treating hyperlipidemia than PVS-TDP (control patch) based on both blood analysis and histopathological examination. .


Subject(s)
Hyperlipidemias , Pravastatin , Rats , Animals , Administration, Cutaneous , Excipients , Transdermal Patch , Hyperlipidemias/drug therapy , Rats, Wistar
4.
Pharmaceutics ; 15(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37111667

ABSTRACT

In this work, we aim to address several strategies to improve transdermal drug delivery, such as iontophoresis, sonophoresis, electroporation and micron. We also propose a review of some transdermal patches and their applications in medicine. TDDs (transdermal patches with delayed active substances) are multilayered pharmaceutical preparations that may contain one or more active substances, of which, systemic absorption is achieved through intact skin. The paper also presents new approaches to the controlled release of drugs: niosomes, microemulsions, transfersomes, ethosomes, but also hybrid approaches nanoemulsions and microns. The novelty of this review lies in the presentation of strategies to improve the transdermal administration of drugs, combined with their applications in medicine, in light of pharmaceutical technological developments.

5.
Pharmaceutics ; 15(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839902

ABSTRACT

Skin is the largest epithelial surface of the human body, with a surface area of 2 m2 for the average adult human. Being an external organ, it is susceptible to more than 3000 potential skin diseases, including injury, inflammation, microbial and viral infections, and skin cancer. Due to its nature, it offers a large accessible site for administrating several medications against these diseases. The dermal and transdermal delivery of such medications are often ensured by utilizing dermal/transdermal patches or microneedles made of biocompatible and biodegradable materials. These tools provide controlled delivery of drugs to the site of action in a rapid and therapeutically effective manner with enhanced diffusivity and minimal side effects. Regrettably, they are usually fabricated using synthetic materials with possible harmful environmental effects. Manufacturing such tools using green synthesis routes and raw materials is hence essential for both ecological and economic sustainability. In this review, natural materials including chitosan/chitin, alginate, keratin, gelatin, cellulose, hyaluronic acid, pectin, and collagen utilized in designing ecofriendly patches will be explored. Their implementation in wound healing, skin cancer, inflammations, and infections will be discussed, and the significance of these studies will be evaluated with future perspectives.

6.
Int J Pharm ; 635: 122720, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36781085

ABSTRACT

In recent years, 3D printing has attracted great interest in the pharmaceutical field as a promising tool for the on-demand manufacturing of patient-centered pharmaceutical forms. Among the existing 3D printing techniques, direct powder extrusion (DPE) resulted as the most practical approach thanks to the possibility to directly process excipients and drugs in a single step. The main goal of this work was to determine whether different grades of ethylene vinyl acetate (EVA) copolymer might be employed as new feedstock materials for the DPE technique to manufacture transdermal patches. By selecting two model drugs with different thermal behavior, (i.e., ibuprofen and diclofenac sodium) we also wanted to pay attention to the versatility of EVA excipient in preparing patches for customized transdermal therapies. EVA was combined with 30 % (w/w) of each model drugs. The physicochemical composition of the printed devices was investigated through Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analyses. FT-IR spectra confirmed that the starting materials were effectively incorporated into the final formulation, and thermal analyses demonstrated that the extrusion process altered the crystalline morphology of the raw polymers inducing the formation of crystals at lower thicknesses. Lastly, the drug release and permeation profile of the printed systems was evaluated for 48 h and showed to be dependent on the VA content of the EVA grade (74.5 % of ibuprofen released from EVA 4030AC matrix and 12.6 % of diclofenac sodium released from EVA1821A matrix). Hence, this study demonstrated that EVA and direct powder extrusion technique could be promising tools for manufacturing transdermal patches. By selecting the EVA grade with the appropriate VA content, drugs with dissimilar melting points could be printed preserving their thermal stability. Moreover, the desired drug release and permeation profile of the drug can be achieved, representing an important advantage in terms of personalized medicine.


