Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
BMC Cancer ; 24(1): 357, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509504

ABSTRACT

BACKGROUND: Biliary tract cancer (BTC) is a relatively rare but aggressive gastrointestinal cancer with a high mortality rate. Cancer stem cell (CSC) populations play crucial roles in tumor biology and are responsible for the low response to anti-cancer treatment and the high recurrence rate. This study investigated the role of Transgelin-2 (TAGLN2), overexpressed in CSC in BTC cells, and analyzed its expression in patient tissues and serum to identify potential new targets for BTC. METHODS: TAGLN2 expression was suppressed by small-interfering or short hairpin RNAs, and its effects on tumor biology were assessed in several BTC cell lines. Furthermore, the effects of TAGLN2 silencing on gemcitabine-resistant BTC cells, differentially expressed genes, proteins, and sensitivity to therapeutics or radiation were assessed. TAGLN2 expression was also assessed using western blotting and immunohistochemistry in samples obtained from patients with BTC to validate its clinical application. RESULTS: Suppression of TAGLN2 in BTC cell lines decreased cell proliferation, migration, invasion, and tumor size, in addition to a reduction in CSC features, including clonogenicity, radioresistance, and chemoresistance. TAGLN2 was highly expressed in BTC tissues, especially in cancer-associated fibroblasts in the stroma. Patients with a low stromal immunohistochemical index had prolonged disease-free survival compared to those with a high stromal immunohistochemical index (11.5 vs. 7.4 months, P = 0.013). TAGLN2 expression was higher in the plasma of patients with BTC than that in those with benign diseases. TAGLN2 had a higher area under the curve (0.901) than CA19-9, a validated tumor biomarker (0.799; P < 0.001). CONCLUSION: TAGLN2 plays a critical role in promoting BTC cell growth and motility and is involved in regulating BTC stemness. Silencing TAGLN2 expression enhanced cell sensitivity to radiation and chemotherapeutic drugs. The expression of TAGLN2 in patient tissue and plasma suggests its potential to serve as a secretory biomarker for BTC. Overall, targeting TAGLN2 could be an appropriate therapeutic strategy against advanced cancer following chemotherapy failure.


Subject(s)
Biliary Tract Neoplasms , Microfilament Proteins , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/genetics , Cell Line, Tumor
3.
Biomed Pharmacother ; 167: 115556, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778269

ABSTRACT

Asthma is a complex and heterogeneous respiratory disease that causes serious social and economic burdens. Current drugs such as ß2-agonists cannot fully control asthma. Our previous study found that Transgelin-2 is a potential target for treating asthmatic pulmonary resistance. Herein, we discovered a zolinium compound, TSG1180, that showed a strong interaction with Transgelin-2. The equilibrium dissociation constants (KD) of TSG1180 to Transgelin-2 were determined to be 5.363 × 10-6 and 9.81 × 10-6 M by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Cellular thermal shift assay (CETSA) results showed that the thermal stability of Transgelin-2 increased after coincubation of TSG1180 with lysates of airway smooth muscle cells (ASMCs). Molecular docking showed that Arg39 may be the key residue for the binding. Then, the SPR result showed that the binding affinity of TSG1180 to Transgelin-2 mutant (R39E) was decreased by 1.69-fold. Real time cell analysis (RTCA) showed that TSG1180 treatment could relax ASMCs by 19 % (P < 0.05). Once Transgelin-2 was inhibited, TSG1180 cannot induce a relaxation effect, suggesting that the relaxation effect was specifically mediated by Transgelin-2. In vivo study showed TSG1180 effectively reduced pulmonary resistance by 64 % in methacholine-induced mice model (P < 0.05). Furthermore, the phosphorylation of Ezrin at T567 was increased by 8.06-fold, the phosphorylation of ROCK at Y722 was reduced by 38 % and the phosphorylation of RhoA at S188 was increased by 52 % after TSG1180 treatment. These results suggested that TSG1180 could be a Transgelin-2 agonist for further optimization and development as an anti-asthma drug.