Subject(s)
Diclofenac , Ibuprofen , Humans , Powders , Spectroscopy, Fourier Transform Infrared , Drug Liberation , Printing, Three-Dimensional , Tablets
7.
Biomed Chromatogr ; 37(1): e5508, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36097670

ABSTRACT

The purpose of this study was to evaluate the pharmacokinetics and tissue distribution of the Corydalis yanhusuo total alkaloids transdermal patch (CTTP) following Shenque acupoint application in rats. The concentrations of corydaline, tetrahydropalmatine, tetrahydrocolumbamine, protopine, and dehydrocorydaline in rat plasma and various tissues were simultaneously detected by ultra-performance liquid chromatography-tandem mass spectrometry after Shenque acupoint administration of CTTP. Plasma, heart, liver, spleen, lung, and kidney tissue samples were collected at specific times and separated by gradient elution on an ACQUITY UPLC HSS T3 column (1.8 µm, 100 mm × 2.1 mm) with a mobile phase of 0.01% formic acid aqueous solution and acetonitrile-0.01% formic acid. The methodological results showed that the selectivity, linear range, accuracy, precision, stability, matrix effect, and extraction recovery of the established method met the requirements of biological sample analysis. The results indicated that CTTP following Shenque acupoint administration rapidly delivered adequate drug into rat blood and maintained an effective plasma level for a significantly longer time than non-acupoint administration. Furthermore, CTTP effectively reached the liver through Shenque acupoint administration and showed tissue selectivity. The data obtained could provide a prospect for the treatment of chronic pain with CTTP following Shenque acupoint application.


Subject(s)
Alkaloids , Corydalis , Rats , Animals , Corydalis/chemistry , Tandem Mass Spectrometry/methods , Tissue Distribution , Transdermal Patch , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods
8.
Pharmaceutics ; 16(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38258047

ABSTRACT

BGP-15 is an active ingredient with many advantages, e.g., beneficial cardiovascular and anti-inflammatory effects. The transdermal administration of BGP-15 has great potential, which has not been investigated yet, despite the fact that it is a non-invasive and safe form of treatment. The aim of our study was to formulate transdermal patches containing BGP-15 and optimize the production with the Box-Behnken design of experiment. The most optimal formulation was further combined with penetration enhancers to improve bioavailability of the active ingredient, and the in vitro drug release and in vitro permeation of BGP-15 from the patches were investigated. FTIR spectra of BGP-15, the formulations and the components were also studied. The most optimal formulation based on the tested parameters was dried for 24 h, with 67% polyvinyl alcohol (PVA) content and low ethanol content. The selected penetration enhancer excipients were not cytotoxic on HaCaT cells. The FTIR measurements and SEM photography proved the compatibility of the active substance and the vehicle; BGP-15 was present in the polymer matrix in dissolved form. The bioavailability of BGP-15 was most significantly enhanced by the combination of Transcutol and Labrasol. The in vitro permeation study confirmed that the formulated patches successfully enabled the transdermal administration of BGP-15.

9.
Animals (Basel) ; 12(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36552388

ABSTRACT

The aim of this prospective clinical study was to evaluate the effectiveness of transdermal patches of buprenorphine as an alternative route for the management of perioperative pain in dogs undergoing a unilateral mastectomy. Our hypothesis was that the transdermal route would allow the obtainment of an analgesic plan comparable to that of the injectable administration. Twelve dogs were divided in two groups. In the BupreP group (six dogs), buprenorphine patches were applied 40 h before the start of the surgery, guaranteeing a dosage of 5−6 µg/kg/h. In the BupreI group (six dogs), 20 µg/kg of buprenorphine was administered intravenously 30 min before the induction of anesthesia, and this was repeated every 6 h for 24 h. The main physiological parameters, sedation scores (0 = no sedation; 11 = deep sedation), and pain scores were monitored from 30 min before the surgery to 24 h after the end of anesthesia. All p values < 0.05 were defined as statistically significant. Thirty minutes before the surgery, the sedation scores were higher in BupreI (score = 10) compared to the BupreP group (score = 1). Moreover, during the mastectomy, the mean arterial pressure significantly increased in both groups even if nobody required additional analgesia. In the postoperative period, the pain scores did not show statistically significant differences between the two groups, maintaining values below the pain threshold at all times of the study. In conclusion, the transdermal administration of buprenorphine could guarantee an analgesic quality equal to that of the injectable route.