Subject(s)
Asthma , Mice , Animals , Molecular Docking Simulation , Asthma/drug therapy , Asthma/metabolism , Lung , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/metabolism
4.
Front Pharmacol ; 14: 1220368, 2023.
Article in English | MEDLINE | ID: mdl-37711178

ABSTRACT

Asthma is a common chronic respiratory disease, which causes inflammation and airway stenosis, leading to dyspnea, wheezing and chest tightness. Using transgelin-2 as a target, we virtually screened the lead compound glycyrrhizin from the self-built database of anti-asthma compounds by molecular docking technology, and found that it had anti-inflammatory, anti-oxidative and anti-asthma pharmacological effects. Then, molecular dynamics simulations were used to confirm the stability of the glycyrrhizin-transgelin-2 complex from a dynamic perspective, and the hydrophilic domains of glycyrrhizin was found to have the effect of targeting transgelin-2. Due to the self-assembly properties of glycyrrhizin, we explored the formation process and mechanism of the self-assembly system using self-assembly simulations, and found that hydrogen bonding and hydrophobic interactions were the main driving forces. Because of the synergistic effect of glycyrrhizin and salbutamol in improving asthma, we revealed the mechanism through simulation, and believed that salbutamol adhered to the surface of the glycyrrhizin nano-drug delivery system through hydrogen bonding and hydrophobic interactions, using the targeting effect of the hydrophilic domains of glycyrrhizin to reach the pathological parts and play a synergistic anti-asthmatic role. Finally, we used network pharmacology to predict the molecular mechanisms of glycyrrhizin against asthma, which indicated the direction for its clinical transformation.

5.
Pharmacol Ther ; 244: 108374, 2023 04.
Article in English | MEDLINE | ID: mdl-36889441

ABSTRACT

Metallothionein-2 (MT-2) was originally discovered as a mediator of zinc homeostasis and cadmium detoxification. However, MT-2 has recently received increased attention because altered expression of MT-2 is closely related to various diseases such as asthma and cancers. Several pharmacological strategies have been developed to inhibit or modify MT-2, revealing its potential as drug target in diseases. Therefore, a better understanding of the mechanisms of MT-2 action is warranted to improve drug development for potential clinical applications. In this review, we highlight recent advances in determining the protein structure, regulation, binding partners, and new functions of MT-2 in inflammatory diseases and cancers.


Subject(s)
Neoplasms , Zinc , Humans , Zinc/metabolism , Metallothionein/metabolism , Neoplasms/drug therapy , Cadmium/metabolism
6.
Comput Biol Med ; 153: 106515, 2023 02.
Article in English | MEDLINE | ID: mdl-36610217

ABSTRACT

Transgelin-2 (TG2) is a novel promising therapeutic target for the treatment of asthma as it plays an important role in relaxing airway smooth muscles and reducing pulmonary resistance in asthma. The compound TSG12 is the only reported TG2 agonist with in vivo anti-asthma activity. However, the dynamic behavior and ligand binding sites of TG2 and its binding mechanism with TSG12 remain unclear. In this study, we performed 12.6 µs molecular dynamics (MD) simulations for apo-TG2 and TG2-TSG12 complex, respectively. The results suggested that the apo-TG2 has 4 most populated conformations, and that its binding of the agonist could expand the conformation distribution space of the protein. The simulations revealed 3 potential binding sites in 3 most populated conformations, one of which is induced by the agonist binding. Free energy decomposition uncovered 8 important residues with contributions stronger than -1 kcal/mol. Computational alanine scanning for the important residues by 100 ns conventional MD simulation for each mutated TG2-TSG12 complexes demonstrated that E27, R49 and F52 are essential residues for the agonist binding. These results should be helpful to understand the dynamic behavior of TG2 and its binding mechanism with the agonist TSG12, which could provide some structural insights into the novel mechanism for anti-asthma drug development.


Subject(s)
Anti-Asthmatic Agents , Molecular Dynamics Simulation , Anti-Asthmatic Agents/pharmacology , Muscle Proteins/agonists , Muscle Proteins/metabolism , Binding Sites , Drug Discovery , Protein Binding , Molecular Docking Simulation
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-995605

ABSTRACT

Objective:To analyze the change of differential genes and signaling pathways in high glucose induced BV2 cells, and to explore the mechanism of transgelin-2 (TAGLN2) regulating cellular inflammatory response and metabolic process.Methods:An experimental study. The cultured BV2 cells were divided into mannitol treatment (Man) group, glucose treatment (Glu) group, overexpression control Glu treatment (Con) group, overexpression TAGLN2 Glu treatment group, silence control Glu treatment (shCon Glu) group, and silence TAGLN2 Glu treatment (shTAGLN2 Glu) group. Cells in the Man group were cultured in modified Eagle high glucose medium (DMEM) containing 25 mmol/L mannitol and 25 mmol/L glucose, cells in other groups (Glu group, Con Glu group, TAGLN2 Glu group, shCon Glu group and shTAGLN2 Glu group) were cultured in DMEM medium containing 50 mmol/L glucose. After 24 hours of cells culture, transcriptome sequencing of cells in each group were performed using high-throughput sequencing technology, and significantly differentially expressed genes (DEG) were screened. |log 2 (fold change)|≥1 and P≤0.05 were adopted as criteria to screen for DEG. Gene Ontology (GO) function enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction network analysis were performed. Real-time polymerase chain reaction (RT-PCR) was used to detect the relative expression level of DEG mRNA. The data between groups were compared by independent sample t-test. Results:When compared with Man group, a total of 517 differentially expressed genes were screened in Glu group, which including 277 up-regulated genes and 240 down-regulated genes. KEGG pathway enrichment analysis showed that the up-regulated genes were significantly enriched in immune system processes such as nuclear factor (NF)-κB signal pathway, Jak-signal transducers and activators of transcription (STAT) signal pathway, while down-regulated genes were significantly enriched in glycosaminoglycan degradation and glyceride metabolic pathway. Compared with Con Glu group, a total of 480 DEG were screened in TAGLN2 Glu group, among which 147 up-regulated and 333 down-regulated genes were detected. Up-regulated genes were significantly enriched in the metabolic processes of fatty acid, glyceride and pyruvate, while down-regulated genes were significantly enriched in immune system processes such as NF-κB signal pathway, Jak-STAT signal pathway and tumor necrosis factor (TNF) signal pathway. Compared with shCon Glu group, a total of 582 DEG were screened in shTAGLN2 Glu group, among which 423 up-regulated and 159 down-regulated genes were detected. Up-regulated DEG were significantly enriched in immune system processes such as TNF signal pathway and chemokine signal pathway, while down-regulated DEG were significantly enriched in pattern recognition receptor signal pathway. RT-PCR results showed that the relative expression levels of DEG mRNA Card11 ( t=13.530), Icos ( t=3.482), Chst3 ( t=6.949), Kynu ( t=5.399), interleukin (IL)-1β ( t=2.960), TNF-α ( t=5.800), IL-6 ( t=3.130), interferon-γ ( t=7.690) and IL-17 ( t=6.530) in the TAGLN2 Glu treatment group were decreased significantly compared with Con Glu group, and the difference was statistically significant. Conclusion:TAGLN2 can inhibit glucose induced microglia inflammation by NF-κB and Jak-STAT signaling pathways, Card11, Icos, Chst3 and Kynu play an important role in the anti-inflammatory process of TAGLN2.