10.
An. R. Acad. Nac. Farm. (Internet) ; 88(número extraordinario): 35-51, diciembre 2022. tab, graf
Article in Spanish | IBECS | ID: ibc-225740

ABSTRACT

El consumo de analgésicos opioides ha experimentado un vertiginoso ascenso en las últimas décadas a nivel mundial. Este elevado consumo está relacionado con el aumento del número de prescripciones de opioides para el tratamiento del dolor crónico y por el aumento de la dependencia a opioides. Los analgésicos opioides tienen una corta duración de acción, siendo necesarias múltiples administraciones para obtener analgesia prolongada. El empleo de formulaciones de liberación prolongada permite espaciar los intervalos posológicos y estabilizar las concentraciones máximas de fármaco en sangre, favoreciendo el cumplimiento terapéutico y reduciendo el riesgo de desarrollar adicción. Sin embargo, estas formulaciones llevan dosis más altas de analgésicos opioides que las hacen más susceptibles de ser alteradas. Así, los avances en tecnología farmacéutica más recientes se han orientado hacia la aplicación de recursos tecnológicos disuasorios de su utilización por vías de administración alternativas con fines no terapéuticos. A su vez, los sistemas de liberación modificada también juegan un papel esencial en el tratamiento de la adicción a opioides: con el desarrollo de sistemas de administración parenteral capaces de prolongar la liberación de opioides durante meses se consigue superar una de las mayores dificultades para alcanzar el éxito del tratamiento en este tipo de pacientes como es el cumplimiento terapéutico. En este artículo se realiza una revisión bibliográfica de los diferentes sistemas de liberación prolongada de opioides que se encuentran actualmente autorizados en Europa y/o en Estados Unidos para el tratamiento del dolor y de la dependencia a opioides. (AU)


The consumption of opioid analgesics has increased drastically in the last decades worldwide. This high consumption is linked with a surge in the number of opioid prescriptions for the treatment of chronic pain and a surge in opioid misuse and addiction. Opioid analgesics have a short duration of action, making necessary frequent administrations to provide extended analgesia. The use of prolonged-release formulations enables dosing intervals to be spaced out and drug blood levels to be stabilized, improving therapeutic compliance, and reducing the likelihood of developing addiction. However, these formulations contain higher doses of opioid analgesics which make them more susceptible to be manipulated. Hence, the most recent advances in pharmaceutical technology have been oriented towards the application of abuse deterrent technologies aiming to prevent their administration through alternative routes. Moreover, prolonged- release systems also play an essential role in the treatment of opioid addictions with the development of parenteral dosage forms capable of prolonging opioid release for months that help overcome one of the most important drawbacks in achieving treatment success, namely, patient compliance. We review herein the different prolonged-release opioid dosage forms currently approved in Europe and/or the United States for the treatment of pain and opioid dependence. (AU)


Subject(s)
Humans , Analgesics, Opioid , Pain , Microspheres , Technology, Pharmaceutical , Therapeutics
11.
Eur J Pharm Biopharm ; 181: 207-217, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36400257

ABSTRACT

Inspired by the natural mussel adhesive mechanism, three different materials-polydopamine (PDA), polyvinylpyrrolidone (PVP), and polyallylamine (PAM)-were used to make innovative pressure-sensitive adhesives (PSAs) for transdermal delivery of ketoprofen. PDA was synthesized under alkaline conditions using a self-polymerization reaction and was exploited as a cross-linking agent due to its biocompatibility. The adhesive performance, physicochemical properties, drug content, and drug permeation through the skin were examined. Moreover, in vivo skin irritation and skin adhesion performance were investigated. PVP/PAM/PDA PSAs showed a significantly higher adhesion to human skin compared with commercial patches owing to the interaction between the catechol groups presented on the patches and the skin. In addition, the patches were stable for six months. Consequently, the PVP/PAM/PDA patches exhibited outstanding tissue adhesiveness, enabling universal tissue adherence while causing no skin tissue irritation or inflammatory reaction.


Subject(s)
Ketoprofen , Povidone , Humans , Adhesives
12.
Int J Pharm ; 629: 122362, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36379396

ABSTRACT

This research aimed to create new hydrophilic drug-in-adhesive patches for transdermal drug delivery. Poly(hydroxyethyl acrylate-co-itaconic acid)-catechol (PHI-cat) and hyaluronic acid (HA) were used as main components in the pressure-sensitive adhesive. Citric acid and aluminium hydroxide were exploited as crosslinking agents and ketoprofen was employed as a model delivering compound. The adhesive performance, physicochemical properties, drug-polymer interaction, drug crystallization, drug content, drug permeation through the skin, and coordination polymer network of the patches were investigated. In addition, skin irritation and adhesion potential in human subjects were assessed. Due to the ability of catechol groups to form interaction with the skin tissue, the patches containing PHI-cat and HA offered a considerably greater adhesion ability to human skin compared with the patches without catechol and commercial patches. Furthermore, the patches had good physical and chemical stability. Therefore, these catechol-functionalized patches may be potential transdermal drug delivery systems with excellent adhesive properties for the delivery of a drug through the skin.


Subject(s)
Ketoprofen , Humans , Adhesives/chemistry , Hyaluronic Acid , Pharmaceutical Preparations , Administration, Cutaneous , Acrylates/chemistry , Catechols , Polymers/chemistry , Transdermal Patch
13.
Polymers (Basel) ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683883

ABSTRACT

The present study aimed to prepare methotrexate-loaded transdermal patches with different blends of hydrophobic and hydrophilic polymers (Eudragit S-100 and hydroxypropyl methylcellulose) at different concentrations. The polymers employed in transdermal patches formulations served as controlled agent. Transdermal patches were prepared using the solvent casting technique. The suitable physicochemical properties were obtained from the formulation F5 (HPMC and Eudragit S-100 (5:1). Various penetration enhancers were employed in different concentrations to investigate their potential for enhancing the drug permeation profile from optimized formulations. A preformulation study was conducted to investigate drug-excipient compatibilities (ATR-FTIR) and the study showed greater compatibility between drug, polymers and excipients. The prepared patches containing different penetration enhancers at different concentrations were subjected for evaluating different physicochemical parameters and in vitro drug release studies. The obtained data were added to various kinetic models, then formulated patch formulations were investigated for ex vivo permeation studies, in vivo studies and skin drug retention studies. The prepared patches showed elastic, smooth and clear nature with good thickness, drug content, % moisture uptake and weight uniformity. The prepared transdermal patches showed % drug content ranging from 91.43 ± 2.90 to 98.37 ± 0.56, % swelling index from 36.98 ± 0.19 to 75.32 ± 1.21, folding endurance from 61 ± 3.14 to 78 ± 1.54 and tensile strength from 8.54 ± 0.18 to 12.87 ± 0.50. The formulation F5, containing a greater amount of hydrophilic polymers (HPMC), showed increased drug release and permeation and drug retention when compared to other formulated transdermal patch formulations (F1-F9). No significant change was observed during a stability study for a period of 60 days. The rabbit skin samples were subjected to ATR-FTIR studies, which revealed that polymers and penetration enhancers have affected skin proteins (ceramides and keratins). The pharmacokinetic profiling of optimized formulation (F5) as well as formulations with optimized concentrations of penetration enhancers revealed Cmax ranged 167.80 ng/mL to 178.07 ± 2.75 ng/mL, Tmax was 8 h to 10 h, and t1/2 was 15.9 ± 2.11 to 21.49 ± 1.16. From the in vivo studies, it was revealed that the formulation F5-OA-10% exhibited greater skin drug retention as compared to other formulations. These results depicted that prepared methotrexate transdermal patches containing different blends of hydrophobic and hydrophilic polymers along with different penetration enhancers could be safely used for the management of psoriasis. The formulated transdermal patches exhibited sustained release of drug with good permeations and retention profile. Hence, these formulated transdermal patches can effectively be used for the management of psoriasis.