8.
Front Pharmacol ; 13: 873612, 2022.
Article in English | MEDLINE | ID: mdl-35784706

ABSTRACT

Airway hyperresponsiveness (AHR) is one of the most important features of asthma. Our previous study showed that inhaled transgelin-2 agonist, TSG12, effectively reduced pulmonary resistance in a mouse model of asthma in a dose-dependent manner. However, the optimal administration time of TSG12 to reduce AHR and the pharmacological effects are still unclear. In this study, the effects of TSG12 inhalation before and during AHR occurrence were examined. The results showed that the pulmonary resistance was reduced by 57% and the dynamic compliance was increased by 46% in the TSG12 Mch group (atomize TSG12 10 min before methacholine, p < 0.05 vs. model). The pulmonary resistance was reduced by 61% and the dynamic compliance was increased by 47% in the TSG12 + Mch group (atomize TSG12 and methacholine together, p < 0.05 vs. model). Quantitative real-time PCR showed that the gene expression levels of transgelin-2, myosin phosphatase target subunit-1, and myosin light chain were up-regulated by 6.4-, 1.9-, and 2.8-fold, respectively, in the TSG12 Mch group. The gene expression levels of transgelin-2, myosin phosphatase target subunit-1, and myosin light chain were up-regulated by 3.2-, 1.4-, and 1.9-fold, respectively, in the TSG12 + Mch group. The results suggested that TSG12 effectively reduces pulmonary resistance when TSG12 inhalation occurred both before and during AHR occurrence. Gene expression levels of transgelin-2 and myosin light chain were significantly up-regulated when TSG12 inhalation occurred before AHR occurrence. This study may provide a basis for the administration time of TSG12 for asthma treatment in the future.

9.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683019

ABSTRACT

Proteomic analyses based on mass spectrometry provide a powerful tool for the simultaneous identification of proteins and their signatures. Disorders detection at the molecular level delivers an immense impact for a better understanding of the pathogenesis and etiology of various diseases. Acute coronary syndrome (ACS) refers to a group of heart diseases generally associated with rupture of an atherosclerotic plaque and partial or complete thrombotic obstruction of the blood flow in the infarct-related coronary artery. The essential role in the pathogenesis of ACS is related to the abnormal, pathological activation of blood platelets. The multifactorial and complex character of ACS indicates the need to explain the molecular mechanisms responsible for thrombosis. In our study, we performed screening and comparative analysis of platelet proteome from ACS patients and healthy donors. Two-dimensional fluorescence difference gel electrophoresis and nanoscale liquid chromatography coupled to tandem mass spectrometry showed altered expressions of six proteins (i.e., vinculin, transgelin-2, fibrinogen ß and γ chains, apolipoprotein a1, and tubulin ß), with the overlapping increased expression at the mRNA level for transgelin-2. Dysregulation in protein expression identified in our study may be associated with an increased risk of thrombotic events, correlated with a higher aggregability of blood platelets and induced shape change, thus explaining the phenomenon of the hyperreactivity of blood platelets in ACS.


Subject(s)
Acute Coronary Syndrome , Thrombosis , Acute Coronary Syndrome/metabolism , Blood Platelets/metabolism , Humans , Microfilament Proteins , Muscle Proteins , Proteome/metabolism , Proteomics/methods , Tandem Mass Spectrometry , Thrombosis/metabolism , Transcriptome
10.
Front Cell Dev Biol ; 10: 810633, 2022.
Article in English | MEDLINE | ID: mdl-35281112

ABSTRACT

Preeclampsia (PE) is a serious disease during pregnancy that affects approximately eight million mothers and infants worldwide each year and is closely related to abnormal trophoblast function. However, research on placental trophoblast functional abnormalities is insufficient, and the etiology of PE is unclear. Here, we report that the expression of transgelin-2 (TAGLN2) was downregulated in the placenta of patients with PE. In addition, a lack of TAGLN2 significantly reduced the ability of trophoblasts to migrate, invade and fuse. A co-immunoprecipitation (Co-IP) and microscale thermophoresis analysis showed that TAGLN2 bound directly to E-cadherin. A decrease in TAGLN2 expression led to a reduction in cleavage of the E-cadherin extracellular domain, thereby regulating the function of trophoblasts. In addition, we found that a reduction in soluble E-cadherin may also have an effect on blood vessel formation in the placenta, which is necessary for normal placental development. What's more, the in vivo mouse model provided additional evidence of TAGLN2 involvement in the development of PE. By injecting pregnant mice with Ad-TAGLN2, we successfully generated a human PE-like syndrome that resulted in high blood pressure and some adverse pregnancy outcomes. Overall, the association between TAGLN2 and PE gives a new insight into PE diagnosis and treatment.