14.
Polymers (Basel) ; 14(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35458286

ABSTRACT

High-power laser irradiation interaction with natural polymers in biocomposites and Laser-Induced Chitin Deacetylation (LICD) was studied in this work, in order to produce thin films consisting of chitosan composite. The new method can lead to a cutting-edge technology, as a response to the concern regarding the accumulation of "natural biological waste" and its use. The process consists of high-power laser irradiation applied on oyster shells as the target and deposition of the ablated material on different substrates. The obtained thin films we analyzed by FTIR, UV-VIS and LIF spectroscopy, as well as SEM-EDS and AFM. All the results indicated that chitin was extracted from the shell composite material and converted to chitosan by deacetylation. It was, thus, evidenced that chemical transformation in the chitin polymer side-chain occurs during laser irradiation of the oyster shell and in the resulted plasma plume of ablation. The numerical simulation in COMSOL performed for this study anticipates and confirms the experimental results of chitin deacetylation, also providing information about the conditions required for the physico-chemical processes involved. The high sorption properties of the thin films obtained by a LICD procedure is evidenced in the study. This quality suggests that they should be used in transdermal patch construction due to the known hemostatic and antibacterial effects of chitosan. The resulting composite materials, consisting of the chitosan thin films deposited on hemp fabric, are also suitable for micro-filters in water decontamination or in other filtering processes.

15.
Polymers (Basel) ; 14(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35406184

ABSTRACT

This study attempted to develop and evaluate controlled-release matrix-type transdermal patches with different ratios of hydrophilic polymers (sodium carboxymethylcellulose and hydroxypropyl methylcellulose) for the local delivery of methotrexate. Transdermal patches were formulated by employing a solvent casting technique using blends of sodium carboxymethylcellulose (CMC-Na) and hydroxypropylmethylcellulose (HPMC) polymers as rate-controlling agents. The F1 formulated patch served as the control formulation with a 1:1 polymer concentration. The F9 formulation served as our optimized formulation due to suitable physicochemical properties yielded through the combination of CMC-Na and HPMC (5:1). Drug excipient compatibilities (ATR-FTIR) were performed as a preformulation study. The ATR-FTIR study depicted great compatibility between the drug and the polymers. Physicochemical parameters, kinetic modeling, in vitro drug release, ex vivo drug permeation, skin drug retention, and in vivo studies were also carried out for the formulated patches. The formulated patches exhibited a clear, smooth, elastic nature with good weight uniformity, % moisture uptake, drug content, and thickness. Physicochemical characterization revealed folding endurance ranging from 62 ± 2.21 to 78 ± 1.54, tensile strength from 9.42 ± 0.52 to 12.32 ± 0.72, % swelling index from 37.16 ± 0.17 to 76.24 ± 1.37, and % drug content from 93.57 ± 5.34 to 98.19 ± 1.56. An increase in the concentration of the CMC-Na polymer (F9) resulted in increased drug release from the formulated transdermal patches. Similarly, drug permeation and retention were found to be higher in the F9 formulation compared to the other formulations (F1-F8). A drug retention analysis revealed that the F9 formulation exhibited 13.43% drug retention in the deep layers of the skin compared to other formulations (F1-F8). The stability study indicated that, during the study period of 60 days, no significant changes in the drug content and physical characteristics were found. ATR-FTIR analysis of rabbit skin samples treated with the formulated transdermal patches revealed that hydrophilic polymers mainly affect the skin proteins (ceramide and keratins). A pharmacokinetic profile revealed Cmax was 1.77.38 ng/mL, Tmax was 12 h, and t1/2 was 17.3 ± 2.21. In vivo studies showed that the skin drug retention of F9 was higher compared to the drug solution. These findings reinforce that methotrexate-based patches can possibly be used for the management of psoriasis. This study can reasonably conclude that methotrexate transdermal matrix-type patches with CMC-Na and HPMC polymers at different concentrations effectively sustain drug release with prime permeation profiles and better bioavailability. Therefore, these formulated patches can be employed for the potential management of topical diseases, such as psoriasis.