11.
J. physiol. biochem ; 78(1): 99-108, feb. 2022.
Article in English | IBECS | ID: ibc-215876

ABSTRACT

The abnormal expression of transgelin-2 (TAGLN2) is related to tumor occurrence and progression. However, the underlying molecular mechanism of TAGLN2 in human colorectal cancer (CRC) is still poorly understood. Compared with adjacent tissues, TAGLN2 is overexpressed in CRC tissues. Its expression level is negatively correlated with the overall survival rate of patients with CRC. In addition, knockdown of TAGLN2 inhibited the proliferation and invasion of CRC cells. We also showed that TAGLN2 could interact with CD44 to regulate the Notch-1 signaling pathway. Our findings indicate there is increased TAGLN2 expression in CRC and that it may serve as a promising potential therapeutic target for CRC. (AU)


Subject(s)
Humans , Colorectal Neoplasms , Microfilament Proteins , Cell Movement , Cell Proliferation , Cell Line, Tumor , Muscle Proteins , Receptor, Notch1 , Signal Transduction
12.
J Physiol Biochem ; 78(1): 99-108, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34553339

ABSTRACT

The abnormal expression of transgelin-2 (TAGLN2) is related to tumor occurrence and progression. However, the underlying molecular mechanism of TAGLN2 in human colorectal cancer (CRC) is still poorly understood. Compared with adjacent tissues, TAGLN2 is overexpressed in CRC tissues. Its expression level is negatively correlated with the overall survival rate of patients with CRC. In addition, knockdown of TAGLN2 inhibited the proliferation and invasion of CRC cells. We also showed that TAGLN2 could interact with CD44 to regulate the Notch-1 signaling pathway. Our findings indicate there is increased TAGLN2 expression in CRC and that it may serve as a promising potential therapeutic target for CRC.


Subject(s)
Colorectal Neoplasms , Microfilament Proteins , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Hyaluronan Receptors/genetics , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins , Receptor, Notch1/genetics , Signal Transduction
13.
Oncol Lett ; 22(4): 737, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34466149

ABSTRACT

Colorectal cancer (CRC) is one of the leading causes of cancer-associated mortality worldwide and currently ranks third in the USA in terms of prevalence. Transgelin-2 (TAGLN2) was previously reported to serve as a tumor promoter in various types of cancer. The present study aimed to investigate the role of TAGLN2 in the progression of CRC and to determine the potential underlying mechanism. The expression level of TAGLN2 in CRC cells (HCT116, SNU-C1, LoVo and SW480) were first detected by reverse transcription quantitative PCR and western blotting. Following TAGLN2 knockdown through transfection with short hairpin (sh)RNAs against TAGLN2, CRC cell proliferation was determined using Cell Counting Kit-8 and 5'-ethynyl-2'-deoxyuridine assays. Cell migration and invasion were evaluated using wound healing and Transwell assays, respectively. The expression levels of matrix metalloproteinase (MMP)2, MMP9 and proteins associated with epithelial-mesenchymal transition (EMT), including N-cadherin (N-cad), vimentin, zinc finger E-box binding homeobox 2 (ZEB2) and E-cadherin (E-cad), were also evaluated by western blotting. Furthermore, following TAGLN2 overexpression and the use of signal transducer and activator of transcription 3 (STAT3) inhibitors to treat CRC cells, all the aforementioned biological parameters were evaluated. The potential relationship between annexin 2 (ANXA2) and STAT3 was confirmed by western blotting analysis. The expression level of TAGLN2 was found to be particularly high in CRC cells. Following TAGLN2 knockdown, CRC cell proliferation, migration, invasion and EMT were significantly inhibited. TAGLN2 knockdown also suppressed STAT3 phosphorylation in CRC cells. In addition, the promoting effects of TAGLN2 overexpression on the progression of CRC were reversed by STAT3 inhibitor. Furthermore, ANXA2 was positively associated with STAT3. Taken together, these findings demonstrated that TAGLN2 could promote the proliferation, invasion, migration and EMT of CRC cells by activating STAT3 and regulating ANXA2 expression. This may reveal the underlying mechanism by which TAGLN2 might regulate the progression of CRC and provide potential therapeutic targets for the treatment of CRC.