16.
Braz. J. Pharm. Sci. (Online) ; 58: e19859, 2022. tab, graf
Article in English | LILACS | ID: biblio-1383996

ABSTRACT

To overcome the problems associated with bioavailability and systemic side effects of the drug by oral administration, monolithic matrix type transdermal patches containing cinnarizine (CNZ) were developed. For this purpose, films based on hydroxypropyl methylcellulose and polyvinylpyrrolidone as matrix-forming polymers were designed. Physical characteristics of transdermal films and drug-excipient compatibility were investigated. Factors affecting in vitro drug release and ex vivo skin penetration and permeation of the drug were studied. It was confirmed that films displayed sufficient flexibility and mechanical strength for application onto the skin for a long time period. Ex vivo penetration experiments gave satisfactory results for transdermal drug delivery through rat skin. The parameters determining good skin penetration were also evaluated. The highest drug permeation rate was obtained with incorporation of Transcutol® (0.102 mg/cm2/h) into the base CNZ formulation, followed by propylene glycol (0.063 mg/cm2/h), menthol (0.045 mg/cm2/h), and glycerin (0.021 mg/cm2/h) as penetration enhancers (p < 0.05). As a result, the developed transdermal patches of CNZ may introduce an alternative treatment for various conditions and diseases such as idiopathic urticarial vasculitis, Ménière's disease, motion sickness, nausea, and vertigo. Thus, the risk of systemic side effects caused by the drug can be reduced or eliminated


Subject(s)
Administration, Oral , Cinnarizine , Histamine Agonists/adverse effects , Cholinergic Antagonists , Anesthetics/classification , Skin , In Vitro Techniques/methods , Pharmaceutical Preparations/analysis , Hypromellose Derivatives/adverse effects , Drug Liberation
17.
J Cutan Aesthet Surg ; 14(2): 137-146, 2021.
Article in English | MEDLINE | ID: mdl-34566354

ABSTRACT

INTRODUCTION: Epidermal Growth Factor (rhEGF) is a promising skin antiaging agent that successfully promotes skin wound repair, and it has been investigated in the past decade for these purposes. However, there are no updated systematic reviews, in English or English, that support the efficacy of rhEGF as a regenerative skin treatment or systematic reviews that compile the uses of rhEGF as facial aesthetic therapy and regenerative medicine. AIM: To describe the current state of facial aesthetic and regenerative medicine treatments in which rhEGF has been effectively used. MATERIALS AND METHODS: An exhaustive search was carried out in "Medline" (via "PubMed"), "Cochrane," "Bireme" through the Virtual Health Library (VHL), "Elsevier" via "Science Direct," "Springer," "SciELo," "ResearchGate," and Google Scholar. Studies related to the use of rhEGF in addressing skin disorders or skin aging are included. RESULTS: Overall, 49 articles were found, which described the use of rhEGF for skin regeneration and restructuring. Efficacy in the regeneration of skin wounds was verified through the intradermal and topical application of formulations with rhEGF. Most clinical trials in aesthetics point to an effective inversion of skin aging. However, uncontrolled or randomized trials abound, so that does not represent enough evidence to establish its efficiency. There are transient adverse effects for both cases. CONCLUSION: The rhEGF considers an effective therapeutic alternative for patients with recalcitrant skin wounds and skin aging, as it is a potent and specific mitogenic factor for the skin.