14.
Exp Cell Res ; 404(1): 112619, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33965400

ABSTRACT

Proteins in cells undergo repeated binding to other molecules, thereby reducing the apparent extent of their intracellular diffusion. While much effort has been made to analytically decouple these combined effects of pure diffusion and chemical binding, it is difficult with conventional approaches to attribute the measured quantities to the nature of specific domains of the proteins. Motivated by the common goal in cell signaling research aimed at identifying the domains responsible for particular intermolecular interactions, here we describe a framework for determining the local physicochemical properties of cellular proteins associated with immobile scaffolds. To validate this new approach, we apply it to transgelin-2, an actin-binding protein whose intracellular dynamics remains elusive. We develop a fluorescence recovery after photobleaching (FRAP)-based framework, in which comprehensive combinations of domain-deletion mutants are created, and the difference among them in FRAP response is analyzed. We demonstrate that transgelin-2 in actin stress fibers (SFs) interacts with F-actin via two separate domains, and the chemical properties are determined for the individual domains. Its pure diffusion properties independent of the association to F-actin is also obtained. Our approach will thus be useful, as presented here for transgelin-2, in addressing the signaling mechanism of cellular proteins associated with SFs.


Subject(s)
Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Stress Fibers/metabolism , Actins/metabolism , Animals , Fluorescence Recovery After Photobleaching/methods , Rats
15.
Int J Mol Med ; 48(1)2021 Jul.
Article in English | MEDLINE | ID: mdl-33982775

ABSTRACT

Doxorubicin is one of the most important chemotherapeutic drugs for the treatment of malignant tumors, but the cardiotoxicity of doxorubicin severely limits its clinical application. Increasing numbers of microRNAs (miRNAs/miRs) have been found to be dysregulated in doxorubicin­treated cardiomyocytes or animal hearts. The current study aimed to investigate the role of miR­133b in doxorubicin­induced cardiomyocyte injury. Doxorubicin was used to treat HL­1 cardiomyocytes to mimic cardiomyocyte injury in vitro. A mouse model of cardiac injury was generated by chronic intraperitoneal injections of doxorubicin. Masson's trichrome staining was performed on cardiac tissues to reveal cardiac fibrosis. Bioinformatics analysis and luciferase reporter assays were applied to explore the downstream targets of miR­133b. Flow cytometry and western blotting were conducted to detect cardiomyocyte apoptosis. Protein expression levels of collagen I, III and IV, and fibronectin were detected to reveal extracellular matrix deposition. The results revealed that doxorubicin decreased miR­133b expression in the treated HL­1 cardiomyocytes and mouse hearts. Overexpression of miR­133b restrained cardiomyocyte apoptosis, inhibited collagen accumulation and alleviated cardiac fibrosis in vivo. Mechanistically, polypyrimidine tract binding protein 1 (PTBP1) and transgelin 2 (TAGLN2) were confirmed to bind to miR­133b after prediction and screening. Moreover, miR­133b negatively regulated the protein expression levels of PTBP1 and TAGLN2. Finally, overexpression of PTBP1 or TAGLN2 reversed the effects of miR­133b on apoptosis and collagen accumulation. Thus, the current results indicated that miR­133b alleviated doxorubicin­induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2, implying that miR­133b may be a potential biomarker for doxorubicin­induced cardiac injury.


Subject(s)
Apoptosis/drug effects , Fibrosis/therapy , Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , MicroRNAs/metabolism , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Animals , Cardiotoxicity/prevention & control , Disease Models, Animal , Doxorubicin/adverse effects , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Microfilament Proteins/genetics , Muscle Proteins/genetics , Myocytes, Cardiac/drug effects , Polypyrimidine Tract-Binding Protein/genetics
16.
J Hematol Oncol ; 14(1): 43, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731208