18.
Neuropsychopharmacol Rep ; 41(3): 440-443, 2021 09.
Article in English | MEDLINE | ID: mdl-34357702

ABSTRACT

Tardive dyskinesia (TD) is a common side effect of antipsychotics, and it remains a persistent and challenging problem. The blonanserin transdermal patch, developed in Japan and launched in September 2019, is the first antipsychotic transdermal treatment. Here, we describe a patient with schizophrenia who exhibited markedly improved orofacial dyskinesia after switching from blonanserin tablets to blonanserin transdermal patches. We speculate that the patch formulation might have led to more stable plasma blonanserin levels, thus reducing the side effects. Specifically, the patch formulation might have contributed to stable plasma levels via the continuous and direct absorption of blonanserin through the skin.


Subject(s)
Antipsychotic Agents , Tardive Dyskinesia , Antipsychotic Agents/adverse effects , Humans , Piperazines , Piperidines , Tablets , Transdermal Patch
19.
Adv Healthc Mater ; 10(20): e2100996, 2021 10.
Article in English | MEDLINE | ID: mdl-34449129

ABSTRACT

Traditional drug delivery routes possess various disadvantages which make them unsuitable for certain population groups, or indeed unsuitable for drugs with certain physicochemical properties. As a result, a variety of alternative drug delivery routes have been explored in recent decades, including transdermal drug delivery. One of the most promising novel transdermal drug delivery technologies is a microarray patch (MAP), which can bypass the outermost skin barrier and deliver drugs directly into the viable epidermis and dermis. Unlike traditional MAPs which release loaded cargo simultaneously upon insertion into the skin, stimuli responsive MAPs based on biological stimuli are able to precisely release the drug in response to the need for additional doses. Thus, smart MAPs that are only responsive to certain external stimuli are highly desirable, as they provide safer and more efficient drug delivery. In addition to drug delivery, they can also be used for biological monitoring, which further expands their applications.


Subject(s)
Pharmaceutical Preparations , Skin Absorption , Administration, Cutaneous , Biological Monitoring , Drug Delivery Systems , Skin/metabolism , Transdermal Patch
20.
Pharmaceutics ; 13(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070540

ABSTRACT

The objective of this study was to develop novel water-based drug-in-adhesive pressure-sensitive adhesives (PSAs) patches for the transdermal delivery of ketoprofen, employing poly(N-vinylpyrrolidone-co-acrylic acid) copolymer (PVPAA) and poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) as the main components. The polymers were crosslinked with tartaric acid and dihydroxyaluminium aminoacetate using various polymer ratios. Ketoprofen was incorporated into the PVPAA/PMVEMA PSAs during the patch preparation. The physicochemical properties, adhesive properties, drug content, release profile, and skin permeation of the patches were examined. Moreover, the in vivo skin irritation and skin adhesion performance in human volunteers were evaluated. The patches prepared at a weight ratio of PVPAA/PMVEMA of 1:1 presented the highest tacking strength, with desirable peeling characteristics. The ketoprofen-loaded PVPAA/PMVEMA patches exhibited superior adhesive properties, compared to the commercial patches, because the former showed an appropriate crosslinking and hydrating status with the aid of a metal coordination complex. Besides, the permeated flux of ketoprofen through the porcine skin of the ketoprofen-loaded PVPAA/PMVEMA patches (4.77 ± 1.00 µg/cm2/h) was comparable to that of the commercial patch (4.33 ± 0.80 µg/cm2/h). In human studies, the PVPAA/PMVEMA patches exhibited a better skin adhesion performance, compared with the commercial patches, without skin irritation. In addition, the patches were stable for 6 months. Therefore, these novel water-based PSAs may be a potential adhesive for preparing drug-in-adhesive patches.

SELECTION OF CITATIONS
SEARCH DETAIL
...