ABSTRACT

BACKGROUND: Transgelin-2 is a 22 kDa actin-binding protein that has been proposed to act as an oncogenic factor, capable of contributing to tumorigenesis in a wide range of human malignancies. However, little is known whether this tiny protein also plays an important role in immunity, thereby keeping body from the cancer development and metastasis. Here, we investigated the functions of transgelin-2 in dendritic cell (DC) immunity. Further, we investigated whether the non-viral transduction of cell-permeable transgelin-2 peptide potentially enhance DC-based cancer immunotherapy. METHODS: To understand the functions of transgelin-2 in DCs, we utilized bone marrow-derived DCs (BMDCs) purified from transgelin-2 knockout (Tagln2-/-) mice. To observe the dynamic cellular mechanism of transgelin-2, we utilized confocal microscopy and flow cytometry. To monitor DC migration and cognate T-DC interaction in vivo, we used intravital two-photon microscopy. For the solid and metastasis tumor models, OVA+ B16F10 melanoma were inoculated into the C57BL/6 mice via intravenously (i.v.) and subcutaneously (s.c.), respectively. OTI TCR T cells were used for the adoptive transfer experiments. Cell-permeable, de-ubiquitinated recombinant transgelin-2 was purified from Escherichia coli and applied for DC-based adoptive immunotherapy. RESULTS: We found that transgelin-2 is remarkably expressed in BMDCs during maturation and lipopolysaccharide activation, suggesting that this protein plays a role in DC-based immunity. Although Tagln2-/- BMDCs exhibited no changes in maturation, they showed significant defects in their abilities to home to draining lymph nodes (LNs) and prime T cells to produce antigen-specific T cell clones, and these changes were associated with a failure to suppress tumor growth and metastasis of OVA+ B16F10 melanoma cells in mice. Tagln2-/- BMDCs had defects in filopodia-like membrane protrusion and podosome formation due to the attenuation of the signals that modulate actin remodeling in vitro and formed short, unstable contacts with cognate CD4+ T cells in vivo. Strikingly, non-viral transduction of cell-permeable, de-ubiquitinated recombinant transgelin-2 potentiated DC functions to suppress tumor growth and metastasis. CONCLUSION: This work demonstrates that transgelin-2 is an essential protein for both cancer and immunity. Therefore, transgelin-2 can act as a double-edged sword depending on how we apply this protein to cancer therapy. Engineering and clinical application of this protein may unveil a new era in DC-based cancer immunotherapy. Our findings indicate that cell-permeable transgelin-2 have a potential clinical value as a cancer immunotherapy based on DCs.


Subject(s)
Adoptive Transfer , Dendritic Cells/immunology , Melanoma, Experimental/therapy , Microfilament Proteins/immunology , Muscle Proteins/immunology , Animals , Cell Movement , Cells, Cultured , Dendritic Cells/cytology , Female , Immunity , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Muscle Proteins/genetics
17.
Front Cell Dev Biol ; 8: 342, 2020.
Article in English | MEDLINE | ID: mdl-32478077

ABSTRACT

The calponin homology (CH) domain is one of the most common modules in various actin-binding proteins and is characterized by an α-helical fold. The CH domain plays important regulatory roles in both cytoskeletal dynamics and signaling. The CH domain is required for stability and organization of the actin cytoskeleton, calcium mobilization and activation of downstream pathways. The CH domain has recently garnered increased attention due to its importance in the onset of different diseases, such as cancers and asthma. However, many roles of the CH domain in various protein functions and corresponding diseases are still unclear. Here, we review current knowledge about the structural features, interactome and related diseases of the CH domain.

18.
Biochem Biophys Res Commun ; 523(3): 632-638, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31941608

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, but its pathogenesis is not clear. This study found that the expression of TAGLN2 mRNA and protein in HCC was higher than that in adjacent tissues. TCGA database analysis further confirmed this result, and found that the expression of TAGLN2 was positively correlated with the prognosis of HCC, suggesting that TAGLN2 may be a tumor promoter gene. Then the TAGLN2-Annexin A2 (ANXA2) interaction and NF-κB signaling pathway were further clarified during the invasion and metastasis of HCC. This mechanism provides a theoretical basis for further finding molecular targets and drug targets related to HCC metastasis.


Subject(s)
Annexin A2/genetics , Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Microfilament Proteins/genetics , Muscle Proteins/genetics , Annexin A2/analysis , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Disease Progression , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Microfilament Proteins/analysis , Middle Aged , Muscle Proteins/analysis , Prognosis , Up-Regulation
19.
China Pharmacy ; (12): 945-952, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-820842

ABSTRACT

OBJECTIVE:To struc turally modify shikimic acid ,and to investigate the reversal effects of its derivatives on paclitaxel-resistant human breast cancer cells MCF- 7/PTX. METHODS :Using shikimic acid as the lead structure ,1-position carboxyl group was structurally modified to synthesize a series of shikimic acid derivatives through esterification ,amidation, hydrogenation and reduction ,etc. Using non-drug resistant cells MCF- 7 as reference ,MTT assay was used to screen derivatives with inhibitory activity as well as half-inhibitory concentration (IC50)and reversal index (RI)of derivatives to MCF- 7/PTX. With the drug resistance-related transgelin 2 as the target ,the molecular docking of the active derivatives with the drug resistance-related protein was carried out by using Glide 1.0 computer-aided design software. RESULTS :Totally 15 derivatives were obtained (T1-T15), of which T 4-T15 were obtained for the first time. MTT assay showed that (3R, 4S, 5R) -N-benzyl-3, 4, 5-trihydroxy-1-cyclohexene-1-formamide(T7),(3R,4S,5R)-N-(3,4,5-trihydroxy-1-cyclohexenylmethyl)-benzylamine(T14), (3R,4S,5R)-3,4-O-isopropyl-5-O-acetyl-1-cyclohexene-1-methyl formate (T15)inhibited MCF- 7 and MCF- 7/PTX cells to a certain extent ;IC50 values of T 7,T14 and T 15 combined with pacliaxel to MCF- 7/PTX cells were significantly lower than that in negative control (Paclitaxel alone )group(P<0.05). RIs of T 14 and T 15 were higher ,and RIs of the highest dose were 8.8 and 9.3, which were equivalent to positive control verapamil (10.8). Th e results of molecular docking showed that the hydroxyl groups at positions 3,4 of T 7 could form multiple hydrogen bonds with ; Arg625 and Asp 627 in the catalytic region of transgelin 2. In addition to the hydrogen bond mentioned above at T 7,the mail:batistuta28@126.com secondary amine side chain at position 1 of T 14 could also form hydrogen bond with Glu 657 of transgelin 2. When the hydroxyl group on the T 15 mother nucleus was derived from the donor group ,the binding of the hydroxyl group to transgelin 2 was closer and the inhibition was enhanced. CONCLUSIONS : The derivatives T 7,T14 and T 15 have certain reverse activity to paclitaxel-resistant human breast cancer cells. The polyhydroxy structure of the mother nucleus is the main structural region of the hydrogen bond between shikimic acid and its derivatives and transgelin 2. The derivation of its power supply group or the introduction of secondary amines and hydrophobic groups into the 1-carboxyl group of shikimic acid is benifit for enhancing the drug resistance reversal effect of derivative .

20.
Trends Biochem Sci ; 44(10): 885-896, 2019 10.
Article in English | MEDLINE | ID: mdl-31256982

ABSTRACT

Transgelin-2 has been regarded as an actin-binding protein that induces actin gelation and regulates actin cytoskeleton. However, transgelin-2 has recently been shown to relax the myosin cytoskeleton of the airway smooth muscle cells by acting as a receptor for extracellular metallothionein-2. From a clinical perspective, these results support transgelin-2 as a promising therapeutic target for diseases such as cancer and asthma. The inhibition of transgelin-2 prevents actin gelation and thereby cancer cell proliferation, invasion, and metastasis. Conversely, the activation of transgelin-2 with specific agonists relaxes airway smooth muscles and reduces pulmonary resistance in asthma. Here, we review new studies on the biochemical properties of transgelin-2 and discuss their clinical implications for the treatment of immune, oncogenic, and respiratory disorders.


Subject(s)
Asthma/metabolism , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Neoplasms/metabolism , Actins/metabolism , Animals , Asthma/drug therapy , Asthma/pathology , Cell Proliferation/drug effects , Humans , Microfilament Proteins/agonists , Microfilament Proteins/antagonists & inhibitors , Muscle Proteins/agonists , Muscle Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...